首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We present the recent developments and advances in fluorescence correlation spectroscopy (FCS) and their application to the investigation of biomolecular conformations. In particular, we present and discuss three techniques: multichannel nanosecond FCS, photo-induced electron transfer FCS, and fluorescence lifetime correlation spectroscopy. We briefly describe each method and discuss recent applications to diverse biophysical studies of biomolecular conformation.  相似文献   

2.
P Schwille  U Haupts  S Maiti    W W Webb 《Biophysical journal》1999,77(4):2251-2265
Multiphoton excitation (MPE) of fluorescent probes has become an attractive alternative in biological applications of laser scanning microscopy because many problems encountered in spectroscopic measurements of living tissue such as light scattering, autofluorescence, and photodamage can be reduced. The present study investigates the characteristics of two-photon excitation (2PE) in comparison with confocal one-photon excitation (1PE) for intracellular applications of fluorescence correlation spectroscopy (FCS). FCS is an attractive method of measuring molecular concentrations, mobility parameters, chemical kinetics, and fluorescence photophysics. Several FCS applications in mammalian and plant cells are outlined, to illustrate the capabilities of both 1PE and 2PE. Photophysical properties of fluorophores required for quantitative FCS in tissues are analyzed. Measurements in live cells and on cell membranes are feasible with reasonable signal-to-noise ratios, even with fluorophore concentrations as low as the single-molecule level in the sampling volume. Molecular mobilities can be measured over a wide range of characteristic time constants from approximately 10(-3) to 10(3) ms. While both excitation alternatives work well for intracellular FCS in thin preparations, 2PE can substantially improve signal quality in turbid preparations like plant cells and deep cell layers in tissue. At comparable signal levels, 2PE minimizes photobleaching in spatially restrictive cellular compartments, thereby preserving long-term signal acquisition.  相似文献   

3.
Fluorescence correlation spectroscopy (FCS) is a fluorescence microscopy technique that allows the study of molecular interactions in extremely low volumes, at nanomolar concentrations, even when binding is not accompanied by a fluorescence change. It can be applied directly in living cells. FCS clearly considerably extends the possibilities of the classical techniques used in molecular recognition studies and can be considered to belong to a growing group of techniques that allow detection at the single molecule level. In this review, several applications of FCS, both in vitro and in vivo, will be discussed.  相似文献   

4.
Diffusion of a fluorescent protein within a cell has been measured using either fluctuation-based techniques (fluorescence correlation spectroscopy (FCS) or raster-scan image correlation spectroscopy) or particle tracking. However, none of these methods enables us to measure the diffusion of the fluorescent particle at each pixel of the image. Measurement using conventional single-point FCS at every individual pixel results in continuous long exposure of the cell to the laser and eventual bleaching of the sample. To overcome this limitation, we have developed what we believe to be a new method of scanning with simultaneous construction of a fluorescent image of the cell. In this believed new method of modified raster scanning, as it acquires the image, the laser scans each individual line multiple times before moving to the next line. This continues until the entire area is scanned. This is different from the original raster-scan image correlation spectroscopy approach, where data are acquired by scanning each frame once and then scanning the image multiple times. The total time of data acquisition needed for this method is much shorter than the time required for traditional FCS analysis at each pixel. However, at a single pixel, the acquired intensity time sequence is short; requiring nonconventional analysis of the correlation function to extract information about the diffusion. These correlation data have been analyzed using the phasor approach, a fit-free method that was originally developed for analysis of FLIM images. Analysis using this method results in an estimation of the average diffusion coefficient of the fluorescent species at each pixel of an image, and thus, a detailed diffusion map of the cell can be created.  相似文献   

5.
Continuous flow capillary electrophoresis (CFCE) is non-separations based analytical technique based on the free solution electrophoretic mobility of biological molecules such as DNA, RNA, peptides, and proteins. The electrophoretic mobilities and translational diffusion constants of the analyte molecules are determined using single molecule detection methods, including fluorescence correlation spectroscopy (FCS). CFCE is used to resolve multiple components in a mixture of analytes, measure electrophoretic mobility shifts due to binding interactions, and study the hydrodynamic and electrostatic properties of biological molecules in solution. Often this information is obtained with greater speed and sensitivity than conventational separations-based capillary-zone electrophoresis. This paper will focus on the application of two-beam fluorescence cross-correlation spectroscopy as a versatile detection method for CFCE and explore several applications to the study of the solution properties of single-stranded DNA.  相似文献   

6.
Investigation of lipid lateral mobility in biological membranes and their artificial models provides information on membrane dynamics and structure; methods based on optical microscopy are very convenient for such investigations. We focus on fluorescence correlation spectroscopy (FCS), explain its principles and review its state of the art versions such as 2-focus, Z-scan or scanning FCS, which overcome most artefacts of standard FCS (especially those resulting from the need for an external calibration) making it a reliable and versatile method. FCS is also compared to single particle tracking and fluorescence photobleaching recovery and the applicability and the limitations of the methods are briefly reviewed. We discuss several key questions of lateral mobility investigation in planar lipid membranes, namely the influence which membrane and aqueous phase composition (ionic strength and sugar content), choice of a fluorescent tracer molecule, frictional coupling between the two membrane leaflets and between membrane and solid support (in the case of supported membranes) or presence of membrane inhomogeneities has on the lateral mobility of lipids. The recent FCS studies addressing those questions are reviewed and possible explanations of eventual discrepancies are mentioned.  相似文献   

7.
Fluorescence correlation spectroscopy (FCS) is rapidly growing in popularity as a biomedical research tool. FCS measurements can produce an accurate characterization of the chemical, physical, and kinetic properties of a biological system. They can also serve as a diagnostic, detecting particular molecular species with high sensitivity and specificity. We here demonstrate that dual-color FCS measurements can be applied to detect and quantify the concentration of specific non-fluorescent molecular species without requiring any modifications to the molecule of interest. We demonstrate this capability by applying dual-color two-photon fluorescence cross-correlation spectroscopy to detect single stranded gamma tubulin DNA in solution with high sensitivity. This quantification is independent of molecular size, and the methods introduced can be extended to measurements in complex environments such as within living cells.  相似文献   

8.
Two methods to combine fluorescence correlation spectroscopy (FCS) with modulated excitation, in a way that allows extraction of correlation data for all correlation times have been developed and experimentally verified. One method extracts distortion-free correlation data from measurements acquired with standard hardware correlators provided the fluorescence does not change systematically within the excitation pulses. This restriction does not apply to the second method, which, however, requires time-resolved acquisition of the fluorescence intensity. Modulation of the excitation in an FCS experiment is demonstrated to suppress triplet population buildup more efficiently than a corresponding reduction in continuous wave excitation intensity (shown for the dye rhodamine 6G in aqueous solution). Excitation modulation thus offers an additional means to optimize the FCS measurement conditions with respect to the photophysical properties of the dyes used. This possibility to suppress photoinduced states also provides a useful tool to distinguish additional processes occurring in the same time regime in the FCS measurements, as demonstrated here for the protonation kinetics of fluorescein at different pH. In general, the proposed concept opens for FCS measurements with a complete correlation timescale in a range of applications where a modulated excitation is either necessary or brings specific advantages.  相似文献   

9.
R D Icenogle  E L Elson 《Biopolymers》1983,22(8):1919-1948
Fluorescence correlation spectroscopy (FCS) and fluorescence photobleaching recovery (FPR) are two methods that may be used to measure diffusion and chemical reaction kinetics in small, labile systems such as biological cells. These methods are here applied to systems in which a fluorescent ligand can bind to a polyvalent substrate molecule in a multistep reaction sequence. The analytical theory for both FCS and FPR is extended to allow analysis of these kinds of systems. Experimental measurements of the binding of ethidium bromide to DNA by FCS confirm the theoretical analysis. (FPR measurements on the same system are reported in the accompanying paper.) The analysis shows that FCS and FPR perceive multivalent binding reactions differently. This difference results from the selective effect of the photobleaching process in the chemical reaction system. The development and results we report could have useful applications to a wide range of biopolymeric binding and assembly process.  相似文献   

10.
Fluorescence correlation spectroscopy (FCS) is a widely used technique in biophysics and has helped address many questions in the life sciences. It provides important advantages compared to other fluorescence and biophysical methods. Its single molecule sensitivity allows measuring proteins within biological samples at physiological concentrations without the need of overexpression. It provides quantitative data on concentrations, diffusion coefficients, molecular transport and interactions even in live organisms. And its reliance on simple fluorescence intensity and its fluctuations makes it widely applicable. In this review we focus on applications of FCS in live samples, with an emphasis on work in the last 5 years, in the hope to provide an overview of the present capabilities of FCS to address biologically relevant questions.  相似文献   

11.
Giant unilamellar vesicles (GUVs) have been widely used as a model membrane system to study membrane organization, dynamics, and protein-membrane interactions. Most recent studies have relied on imaging methods, which require good contrast for image resolution. Multiple sequential image processing only detects slow components of membrane dynamics. We have developed a new fluorescence correlation spectroscopy (FCS) technique, termed scanning FCS (i.e., SFCS), which performs multiple FCS measurements simultaneously by rapidly directing the excitation laser beam in a uniform (circular) scan across the bilayer of the GUVs in a repetitive fashion. The scan rate is fast compared to the diffusion of the membrane proteins and even small molecules in the GUVs. Scanning FCS outputs a "carpet" of timed fluorescence intensity fluctuations at specific points along the scan. In this study, GUVs were assembled from rat kidney brush border membranes, which included the integral membrane proteins. Scanning FCS measurements on GUVs allowed for a straightforward detection of spatial-temporal interactions between the protein and the membrane based on the diffusion rate of the protein. To test for protein incorporation into the bilayers of the GUVs, antibodies against one specific membrane protein (NaPi II cotransporter) were labeled with ALEXA-488. Fluorescence images of the GUVs in the presence of the labeled antibody showed marginal fluorescence enhancement on the GUV membrane bilayers (poor image contrast and resolution). With the application of scanning FCS, the binding of the antibody to the GUVs was detected directly from the analysis of diffusion rates of the fluorescent antibody. The diffusion coefficient of the antibody bound to NaPi II in the GUVs was approximately 200-fold smaller than that in solution. Scanning FCS provided a simple, quantitative, yet highly sensitive method to study protein-membrane interactions.  相似文献   

12.
Fluorescence correlation spectroscopy (FCS) is a time-averaging fluctuation analysis of small molecular ensembles, combining maximum sensitivity with high statistical confidence. Among a multitude of physical parameters that are, in principle, accessible by FCS, it most conveniently allows to determine local concentrations, mobility coefficients, and characteristic rate constants of fast-reversible and slow-irreversible reactions of fluorescently labeled biomolecules at very low (nanomolar) concentrations, under equilibrium conditions and without physical separation. Its presently most popular instrumentation by confocal-microscope setups allows for a spatial resolution of fractions of femtoliters for the measurement volumes, containing sparse or even single molecules at any time, and encourages the adaptation of the solution-based technique for cellular applications. The scope of this review is thus, to introduce the FCS technique in particular to the reader with biological background, searching for new methods for a precise quantification of physical parameters governing cellular mechanisms and dynamics, especially if high sensitivity and fast dynamic resolution are required. After a short theoretical introduction, examples are given for the so far most important experimental applications, with respect to their implementation in cellular systems. As an interesting alternative to the confocal instrumentation, two-photon excitation will be introduced, offering a number of important advantages especially in cellular systems with high-noise and low-signal levels.  相似文献   

13.
荧光相关光谱(fluorescence correlation spectroscopy,FCS)是一种通过监测荧光涨落从而获得单分子水平的分子扩散行为信息的技术。FCS高灵敏度的优点使得它已发展成为一种可以在活体外与活体内检测分子浓度、扩散系数、结合和解离常数等参数的有力工具。荧光互相关光谱(fluorescence cross-correlation spectroscopy,FCCS)是FCS技术的进一步发展,其大大扩展了FCS技术的应用范围。本文介绍了FCS及其衍生技术的原理及其在生物化学领域的应用。  相似文献   

14.
The standard deviation in fluorescence correlation spectroscopy   总被引:4,自引:0,他引:4       下载免费PDF全文
The standard deviation (SD) in fluorescence correlation spectroscopy (FCS) has been mostly neglected in applications. However, the knowledge of the correct SD is necessary for an accurate data evaluation, especially when fitting theoretical models to experimental data. In this work, an algorithm is presented that considers the essential features of FCS. It allows prediction of the performance of FCS measurements in various cases, which is important for finding optimal experimental conditions. The program calculates the SD of the experimental autocorrelation function online. This procedure leads to improved parameter estimation, compared to currently used theoretical approximations for the SD. Three methods for the calculation of the SD are presented and compared to earlier analytical solutions (D. E. Koppel. 1974. Phys. Rev. A. 10:1938-1945.), calculation directly from fluorescence intensity values, by averaging several FCS measurements, or by dividing one measurement into a set of shorter data packages. Although the averaging over several measurements yields accurate estimates for the SD, the other two methods are considerably less time consuming, can be run online, and yield comparable results.  相似文献   

15.
This review describes the method of fluorescence correlation spectroscopy (FCS) and its applications. FCS is used for investigating processes associated with changes in the mobility of molecules and complexes and allows researchers to study aggregation of particles, binding of fluorescent molecules with supramolecular complexes, lipid vesicles, etc. The size of objects under study varies from a few angstroms for dye molecules to hundreds of nanometers for nanoparticles. The described applications of FCS comprise various fields from simple chemical systems of solution/micelle to sophisticated regulations on the level of living cells. Both the methodical bases and the theoretical principles of FCS are simple and available. The present review is concentrated preferentially on FCS applications for studies on artificial and natural membranes. At present, in contrast to the related approach of dynamic light scattering, FCS is poorly known in Russia, although it is widely employed in laboratories of other countries. The goal of this review is to promote the development of FCS in Russia so that this technique could occupy the position it deserves in modern Russian science.  相似文献   

16.
荧光相关光谱检测技术具有超灵敏(单分子)、快速(数秒至数分钟)和多功能(检测分子浓度、大小和相互作用)等技术优点,且无需反应物分离,因此有潜力成为一种新型均相、高敏荧光免疫检测技术,适用于在溶液中或单个活细胞内检测生物分子特性.本文首先介绍荧光相关光谱检测技术的原理和研究进展,然后结合项目团队自主研发的目前全球唯一一款可靠、易使用的桌面式荧光相关光谱仪,进一步探讨荧光相关光谱检测技术的具体实现和潜在应用.  相似文献   

17.
The architectural organization of chromatin can play an important role in genome regulation by affecting the mobility of molecules within its surroundings via binding interactions and molecular crowding. The diffusion of molecules at specific locations in the nucleus can be studied by fluorescence correlation spectroscopy (FCS), a well-established technique based on the analysis of fluorescence intensity fluctuations detected in a confocal observation volume. However, detecting subtle variations of mobility between different chromatin regions remains challenging with currently available FCS methods. Here, we introduce a method that samples multiple positions by slowly scanning the FCS observation volume across the nucleus. Analyzing the data in short time segments, we preserve the high temporal resolution of single-point FCS while probing different nuclear regions in the same cell. Using the intensity level of the probe (or a DNA marker) as a reference, we efficiently sort the FCS segments into different populations and obtain average correlation functions that are associated to different chromatin regions. This sorting and averaging strategy renders the method statistically robust while preserving the observation of intranuclear variations of mobility. Using this approach, we quantified diffusion of monomeric GFP in high versus low chromatin density regions. We found that GFP mobility was reduced in heterochromatin, especially within perinucleolar heterochromatin. Moreover, we found that modulation of chromatin compaction by ATP depletion, or treatment with solutions of different osmolarity, differentially affected the ratio of diffusion in both regions. Then, we used the approach to probe the mobility of estrogen receptor-α in the vicinity of an integrated multicopy prolactin gene array. Finally, we discussed the coupling of this method with stimulated emission depletion FCS for performing FCS at subdiffraction spatial scales.  相似文献   

18.
In this chapter, we discuss methods to measure lateral mobility of membrane lipids and proteins using techniques based on the light microscope. These methods typically sample lateral mobility in very small, micron-sized regions of the membrane so that they can be used to measure diffusion in regions of single cells. The methods are based on fluorescence from the molecules of interest or from light scattered from particles attached to single or small groups of membrane lipids or proteins. Fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS) and Single particle tracking (SPT) are presented in that order. FRAP and FCS methodologies are described for a dedicated wide field microscope although many confocal microscopes now have software permitting these measurement to be made; nevertheless, the principles of the measurement are the same for a wide field or confocal microscope. SPT can be applied to trace the movements of single fluorescent molecules in membranes but this aspect will not be treated in detail.  相似文献   

19.
A fiber-tip-based near-field fluorescence correlation spectroscopy (FCS) has been developed for confining the detection volume to sub-diffraction-limited dimensions. This near-field FCS is based on near-field illumination by coupling a scanning near-field optical microscope (SNOM) to a conventional confocal FCS. Single-molecule FCS analysis at 100 nM Rhodamine 6G has been achieved by using bare chemically etched, tapered fiber tips. The detection volume under control of the SNOM system has been reduced over one order of magnitude compared to that of the conventional confocal FCS. Related factors influencing the near-field FCS performance are investigated and discussed in detail. In this proof-of-principle study, the preliminary experimental results suggest that the fiber-tip-based near-field FCS might be a good alternative to realize localized analysis at the single-molecule level.  相似文献   

20.
Fluorescence correlation spectroscopy (FCS) methods are powerful tools for unveiling the dynamical organization of cells. For simple cases, such as molecules passively moving in a homogeneous media, FCS analysis yields analytical functions that can be fitted to the experimental data to recover the phenomenological rate parameters. Unfortunately, many dynamical processes in cells do not follow these simple models, and in many instances it is not possible to obtain an analytical function through a theoretical analysis of a more complex model. In such cases, experimental analysis can be combined with Monte Carlo simulations to aid in interpretation of the data. In response to this need, we developed a method called FERNET (Fluorescence Emission Recipes and Numerical routines Toolkit) based on Monte Carlo simulations and the MCell-Blender platform, which was designed to treat the reaction-diffusion problem under realistic scenarios. This method enables us to set complex geometries of the simulation space, distribute molecules among different compartments, and define interspecies reactions with selected kinetic constants, diffusion coefficients, and species brightness. We apply this method to simulate single- and multiple-point FCS, photon-counting histogram analysis, raster image correlation spectroscopy, and two-color fluorescence cross-correlation spectroscopy. We believe that this new program could be very useful for predicting and understanding the output of fluorescence microscopy experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号