首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《朊病毒》2013,7(2):124-133
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are neurological diseases that can be transmitted through a number of different routes. A wide range of mammalian species are affected by the disease. After peripheral exposure, some TSE agents accumulate in lymphoid tissues at an early stage of disease prior to spreading to the nerves and the brain. Much research has focused on identifying the cells and molecules involved in the transmission of TSE agents from the site of exposure to the brain and several crucial cell types have been associated with this process. The identification of the key cells that influence the different stages of disease transmission might identify targets for therapeutic intervention. This review highlights the involvement of mononuclear phagocytes in TSE disease. Current data suggest these cells may exhibit a diverse range of roles in TSE disease from the transport or destruction of TSE agents in lymphoid tissues, to mediators or protectors of neuropathology in the brain.  相似文献   

2.
Many natural transmissible spongiform encephalopathy (TSE) infections are likely to be acquired peripherally, and studies in mice show that skin scarification is an effective means of scrapie transmission. After peripheral exposure, TSE agents usually accumulate in lymphoid tissues before spreading to the brain. The mechanisms of TSE transport to lymphoid tissues are not known. Langerhans cells (LCs) reside in the epidermis and migrate to the draining lymph node after encountering antigen. To investigate the potential role of LCs in scrapie transportation from the skin, we utilized mouse models in which their migration was blocked either due to CD40 ligand deficiency (CD40L-/- mice) or after caspase-1 inhibition. We show that the early accumulation of scrapie infectivity in the draining lymph node and subsequent neuroinvasion was not impaired in mice with blocked LC migration. Thus, LCs are not involved in TSE transport from the skin. After intracerebral inoculation with scrapie, wild-type mice and CD40L-/- mice develop clinical disease with similar incubation periods. However, after inoculation via skin scarification CD40L-/- mice develop disease significantly earlier than do wild-type mice. The shorter incubation period in CD40L-/- mice is unexpected and suggests that a CD40L-dependent mechanism is involved in impeding scrapie pathogenesis. In vitro studies demonstrated that LCs have the potential to acquire and degrade protease-resistant prion protein, which is thought to be a component of the infectious agent. Taken together, these data suggest that LCs are not involved in scrapie transport to draining lymphoid tissues but might have the potential to degrade scrapie in the skin.  相似文献   

3.
Following oral exposure, some transmissible spongiform encephalopathy (TSE) agents accumulate first upon follicular dendritic cells (FDCs) in the GALT. Studies in mice have shown that this accumulation is obligatory for the efficient delivery of the TSE agent to the brain. However, which GALTs are crucial for disease pathogenesis is uncertain. Mice deficient in specific GALT components were used here to determine their separate involvement in scrapie agent neuroinvasion from the intestine. In the combined absence of the GALTs and FDCs (lymphotoxin (LT)alpha(-/-) mice and LTbeta(-/-) mice), scrapie agent transmission was blocked. When FDC maturation was induced in remaining lymphoid tissues, mice that lacked both Peyer's patches (PPs) and mesenteric lymph nodes (wild-type (WT)-->LTalpha(-/-) mice) or PPs alone (WT-->LTbeta(-/-) mice) remained refractory to disease, demonstrating an important role for the PPs. Although early scrapie agent accumulation also occurs within the mesenteric lymph nodes, their presence in WT-->LTbeta(-/-) mice did not restore disease susceptibility. We have also shown that isolated lymphoid follicles (ILFs) are important novel sites of TSE agent accumulation in the intestine. Mice that lacked PPs but contained numerous FDC-containing mature ILFs succumbed to scrapie at similar times to control mice. Because the formation and maturation status of ILFs is inducible and influenced by the gut flora, our data suggest that such factors could dramatically affect susceptibility to orally acquired TSE agents. In conclusion, these data demonstrate that following oral exposure TSE agent accumulation upon FDCs within lymphoid tissue within the intestine itself is critically required for efficient neuroinvasion.  相似文献   

4.
Infections with variant Creutzfeldt-Jakob disease (vCJD) have almost exclusively occurred in young patients, but the reasons for this age distribution are uncertain. Our data suggest that the pathogenesis of many peripherally acquired transmissible spongiform encephalopathy (TSE) agents is less efficient in aged individuals. Four vCJD cases linked to transfusion of vCJD-contaminated blood or blood products have been described. Three cases occurred in elderly patients, implying that intravenous exposure is more efficient in aged individuals than other peripheral routes. To test this hypothesis, young (6 to 8 weeks old) and aged (600 days old) mice were injected intravenously with a TSE agent. In aged and young mice, the intravenous route was more efficient than other peripheral routes of TSE agent exposure. However, in aged mice, disease pathogenesis was significantly reduced. Although most aged mice failed to develop clinical disease during their life spans, many showed histopathological signs of TSE disease in their brains. Thus, the effects of age on intravenous TSE pathogenesis may lead to significant levels of subclinical disease in the population. After peripheral exposure, many TSE agents accumulate upon follicular dendritic cells (FDCs) in lymphoid tissues before they infect the brain. In aged spleens, PrP(C) expression and TSE agent accumulation upon FDCs were reduced. Furthermore, the splenic marginal zone microarchitecture was substantially disturbed, adversely affecting the delivery of immune complexes to FDCs. This study is the first to suggest that the effects of aging on the microarchitecture and the function of the splenic marginal zone significantly influence the pathogenesis of an important pathogen.  相似文献   

5.
Atypical/Nor98 scrapie infectivity in sheep peripheral tissues   总被引:1,自引:0,他引:1  
Atypical/Nor98 scrapie was first identified in 1998 in Norway. It is now considered as a worldwide disease of small ruminants and currently represents a significant part of the detected transmissible spongiform encephalopathies (TSE) cases in Europe. Atypical/Nor98 scrapie cases were reported in ARR/ARR sheep, which are highly resistant to BSE and other small ruminants TSE agents. The biology and pathogenesis of the Atypical/Nor98 scrapie agent in its natural host is still poorly understood. However, based on the absence of detectable abnormal PrP in peripheral tissues of affected individuals, human and animal exposure risk to this specific TSE agent has been considered low. In this study we demonstrate that infectivity can accumulate, even if no abnormal PrP is detectable, in lymphoid tissues, nerves, and muscles from natural and/or experimental Atypical/Nor98 scrapie cases. Evidence is provided that, in comparison to other TSE agents, samples containing Atypical/Nor98 scrapie infectivity could remain PrP(Sc) negative. This feature will impact detection of Atypical/Nor98 scrapie cases in the field, and highlights the need to review current evaluations of the disease prevalence and potential transmissibility. Finally, an estimate is made of the infectivity loads accumulating in peripheral tissues in both Atypical/Nor98 and classical scrapie cases that currently enter the food chain. The results obtained indicate that dietary exposure risk to small ruminants TSE agents may be higher than commonly believed.  相似文献   

6.
Following oral exposure, some transmissible spongiform encephalopathy (TSE) agents accumulate first upon follicular dendritic cells (DCs) in the GALT. Studies in mice have shown that TSE agent accumulation in the GALT, in particular the Peyer's patches, is obligatory for the efficient transmission of disease to the brain. However, the mechanism through which TSE agents are initially conveyed from the gut lumen to the GALT is not known. Studies have implicated migratory hemopoietic DCs in this process, but direct demonstration of their involvement in vivo is lacking. In this study, we have investigated the contribution of CD11c(+) DCs in scrapie agent neuroinvasion through use of CD11c-diptheria toxin receptor-transgenic mice in which CD11c(+) DCs can be specifically and transiently depleted. Using two distinct scrapie agent strains (ME7 and 139A scrapie agents), we show that when CD11c(+) DCs were transiently depleted in the GALT and spleen before oral exposure, early agent accumulation in these tissues was blocked. In addition, CD11c(+) cell depletion reduced susceptibility to oral scrapie challenge indicating that TSE agent neuroinvasion from the GALT was impaired. In conclusion, these data demonstrate that migratory CD11c(+) DCs play a key role in the translocation of the scrapie agent from the gut lumen to the GALT from which neuroinvasion subsequently occurs.  相似文献   

7.
《朊病毒》2013,7(2):66-71
Prion diseases are neurodegenerative conditions caused by the transconformation of a normal host glycoprotein, the cellular prion protein (PrPc) into a neurotoxic, self-aggregating conformer (PrPSc). TSEs are ineluctably fatal and no treatment is yet available. In principle, prion diseases could be attacked from different angles including: blocking conversion of PrPc into PrPSc, accelerating the clearance of amyloid deposits in peripheral tissues and brain, stopping prion progression in secondary lymphoid organs, reducing brain inflammation and promoting neuronal healing. There are many indications that adaptive and innate immunity might mediate those effects but so far, the achievements of immunointervention have not matched all expectations. Difficulties arise from the impossibility to diagnose TSE before substantial brain damage, poor accessibility of the CNS to immunological agents, deep immune tolerance to self-PrP, and short term effects of many immune interventions contrasting with the slow progression of TSEs. Here, we discuss two approaches, inspired from cancer immunotherapy, which might overcome some of those obstacles. One is vaccination with antigen-pulsed or antigen-transduced dendritic cells to bypass self-tolerance. The other one is the adoptive transfer of PrP-sensitized CD4+ T cells which can promote humoral, cell-mediated or regulatory responses, coordinate adaptive and innate immunity and have long lasting effects.  相似文献   

8.
Prion diseases are neurodegenerative conditions caused by the transconformation of a normal host glycoprotein, the cellular prion protein (PrPc) into a neurotoxic, self-aggregating conformer (PrPSc). TSEs are ineluctably fatal and no treatment is yet available. In principle, prion diseases could be attacked from different angles including: blocking conversion of PrPc into PrPSc, accelerating the clearance of amyloid deposits in peripheral tissues and brain, stopping prion progression in secondary lymphoid organs, reducing brain inflammation and promoting neuronal healing. There are many indications that adaptive and innate immunity might mediate those effects but, so far, the achievements of immunointervention have not matched all expectations. Difficulties arise from the impossibility to diagnose TSE before substantial brain damage, poor accessibility of the CNS to immunological agents, deep immune tolerance to self-PrP and short term effects of many immune interventions contrasting with the slow progression of TSEs. Here, we discuss two approaches, inspired from cancer immunotherapy, which might overcome some of those obstacles. One is vaccination with antigen-pulsed or antigen-transduced dendritic cells to bypass self-tolerance. The other one is the adoptive transfer of PrP-sensitized CD4+ T cells which can promote humoral, cellmediated or regulatory responses, coordinate adaptive and innate immunity and have long lasting effects.Key words: prion, TSE, dendritic cells, CD4+ T cells, cellular immunotherapy, vaccination, adoptive cell transfer  相似文献   

9.
Neil A. Mabbott 《朊病毒》2012,6(4):322-333
Prion diseases are subacute neurodegenerative diseases that affect humans and a range of domestic and free-ranging animal species. These diseases are characterized by the accumulation of PrPSc, an abnormally folded isoform of the cellular prion protein (PrPC), in affected tissues. The pathology during prion disease appears to occur almost exclusively within the central nervous system. The extensive neurodegeneration which occurs ultimately leads to the death of the host. An intriguing feature of the prion diseases, when compared with other protein-misfolding diseases, is their transmissibility. Following peripheral exposure, some prion diseases accumulate to high levels within lymphoid tissues. The replication of prions within lymphoid tissue has been shown to be important for the efficient spread of disease to the brain. This article describes recent progress in our understanding of the cellular mechanisms that influence the propagation of prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. A thorough understanding of these events will lead to the identification of important targets for therapeutic intervention, or alternatively, reveal additional processes that influence disease susceptibility to peripherally-acquired prion diseases.  相似文献   

10.
《朊病毒》2013,7(4):322-333
Prion diseases are subacute neurodegenerative diseases that affect humans and a range of domestic and free-ranging animal species. These diseases are characterized by the accumulation of PrPSc, an abnormally folded isoform of the cellular prion protein (PrPC), in affected tissues. The pathology during prion disease appears to occur almost exclusively within the central nervous system. The extensive neurodegeneration which occurs ultimately leads to the death of the host. An intriguing feature of the prion diseases, when compared with other protein-misfolding diseases, is their transmissibility. Following peripheral exposure, some prion diseases accumulate to high levels within lymphoid tissues. The replication of prions within lymphoid tissue has been shown to be important for the efficient spread of disease to the brain. This article describes recent progress in our understanding of the cellular mechanisms that influence the propagation of prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. A thorough understanding of these events will lead to the identification of important targets for therapeutic intervention, or alternatively, reveal additional processes that influence disease susceptibility to peripherally-acquired prion diseases.  相似文献   

11.
Prions and their lethal journey to the brain   总被引:9,自引:0,他引:9  
Prion diseases are neurodegenerative conditions that cause extensive damage to nerve cells within the brain and can be fatal. Some prion disease agents accumulate first in lymphoid tissues, as they make their journey from the site of infection, such as the gut, to the brain. Studies in mouse models have shown that this accumulation is obligatory for the efficient delivery of prions to the brain. Indeed, if the accumulation of prions in lymphoid tissues is blocked, disease susceptibility is reduced. Therefore, the identification of the cells and molecules that are involved in the delivery of prions to the brain might identify targets for therapeutic intervention. This review describes the current understanding of the mechanisms involved in the delivery of prions to the brain.  相似文献   

12.
Following peripheral exposure to transmissible spongiform encephalopathies (TSEs), infectivity usually accumulates in lymphoid tissues before neuroinvasion. The host prion protein (PrPc) is critical for TSE agent replication and accumulates as an abnormal, detergent insoluble, relatively proteinase-resistant isoform (PrPSc) in diseased tissues. Early PrPSc accumulation takes place on follicular dendritic cells (FDCs) within germinal centers in lymphoid tissues of patients with variant Creutzfeldt-Jakob disease (vCJD), sheep with natural scrapie or rodents following experimental peripheral infection with scrapie. In mouse scrapie models, the absence of FDCs blocks scrapie replication and PrPSc accumulation in the spleen, and neuroinvasion is significantly impaired. The mechanisms by which the TSE agent initially localizes to lymphoid follicles and interacts with FDCs are unknown. Antigens are trapped and retained on the surface of FDCs through interactions between complement and cellular complement receptors. Here we show that in mice, both temporary depletion of complement component C3 or genetic deficiency of C1q significantly delays the onset of disease following peripheral infection, and reduces the early accumulation of PrPSc in the spleen. Thus, in the early stages of infection, C3 and perhaps C1q contribute to the localization of TSE infectivity in lymphoid tissue and may be therapeutic targets.  相似文献   

13.
The immune system is central in the pathogenesis of scrapie and other transmissible spongiform encephalopathies (TSEs) or 'prion' diseases. After infecting by peripheral (intraperitoneal or oral) routes, most TSE agents replicate in spleen and lymph nodes before neuroinvasion. Characterization of the cells supporting replication in these tissues is essential to understanding early pathogenesis and may indicate potential targets for therapy, for example, in 'new variant' Creutzfeldt-Jakob disease. The host 'prion' protein (PrP) is required for TSE agent replication and accumulates in modified forms in infected tissues. Abnormal PrP is detected readily on follicular dendritic cells (FDCs) in lymphoid tissues of patients with 'new variant' Creutzfeldt-Jakob disease, sheep with natural scrapie and mice experimentally infected with scrapie. The normal protein is present on FDCs in uninfected mice and, at lower levels, on lymphocytes. Studies using severe combined immunodeficiency (SCID) mice, with and without bone marrow (BM) grafts, have indicated involvement of FDCs and/or lymphocytes in scrapie pathogenesis. To clarify the separate roles of FDCs and lymphocytes, we produced chimeric mice with a mismatch in PrP status between FDCs and other cells of the immune system, by grafting bone marrow from PrP-deficient knockout mice into PrP-expressing mice and vice versa. Using these chimeric models, we obtained strong evidence that FDCs themselves produce PrP and that replication of a mouse-passaged scrapie strain in spleen depends on PrP-expressing FDCs rather than on lymphocytes or other bone marrow-derived cells.  相似文献   

14.
Transmissible spongiform encephalopathy (TSE) diseases are characterized by the accumulation in brain of an abnormal protease-resistant form of the host-encoded prion protein (PrP), PrP-res. PrP-res conformation differs among TSE agents derived from various sources, and these conformational differences are thought to influence the biological characteristics of these agents. In this study, we introduced deletions into the flexible N-terminal region of PrP (residues 34-124) and investigated the effect of this region on the conformation of PrP-res generated in an in vitro cell-free conversion assay. PrP deleted from residues 34 to 99 generated 12-16-kDa protease-resistant bands with intact C termini but variable N termini. The variable N termini were the result of exposure of new protease cleavage sites in PrP-res between residues 130 and 157, suggesting that these new cleavage sites were caused by alterations in the conformation of the PrP-res generated. Similarly truncated 12-16-kDa PrP bands were also identified in brain homogenates from mice infected with mouse-passaged hamster scrapie as well as in the cell-free conversion assay using conditions that mimicked the hamster/mouse species barrier to infection. Thus, by its effects on PrP-res conformation, the flexible N-terminal region of PrP seemed to influence TSE pathogenesis and cross-species TSE transmission.  相似文献   

15.

Background

Bovine spongiform encephalopathy (BSE), a member of the transmissible spongiform encephalopathies (TSE), primarily affects cattle. Transmission is via concentrate feed rations contaminated with infected meat and bone meal (MBM). In addition to cattle, other food animal species are susceptible to BSE and also pose a potential threat to human health as consumption of infected meat products is the cause of variant Creutzfeldt-Jakob disease in humans, which is invariably fatal. In the UK, farmed and free ranging deer were almost certainly exposed to BSE infected MBM in proprietary feeds prior to legislation banning its inclusion. Therefore, although BSE has never been diagnosed in any deer species, a possible risk to human health remains via ingestion of cervine products. Chronic wasting disease (CWD), also a TSE, naturally infects several cervid species in North America and is spreading rapidly in both captive and free-ranging populations.

Results

Here we show that European red deer (Cervus elaphus elaphus) are susceptible to intra-cerebral (i/c) challenge with BSE positive cattle brain pool material resulting in clinical neurological disease and weight loss by 794–1290 days and the clinical signs are indistinguishable to those reported in deer with CWD. Spongiform changes typical of TSE infections were present in brain and accumulation of the disease-associated abnormal prion protein (PrPd) was present in the central and peripheral nervous systems, but not in lymphoid or other tissues. Western immunoblot analysis of brain material showed a similar glycosylation pattern to that of BSE derived from infected cattle and experimentally infected sheep with respect to protease-resistant PrP isoforms. However, the di-, mono- and unglycosylated bands migrated significantly (p < 0.001) further in the samples from the clinically affected deer when compared to BSE infected brains of cattle and sheep.

Conclusion

This study shows that deer are susceptible to BSE by intra-cerebral inoculation and display clinical signs and vacuolar pathology that are similar to those of CWD. These findings highlight the importance of preventing the spread to Europe of CWD from North America as this may necessitate even more extensive testing of animal tissues destined for human consumption within the EU. Although the absence of PrPd in lymphoid and other non-neurological tissues potentially limits the risk of transmission to humans, the replication of TSE agents in peripheral tissues following intra-cerebral challenge is often limited. Thus the assessment of risk posed by cervine BSE as a human pathogen or for environmental contamination should await the outcome of ongoing oral challenge experiments.
  相似文献   

16.
Transmissible spongiform encephalopathies (TSEs) are a group of fatal neurodegenerative diseases associated with a misfolded form of host-encoded prion protein (PrP). Some of them, such as classical bovine spongiform encephalopathy in cattle (BSE), transmissible mink encephalopathy (TME), kuru and variant Creutzfeldt–Jakob disease in humans, are acquired by the oral route exposure to infected tissues. We investigated the possible transmission by the oral route of a panel of strains derived from ruminant prion diseases in a transgenic mouse model (TgOvPrP4) overexpressing the ovine prion protein (A136R154Q171) under the control of the neuron-specific enolase promoter. Sources derived from Nor98, CH1641 or 87V scrapie sources, as well as sources derived from L-type BSE or cattle-passaged TME, failed to transmit by the oral route, whereas those derived from classical BSE and classical scrapie were successfully transmitted. Apart from a possible effect of passage history of the TSE agent in the inocula, this implied the occurrence of subtle molecular changes in the protease-resistant prion protein (PrPres) following oral transmission that can raises concerns about our ability to correctly identify sheep that might be orally infected by the BSE agent in the field. Our results provide proof of principle that transgenic mouse models can be used to examine the transmissibility of TSE agents by the oral route, providing novel insights regarding the pathogenesis of prion diseases.  相似文献   

17.
Transmissible spongiform encephalopathies (TSE), including bovine spongiform encephalopathy (BSE), are fatal neurodegenerative disorders in humans and animals. BSE appears to have spread to cattle through the consumption of feed contaminated with BSE/scrapie agents. In the case of an oral infection, the agents have to cross the gut-epithelial barrier. We recently established a bovine intestinal epithelial cell line (BIE cells) that can differentiate into the M cell type in vitro after lymphocytic stimulation (K. Miyazawa, T. Hondo, T. Kanaya, S. Tanaka, I. Takakura, W. Itani, M. T. Rose, H. Kitazawa, T. Yamaguchi, and H. Aso, Histochem. Cell Biol. 133:125-134, 2010). In this study, we evaluated the role of M cells in the intestinal invasion of the murine-adapted BSE (mBSE) agent using our in vitro bovine intestinal epithelial model. We demonstrate here that M cell-differentiated BIE cells are able to transport the mBSE agent without inactivation at least 30-fold more efficiently than undifferentiated BIE cells in our in vitro model. As M cells in the follicle-associated epithelium are known to have a high ability to transport a variety of macromolecules, viruses, and bacteria from gut lumen to mucosal immune cells, our results indicate the possibility that bovine M cells are able to deliver agents of TSE, not just the mBSE agent.Transmissible spongiform encephalopathies (TSE) or prion diseases, including human Creutzfeldt-Jakob disease (CJD) and endemic sheep scrapie, are fatal neurodegenerative diseases. The host cellular prion protein (PrPC), which is thought to have neuroprotective function, is expressed in both humans and a range of other animal species (36), and PrPC expression is essential for TSE disease susceptibility (7). The prion hypothesis suggests that infectious abnormally folded prion protein (PrPSc) is the primary or sole composition of the infectious agent of TSE (known as the prion). However, the molecular composition of PrPSc remains speculative and unclear. It is well known that the detergent-insoluble and relatively proteinase K (PK)-resistant prion protein (PrP-res) is detectable in many kinds of TSE-infected tissues, including the brain. Although some studies have revealed that PrP-res does not correlate with infectivity levels in animal tissues as well as in subcellular fractions (37, 40), PrP-res is a useful surrogate marker for TSE infection.Bovine spongiform encephalopathy (BSE) is a TSE of cattle. The first case of BSE in the world was found in the United Kingdom in 1986 (41), and it spread to continental Europe, North America, and Japan. At present, BSE is a threat to human health because of the appearance of BSE-linked variant Creutzfeldt-Jakob disease (vCJD). The cattle BSE agent appears to spread to the cattle population through the consumption of rendered meat and bone meal contaminated with BSE-infected brain or spinal cord (32). Likewise, the transmission of vCJD to humans is likely to have occurred following the consumption of BSE-contaminated food (6, 13, 45). In cases of oral transmissions such as BSE and vCJD, TSE agents first have to cross the gut epithelium, but the exact mechanisms for intestinal invasion still are unknown.Intestinal epithelial cells are bound to each other by tight junctions. This close-packed structure forms a highly selective barrier for macromolecules and limits the access of pathogenic bacteria to the underlying host tissues (43). Gut epithelia are composed of two different epithelial types. One is the villous epithelium, and the other is the follicle-associated epithelium (FAE), which overlies gut-associated lymphoid tissues (GALTs) such as Peyer''s patches. The FAE is considerably different from the surrounding villous epithelium, in that it contains membranous (M) cells. Because M cells have a high capacity for the transcytosis of a wide range of macromolecules, viruses, and microorganisms, they are specialized epithelial cells and act as an antigen sampling system from the gut lumen (28). M cells are, however, exploited by some pathogenic microorganisms and viruses as the entry site to invade the body (20, 29). In fact, some experiments have proposed that M cells transport TSE agents (12) and that Peyer''s patches including the FAE are associated with TSE disease susceptibility (35). In contrast, some authors have suggested the M cell-independent pathway as the main transport route of TSE agents across the intestinal epithelium (16, 23, 27). The intestinal cell types involved in the transport of TSE agents therefore are still a matter of controversy at this stage.Recently, we succeeded in the establishment of a bovine intestinal epithelial cell line (BIE cells) and the development of an in vitro bovine M cell model by coculture with murine intestinal lymphocytes or the supernatant of bovine peripheral blood mononuclear cells (PBMC) stimulated by interleukin 2 (IL-2) (25). In this study, we investigate whether M cells can transport the murine-adapted BSE (mBSE) agent using BIE cells. We demonstrate here that M cell-differentiated BIE cells are able to deliver mBSE agents at least 30-fold more efficiently than undifferentiated BIE cells, although a small number of the mBSE agents pass through undifferentiated BIE cells. Our findings thus provide an insight into the uptake mechanisms of TSE agents, including the cattle BSE agent from the gut lumen.  相似文献   

18.
Sheep scrapie is a prototypical transmissible spongiform encephalopathy (TSE), and the most widespread of these diseases. Experimental study of TSE infectious agents from sheep and other species essentially depends on bioassays in rodents. Transmission of natural sheep scrapie to conventional mice commonly requires one or two years. In an effort to develop laboratory models in which investigations on the sheep TSE agent would be facilitated, we have established mice and cell lines that were genetically engineered to express ovine PrP protein and examined their susceptibility to the infection. A series of transgenic mice lines (tgOv) expressing the high susceptibility allele (VRQ) of the ovine PrP gene from different constructs was expanded. Following intracerebral inoculation with natural scrapie isolates, all animals developed typical TSE neurological signs and accumulated abnormal PrP in their brain. The survival time in the highest expressing tgOv lines ranged from 2 to 7 months, depending on the isolate. It was inversely related to the brain PrP content, and essentially unchanged on further passaging. Ovine PrP transgene expression thus enhanced scrapie disease transmission from sheep to mice. Such tgOv mice may bring new opportunities for analysing the natural variation of scrapie strains and measuring infectivity. As no relevant cell culture models for agents of naturally-occurring TSE exist, we have explored various strategies in order to obtain stable cell lines that would propagate the sheep agent ex vivo without prior adaptation to rodent. In one otherwise refractory rabbit epithelial cell line, a regulable expression of ovine PrP was achieved and found to enable an efficient replication of the scrapie agent in inoculated cultures. Cells derived from sheep embryos or from tgOv mice were also used in an attempt to establish permissive cell lines derived from the nervous system. Cells engineered to express PrP proteins of a specified sequence may thus represent a promising strategy to further explore, at the cellular level, various aspects of TSE diseases.  相似文献   

19.
Tissue Safety in View of CJD and Variant CJD   总被引:2,自引:0,他引:2  
Epidemiological studies on human transmissible spongiform encephalopathies (Creutzfeldt–Jakob Disease, CJD) have shown that the agent could be transmitted by highly infectious tissues like brain, spinal cord or retina and medicinal products derived from these tissues (i.e. human growth hormone, dura mater). A few cases of transmission of CJD by neurosurgical instruments have been reported. The transmission of the agent of variant CJD, which is suspected to be transmitted by BSE-contaminated food, by blood transfusion implies that in contrast to the agent of classical CJD this agent can also be transmitted by organs and tissues other than nerve tissues. Health authorities have implemented guidelines to reduce the risk of transmission of human and animal TSE by human and veterinary medicinal products. The high resistance of TSE agents against physical or chemical treatment hamper the development of highly efficient inactivation steps in the production of medicinal products. Donor selection is considered as an efficient measure to reduce the risk of TSE transmission. However, the development of rapid, sensitive and specific diagnostic test systems is urgently required to test blood, organs and tissue of donors.  相似文献   

20.
Transmissible spongiform encephalopathies (TSEs) are neurological diseases that are associated with the conversion of the normal host-encoded prion protein (PrP-sen) to an abnormal protease-resistant form, PrP-res. Transmission of the TSE agent from one species to another is usually inefficient and accompanied by a prolonged incubation time. Species barriers to infection by the TSE agent are of particular importance given the apparent transmission of bovine spongiform encephalopathy to humans. Among the few animal species that appear to be resistant to infection by the TSE agent are rabbits. They survive challenge with the human kuru and Creutzfeldt-Jakob agents as well as with scrapie agent isolated from sheep or mice. Species barriers to the TSE agent are strongly influenced by the PrP amino acid sequence of both the donor and recipient animals. Here we show that rabbit PrP-sen does not form PrP-res in murine tissue culture cells persistently infected with the mouse-adapted scrapie agent. Unlike other TSE species barriers that have been studied, critical amino acid residues that inhibit PrP-res formation are located throughout the rabbit PrP sequence. Our results suggest that the resistance of rabbits to infection by the TSE agent is due to multiple rabbit PrP-specific amino acid residues that result in a PrP structure that is unable to refold to the abnormal isoform associated with disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号