首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Parkinson''s disease primarily results from progressive degeneration of dopaminergic neurons in the substantia nigra. Both neuronal toxicants and genetic factors are suggested to be involved in the disease pathogenesis. The mitochondrial toxicant 1-methyl-4-phenylpyridinium (MPP+) shows a highly selective toxicity to dopaminergic neurons. Recent studies indicate that mutation in the vacuolar protein sorting 35 (vps35) gene segregates with Parkinson''s disease in some families, but how mutation in the vps35 gene causes dopaminergic cell death is not known. Here, we report that enhanced VPS35 expression protected dopaminergic cells against MPP+ toxicity and that this neuroprotection was compromised by pathogenic mutation in the gene. A loss of neuroprotective functions contributes to the pathogenesis of VPS35 mutation in Parkinson''s disease.  相似文献   

3.
Parkinson''s disease (PD) is characterized by degeneration of neurons, particularly dopaminergic neurons in the substantia nigra. PD brains show accumulation of α‐synuclein in Lewy bodies and accumulation of dysfunctional mitochondria. However, the mechanisms leading to mitochondrial pathology in sporadic PD are poorly understood. PINK1 is a key for mitophagy activation and recycling of unfit mitochondria. The activation of mitophagy depends on the accumulation of uncleaved PINK1 at the outer mitochondrial membrane and activation of a cascade of protein ubiquitination at the surface of the organelle. We have now found that SIAH3, a member of the SIAH proteins but lacking ubiquitin‐ligase activity, is increased in PD brains and cerebrospinal fluid and in neurons treated with α‐synuclein preformed fibrils (α‐SynPFF). We also observed that SIAH3 is aggregated together with PINK1 in the mitochondria of PD brains. SIAH3 directly interacts with PINK1, leading to their intra‐mitochondrial aggregation in cells and neurons and triggering a cascade of toxicity with PINK1 inactivation along with mitochondrial depolarization and neuronal death. We also found that SIAH1 interacts with PINK1 and promotes ubiquitination and proteasomal degradation of PINK1. Similar to the dimerization of SIAH1/SIAH2, SIAH3 interacts with SIAH1, promoting its translocation to mitochondria and preventing its ubiquitin‐ligase activity toward PINK1. Our results support the notion that the increase in SIAH3 and intra‐mitochondrial aggregation of SIAH3‐PINK1 may mediate α‐synuclein pathology by promoting proteotoxicity and preventing the elimination of dysfunctional mitochondria. We consider it possible that PINK1 activity is decreased in sporadic PD, which impedes proper mitochondrial renewal in the disease.  相似文献   

4.
Fan GH  Zhou HY  Yang H  Chen SD 《FEBS letters》2006,580(13):3091-3098
Alpha-synuclein has been implicated in the pathogenesis of Parkinson's disease (PD). Heat shock proteins (HSPs) can reduce protein misfolding and accelerate the degradation of misfolded proteins. 1-methyl-4-phenylpyridinium ion (MPP+) is the compound responsible for the PD-like neurodegeneration caused by MPTP. In this study, we found that MPP+ could increase the expression of alpha-synuclein mRNA but could not elevate proteasome activity sufficiently, leading to alpha-synuclein protein accumulation followed by aggregation. Both HSPs and HDJ-1, a homologue of human Hsp40, can inhibit MPP+-induced alpha-synuclein mRNA expression, promote ubiquitination and elevate proteasome activity. These findings suggest that HSPs may inhibit the MPP+-induced alpha-synuclein expression, accelerate alpha-synuclein degradation, thereby reducing the amount of alpha-synuclein protein and accordingly preventing its aggregation.  相似文献   

5.
ObjectivesHigh‐mobility group box‐1 (HMGB1) and aberrant mitochondrial fission mediated by excessive activation of GTPase dynamin‐related protein 1 (Drp1) have been found to be elevated in patients with pulmonary arterial hypertension (PAH) and critically implicated in PAH pathogenesis. However, it remains unknown whether Drp1‐mediated mitochondrial fission and which downstream targets of mitochondrial fission mediate HMGB1‐induced pulmonary arterial smooth muscle cells (PASMCs) proliferation and migration leading to vascular remodelling in PAH. This study aims to address these issues.MethodsPrimary cultured PASMCs were obtained from male Sprague‐Dawley (SD) rats. We detected RNA levels by qRT‐PCR, protein levels by Western blotting, cell proliferation by Cell Counting Kit‐8 (CCK‐8) and EdU incorporation assays, migration by wound healing and transwell assays. SD rats were injected with monocrotaline (MCT) to establish PAH. Hemodynamic parameters were measured by closed‐chest right heart catheterization.ResultsHMGB1 increased Drp1 phosphorylation and Drp1‐dependent mitochondrial fragmentation through extracellular signal‐regulated kinases 1/2 (ERK1/2) signalling activation, and subsequently triggered autophagy activation, which further led to bone morphogenetic protein receptor 2 (BMPR2) lysosomal degradation and inhibitor of DNA binding 1 (Id1) downregulation, and eventually promoted PASMCs proliferation/migration. Inhibition of ERK1/2 cascade, knockdown of Drp1 or suppression of autophagy restored HMGB1‐induced reductions of BMPR2 and Id1, and diminished HMGB1‐induced PASMCs proliferation/migration. In addition, pharmacological inhibition of HMGB1 by glycyrrhizin, suppression of mitochondrial fission by Mdivi‐1 or blockage of autophagy by chloroquine prevented PAH development in MCT‐induced rats PAH model.ConclusionsHMGB1 promotes PASMCs proliferation/migration and pulmonary vascular remodelling by activating ERK1/2/Drp1/Autophagy/BMPR2/Id1 axis, suggesting that this cascade might be a potential novel target for management of PAH.  相似文献   

6.
摘要 目的:探究Cullin1(CUL1)基因对1-甲基-4-苯基吡啶离子(MPP+)诱导的SH-SY5Y细胞存活和核苷酸结合寡聚化结构域样受体3(NLRP3)炎症体通路的影响。方法:(1)将SH-SY5Y细胞分为NC组、NC-sh组、CUL1-sh组、NC-OE组和CUL1-OE组。使用Lipofectamine 2000试剂对细胞转染相应的慢病毒。(2)将SH-SY5Y细胞分为Control组、MPP+组和MPP++CUL1-OE组。MPP+组和MPP++CUL1-OE组细胞使用1 mmol/L的MPP+处理48 h,Control组细胞正常培养。通过MTT法检测细胞增殖,通过Annexin V-FITC/PI双染色法和TUNEL染色法检测细胞凋亡,通过qRT-PCR检测CUL1的mRNA水平,通过Western blot检测CUL1、NLRP3、凋亡相关斑点样蛋白(ASC)、cleaved caspase-1、白细胞介素(IL)-1β和IL-18蛋白水平。通过ELISA法检测细胞培养上清液中IL-1β和IL-18水平。结果:(1)与NC组和NC-sh组比较,CUL1-sh组CUL1的mRNA和蛋白相对表达量降低,相对细胞活力降低,Annexin V-FITC/PI阳性率和TUNEL阳性率升高,NLRP3、ASC、cleaved caspase-1、IL-1β和IL-18蛋白相对表达量以及细胞培养上清液中IL-1β和IL-18水平升高(P<0.05)。与NC组和NC-OE组比较,CUL1-OE组CUL1的mRNA和蛋白相对表达量升高,相对细胞活力升高,Annexin V-FITC/PI阳性率和TUNEL阳性率降低,NLRP3、ASC、cleaved caspase-1、IL-1β和IL-18蛋白相对表达量以及细胞培养上清液中IL-1β和IL-18水平降低(P<0.05)。(2)与Control组比较,MPP+组CUL1的mRNA和蛋白相对表达量降低,相对细胞活力降低,Annexin V-FITC/PI阳性率和TUNEL阳性率升高,NLRP3、ASC、cleaved caspase-1、IL-1β和IL-18蛋白相对表达量以及细胞培养上清液中IL-1β和IL-18水平升高(P<0.05)。与MPP+组比较,MPP++CUL1-OE组CUL1的mRNA和蛋白相对表达量升高,相对细胞活力升高,Annexin V-FITC/PI阳性率和TUNEL阳性率降低,NLRP3、ASC、cleaved caspase-1、IL-1β和IL-18蛋白相对表达量以及细胞培养上清液中IL-1β和IL-18水平降低(P<0.05)。结论:CUL1可能通过抑制NLRP3炎症体激活促进MPP+诱导的SH-SY5Y细胞存活。  相似文献   

7.
Vascular endothelial growth factor (VEGF), a specific pro-angiogenic peptide, has shown neuroprotective effects in the Parkinson’s disease (PD) models, but the underlying mechanisms remain elusive. In this study, the neuroprotective properties of VEGF on 1-methyl-4-phenylpyridinium ion (MPP+)-induced neurotoxicity in primary cerebellar granule neurons were investigated. Pretreatment of VEGF prevented MPP+-induced neuronal apoptosis in a concentration- and time-dependent manner. And this prevention was blocked by PTK787/ZK222584, a VEGF receptor-2 specific inhibitor. Both inhibition of the Akt pathway and activation of the extracellular signal-regulated kinase (ERK) pathway contribute to MPP+-induced neuronal apoptosis. VEGF reversed the inhibition of phosphoinositide 3-kinase (PI3-K)/Akt pathway caused by MPP+, but further enhanced the activation of ERK induced by MPP+. Interestingly, VEGF and PD98059 (an ERK kinase inhibitor) play a synergistic role in protecting neurons from MPP+-induced toxicity. Collectively, these findings suggest that the PI3-K/Akt and ERK pathways activated by VEGF play opposite roles in MPP+-induced neuronal apoptosis. This finding offers not only a new and clinically significant modality as to how VEGF exerts its neuroprotective effects but also a novel therapeutic strategy for PD by differentially regulating PD-associated signaling pathways.  相似文献   

8.
Zhang Y  Xia Z  Hu Y  Orsi A  Rees D 《FEBS letters》2008,582(6):956-960
Tyrosine hydroxylase immunohistochemical analysis revealed that in cultured mesencephalic dopaminergic neurons smilagenin (SMI), added prior to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPP+), protected against the drop of neuron number and neurite outgrowth length caused by MPP+. Addition of anti-GDNF and/or anti-GFR alpha 1 functional antibodies to the medium prior to SMI, eliminated mostly, though incompletely, the action of SMI. The expression of glial cell derived neurotrophic factor (GDNF) mRNA, but not GDNF receptor alpha1 (GFR alpha 1) or receptor tyrosine kinase mRNA in MPP+ intoxicated neurons was markedly elevated as early as 2h after the addition of SMI with a peak at 24-48 h. Therefore, an important route of the protective action of SMI on dopaminergic neurons is to stimulate intrinsic GDNF expression.  相似文献   

9.
The purpose of our study was to assess mitochondrial biogenesis and distribution in murine primary neurons. Using 5-bromo-2-deoxyuridine (BrdU) incorporation and primary neurons, we studied the mitochondrial biogenesis and mitochondrial distribution in hippocampal neurons from amyloid beta precursor protein (AβPP) transgenic mice and wild-type (WT) neurons treated with oxidative stressors, rotenone and H2O2. We found that after 20 h of labeling, BrdU incorporation was specific to porin-positive mitochondria. The proportion of mitochondrial area labeled with BrdU was 40.3 ± 6.3% at 20 h. The number of mitochondria with newly synthesized DNA was higher in AβPP neuronal cell bodies than in the cell bodies of WT neurons (AβPP, 45.23 ± 2.67 BrdU-positive/cell body; WT, 32.92 ± 2.49 BrdU-positive/cell body; p = 0.005). In neurites, the number of BrdU-positive mitochondria decreased in AβPP cultures compared to WT neurons (AβPP, 0.105 ± 0.008 BrdU-positive/μm neurite; WT, 0.220 ± 0.036 BrdU-positive/μm neurite; p = 0.010). Further, BrdU in the cell body increased when neurons were treated with low doses of H2O2 (49.6 ± 2.7 BrdU-positive/cell body, p = 0.0002 compared to untreated cells), while the neurites showed decreased BrdU staining (0.122 ± 0.010 BrdU-positive/μm neurite, p = 0.005 compared to the untreated). BrdU labeling was increased in the cell body under rotenone treatment. Additionally, under rotenone treatment, the content of BrdU labeling decreased in neurites. These findings suggest that Aβ and mitochondrial toxins enhance mitochondrial fragmentation in the cell body, and may cause impaired axonal transport of mitochondria leading to synaptic degeneration.  相似文献   

10.
11.
The hematopoietic cytokines erythropoietin (Epo) and granulocyte-colony stimulating factor (G-CSF) provide neuroprotection in several in vitro and in vivo models of Parkinson’s disease (PD). The molecular mechanism by which Epo and G-CSF signals reduce the neuronal death in PD is not clear. Here, we show that in rat pheochromocytoma PC12 cells, Epo and G-CSF efficiently repressed the 1-methyl-4-phenylpyridinium (MPP+)-induced expression of the proapoptotic protein PUMA (p53 up-regulated modulator of apoptosis). Accordingly, Epo and G-CSF treatment reduced the PC12 cell fraction that underwent apoptosis by MPP+ treatment and thus improved cell viability. Downregulation of PUMA expression by Epo and G-CSF in MPP+-treated PC12 cells seems to be mediated by repression of p53, as the expression of p53 was increased by MPP+-treatment and reduced by Epo and G-CSF. Together, these results suggest that the neuroprotective activities of Epo and G-CSF in an experimental model of PD involve the repression of the apoptosis-inducing action of PUMA.  相似文献   

12.
Alzheimer''s disease (AD) is the most common cause of mental dementia in the aged population. AD is characterized by the progressive decline of memory and multiple cognitive functions, and changes in behavior and personality. Recent research has revealed age‐dependent increased levels of VDAC1 in postmortem AD brains and cerebral cortices of APP, APPxPS1, and 3xAD.Tg mice. Further, we found abnormal interaction between VDAC1 and P‐Tau in the AD brains, leading to mitochondrial structural and functional defects. Our current study aimed to understand the impact of a partial reduction of voltage‐dependent anion channel 1 (VDAC1) protein on mitophagy/autophagy, mitochondrial and synaptic activities, and behavior changes in transgenic TAU mice in Alzheimer''s disease. To determine if a partial reduction of VDAC1 reduces mitochondrial and synaptic toxicities in transgenic Tau (P301L) mice, we crossed heterozygote VDAC1 knockout (VDAC1+/−) mice with TAU mice and generated double mutant (VDAC1+/−/TAU) mice. We assessed phenotypic behavior, protein levels of mitophagy, autophagy, synaptic, other key proteins, mitochondrial morphology, and dendritic spines in TAU mice relative to double mutant mice. Partial reduction of VDAC1 rescued the TAU‐induced behavioral impairments such as motor coordination and exploratory behavioral changes, and learning and spatial memory impairments in VDAC1+/−/TAU mice. Protein levels of mitophagy, autophagy, and synaptic proteins were significantly increased in double mutant mice compared with TAU mice. In addition, dendritic spines were significantly increased; the mitochondrial number was significantly reduced, and mitochondrial length was increased in double mutant mice. Based on these observations, we conclude that reduced VDAC1 is beneficial in symptomatic‐transgenic TAU mice.  相似文献   

13.
Autophagy is a critical regulator of organellar homeostasis, particularly of mitochondria. Upon the loss of membrane potential, dysfunctional mitochondria are selectively removed by autophagy through recruitment of the E3 ligase Parkin by the PTEN-induced kinase 1 (PINK1) and subsequent ubiquitination of mitochondrial membrane proteins. Mammalian sequestrome-1 (p62/SQSTM1) is an autophagy adaptor, which has been proposed to shuttle ubiquitinated cargo for autophagic degradation downstream of Parkin. Here, we show that loss of ref(2)P, the Drosophila orthologue of mammalian P62, results in abnormalities, including mitochondrial defects and an accumulation of mitochondrial DNA with heteroplasmic mutations, correlated with locomotor defects. Furthermore, we show that expression of Ref(2)P is able to ameliorate the defects caused by loss of Pink1 and that this depends on the presence of functional Parkin. Finally, we show that both the PB1 and UBA domains of Ref(2)P are crucial for mitochondrial clustering. We conclude that Ref(2)P is a crucial downstream effector of a pathway involving Pink1 and Parkin and is responsible for the maintenance of a viable pool of cellular mitochondria by promoting their aggregation and autophagic clearance.  相似文献   

14.
Monoamine oxidase (MAO) enzymes catalyze the oxidative deamination of amines and neurotransmitters and inhibitors of MAO are useful as neuroprotectants. This work evaluates the human MAO-catalyzed oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a dopaminergic neurotoxin, to the directly-acting neurotoxic metabolites, 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP+) and 1-methyl-4-phenylpyridinium (MPP+) measured by High-Performance Liquid Chromatography (HPLC), and this approach is subsequently used as a new method for screening of MAO inhibitors and protective agents. Oxidation of MPTP by human MAO-B was more efficient than by MAO-A. R-Deprenyl, a known neuroprotectant, norharman (β-carboline), 5-nitroindazole and menadione (vitamin K3) inhibited MAO-B and reduced the formation of toxic pyridinium cations. Clorgyline and the β-carbolines, harman and norharman, inhibited the oxidation of MPTP by MAO-A. Cigarette smoke, as well as the naturally occurring β-carbolines (norharman and harman) isolated from smoke and coffee inhibited the oxidation of MPTP by MAO-B and/or MAO-A, suggesting protective effects against MPTP. The results show the suitability of the approach used to search for new MAO inhibitors with eventual neuroprotective activity.  相似文献   

15.

Background

PEA-15 is abundantly expressed in both neurons and astrocytes throughout the brain. It is a multifunctional protein with the ability to increase cell survival via anti-apoptotic and anti-proliferative properties. However, the function of PEA-15 in neuronal diseases such as Parkinson's disease (PD) remains unclear. In this study, we investigated the protective effects of PEA-15 on neuronal damage induced by MPP+ in neuroblastoma SH-SY5Y and BV2 microglia cells and in a MPTP-induced PD mouse model using cell-permeable PEP-1-PEA-15.

Methods

PEP-1-PEA-15 was purified using affinity chromatography. Cell viability and DNA fragmentation were examined by MTT assay and TUNEL staining. Dopaminergic neuronal cell death in the animal model was examined by immunohistochemistry.

Results

PEP-1-PEA-15 transduced into the SH-SY5Y and BV2 cells in a time- and dose-dependent manner. Transduced PEP-1-PEA-15 protected against MPP+-induced toxicity by inhibiting intracellular ROS levels and DNA fragmentation. Further, it enhanced the expression levels of Bcl-2 and caspase-3 while reducing the expression levels of Bax and cleaved caspase-3. We found that PEP-1-PEA-15 transduced into the substantia nigra and prevented dopaminergic neuronal cell death in a MPTP-induced PD mouse. Also, we showed the neuroprotective effects in the model by demonstrating that treatment with PEP-1-PEA-15 ameliorated MPTP-induced behavioral dysfunctions and increased dopamine levels in the striatum.

Conclusions

PEP-1-PEA-15 can efficiently transduce into cells and protects against neurotoxin-induced neuronal cell death in vitro and in vivo.

General significance

These results demonstrate the potential for PEP-1-PEA-15 to provide a new strategy for protein therapy treatment of a variety of neurodegenerative diseases including PD.  相似文献   

16.
17.
18.
The present study was designed to evaluate the specific role of protein kinase C (PKC) δ in methamphetamine (MA)-induced dopaminergic toxicity. A multiple-dose administration regimen of MA significantly increases PKCδ expression, while rottlerin, a PKCδ inhibitor, significantly attenuates MA-induced hyperthermia and behavioral deficits. These behavioral effects were not significantly observed in PKCδ antisense oligonucleotide (ASO)-treated- or PKCδ knockout (−/−)-mice. There were no MA-induced significant decreases of dopamine (DA) content or tyrosine hydroxylase (TH) expression in the striatum in rottlerin-treated-, ASO-treated- or PKCδ (−/−)-mice. The administration of MA also results in a significant decrease of TH phosphorylation at ser 40, but not ser 31, while the inhibition of PKCδ consistently and significantly attenuates MA-induced reduction in the phosphorylation of TH at ser 40. Therefore, these results suggest that the MA-induced enhancement of PKCδ expression is a critical factor in the impairment of TH phosphorylation at ser 40 and that pharmacological or genetic inhibition of PKCδ may be protective against MA-induced dopaminergic neurotoxicity in vivo.  相似文献   

19.
20.

Background

Diallyl disulfide (DADS) is a garlic-derived organosulfur compound. The current study is designed to evaluate the protective effects of DADS against ethanol-induced oxidative stress, and to explore the underlying mechanisms by examining the HO-1/Nrf-2 pathway.

Methods

We investigated whether or not DADS could activate the HO-1 in normal human liver cell LO2, and then evaluated the protective effects of DADS against ethanol-induced damage in LO2 cells and in acute ethanol-intoxicated mice. The biochemical parameters were measured using commercial kits. HO-1 mRNA level was determined by RT-PCR. Histopathology and immunofluorescence assay were performed with routine methods. Protein levels were measured by western blot.

Results

DADS significantly increased the mRNA and protein levels of HO-1, stimulated the nuclear translocation of Nrf-2 and increased the phosphorylation of MAPK in LO2 cells. The nuclear translocation of Nrf-2 was abrogated by MAPK inhibitors. DADS significantly suppressed ethanol-induced elevation of lactate dehydrogenase (LDH) and aspartate transaminase (AST) activities, decrease of glutathione (GSH) level, increase of malondialdehyde (MDA) levels, and apoptosis of LO2 cells, which were all blocked by ZnPPIX. In mice, DADS effectively suppressed acute ethanol-induced elevation of aminotransferase activities, and improved liver histopathological changes, which might be associated with HO-1 activation.

Conclusion

These results demonstrate that DADS could induce the activation of HO-1/Nrf-2 pathway, which may contribute to the protective effects of DADS against ethanol-induced liver injury.

General significance

DADS may be beneficial for the prevention and treatment of ALD due to significant activation of HO-1/Nrf-2 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号