首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ubiquitin (Ub) ligation is implicated in active protein metabolism and subcellular trafficking and its impairment is involved in various neurologic diseases. In rat brain, we identified two novel Ub ligases, Momo and Sakura, carrying double zinc finger motif and RING finger domain. Momo expression is enriched in the brain gray matter and testis, and Sakura expression is more widely detected in the brain white matter as well as in many peripheral organs. Both proteins associate with the cell membranes of neuronal and/or glial cells. We examined their Ub ligase activity in vivo and in vitro using viral expression vectors carrying myc-tagged Momo and Sakura. Overexpression of either Momo or Sakura in mixed cortical cultures increased total polyubiquitination levels. In vitro ubiquitination assay revealed that the combination of Momo and UbcH4 and H5c, or of Sakura and UbcH4, H5c and H6 is required for the reaction. Deletion mutagenesis suggested that the E3 Ub ligase activity of Momo and Sakura depended on their C-terminal domains containing RING finger structure, while their N-terminal domains influenced their membrane association. In agreement, Sakura associating with the membrane was specifically palmitoylated. Although the molecular targets of their Ub ligation remain to be identified, these findings imply a novel function of the palmitoylated E3 Ub ligase(s).  相似文献   

2.
Fairbank M  Huang K  El-Husseini A  Nabi IR 《FEBS letters》2012,586(16):2488-2493
Gp78 is an E3 ubiquitin ligase within the endoplasmic reticulum-associated degradation pathway. We show that Flag-tagged gp78 undergoes sulfhydryl cysteine palmitoylation (S-palmitoylation) within the RING finger motif, responsible for its ubiquitin ligase activity. Screening of 19 palmitoyl acyl transferases (PATs) identified five that increased gp78 RING finger palmitoylation. Endoplasmic reticulum (ER)-localized Myc-DHHC6 overexpression promoted the peripheral ER distribution of Flag-gp78 while RING finger mutation and the palmitoylation inhibitor 2-bromopalmitate restricted gp78 to the central ER. Palmitoylation of RING finger cysteines therefore regulates gp78 distribution to the peripheral ER.  相似文献   

3.
4.
Myosin regulatory light chain interacting protein (MIR) belongs to the ezrin, radixin, moesin (ERM) family of proteins involved in membrane cytoskeleton interactions and cell dynamics. MIR contains, beside the ERM domain, a RING zinc finger region. Immunocytochemistry showed that full-length MIR and the subdomains localize differently in cells. Cell fractionation revealed a similar distribution of full-length MIR and the RING domain protein in the Triton X-100-insoluble fraction. The neurite outgrowth inhibitory activity of MIR was attributed to the RING domain. MIR levels were controlled in the cells depending on the intact RING domain and proteasome activity. The dynamic regulation of MIR contributes to its effects on neurite outgrowth and cell motility.  相似文献   

5.
Agnathans have a globin repertoire that markedly differs from that of jawed (gnathostome) vertebrates. The sea lamprey (Petromyzon marinus) harbors at least 18 hemoglobin, two myoglobin, two globin X, and one cytoglobin genes. However, agnathan hemoglobins and myoglobins are not orthologous to their cognates in jawed vertebrates. Thus, blood-based O2 transport and muscle-based O2 storage proteins emerged twice in vertebrates from a tissue-globin ancestor. Notably, the sea lamprey displays three switches in hemoglobin expression in its life cycle, analogous to hemoglobin switching in vertebrates. To study the functional changes associated with the evolution and ontogenesis of distinct globin types, we determined O2 binding equilibria, type of quaternary assembly, and nitrite reductase enzymatic activities of one adult (aHb5a) and one embryonic/larval hemoglobin (aHb6), myoglobin (aMb1) and cytoglobin (Cygb) of the sea lamprey. We found clear functional differentiation among globin types expressed at different developmental stages and in different tissues. Cygb and aMb1 have high O2 affinity and nitrite reductase activity, while the two hemoglobins display low O2 affinity and nitrite reductase activity. Cygb and aHb6 but not aHb5a show cooperative O2 binding, correlating with increased stability of dimers, as shown by gel filtration and molecular modeling. The high O2-affinity and the lack of cooperativity confirm the identity of the sea lamprey aMb1 as O2 storage protein of the muscle. The dimeric structure and O2-binding properties of sea lamprey and mammalian Cygb were very similar, suggesting a conservation of function since their divergence around 500 million years ago.  相似文献   

6.
The 2-oxoglutarate dehydrogenase complex (OGHDC) (also known as the alpha-ketoglutarate dehydrogenase complex) is a rate-limiting enzyme in the mitochondrial Krebs cycle. Here we report that the RING finger ubiquitin-protein isopeptide ligase Siah2 binds to and targets OGDHC-E2 for ubiquitination-dependent degradation. OGDHC-E2 expression and activity are elevated in Siah2(-/-) cells compared with Siah2(+)(/)(+) cells. Deletion of the mitochondrial targeting sequence of OGDHC-E2 results in its cytoplasmic localization and rapid proteasome-dependent degradation in Siah2(+)(/)(+) but not in Siah2(-/-) cells. Significantly, because of its overexpression or disruption of the mitochondrial membrane potential, the release of OGDHC-E2 from mitochondria to the cytoplasm also results in its concomitant degradation. The role of the Siah family of ligases in the regulation of OGDHC-E2 stability is expected to take place under pathological conditions in which the levels of OGDHC-E2 are altered.  相似文献   

7.
It is postulated, with support from kinetic modelling, that a succession of symbioses was the major process of evolution during the early stages of life. The process became less effective with the passage of time, while evolution by the natural selection of variants became more effective. The postulate may contribute usefully to discussions on the evolution of biochemical complexity and the structure of cells.  相似文献   

8.
9.
Mdm2 is a member of the RING finger family of ubiquitin ligases and is best known for its role in targeting the tumor suppressor p53 for ubiquitination and degradation. Mdm2 can bind to itself and to the structurally related protein MdmX, and these interactions involve the RING finger domain of Mdm2 and MdmX, respectively. In this study, we performed a mutational analysis of the RING finger domain of Mdm2, and we identified several amino acid residues that are important for Mdm2 to exert its ubiquitin ligase function. Mutation of some of these residues interfered with the Mdm2-Mdm2 interaction indicating that a homomeric complex represents the active form of Mdm2. Mutation of other residues did not detectably affect the ability of Mdm2 to interact with itself but reduced the ability of Mdm2 to interact with UbcH5. Remarkably, MdmX efficiently rescued the ubiquitin ligase activity of the latter Mdm2 mutants in vitro and within cells. Because the interaction of Mdm2 with MdmX is more stable than the Mdm2-Mdm2 interaction, this suggests that Mdm2-MdmX complexes play a prominent role in p53 ubiquitination in vivo. Furthermore, we show that, similar to Mdm2, the Mdm2-MdmX complex has Nedd8 ligase activity and that all mutations that affect the ubiquitin ligase activity of Mdm2 also affect its Nedd8 ligase activity. From a mechanistic perspective, this suggests that the actual function of Mdm2 and Mdm2-MdmX, respectively, in p53 ubiquitination and in p53 neddylation is similar for both processes.  相似文献   

10.
The membrane scission event that separates nascent enveloped virions from host cell membranes often requires the ESCRT pathway, which can be engaged through the action of peptide motifs, termed late (L-) domains, in viral proteins. Viral PTAP and YPDL-like L-domains bind directly to the ESCRT-I and ALIX components of the ESCRT pathway, while PPxY motifs bind Nedd4-like, HECT-domain containing, ubiquitin ligases (e.g. WWP1). It has been unclear precisely how ubiquitin ligase recruitment ultimately leads to particle release. Here, using a lysine-free viral Gag protein derived from the prototypic foamy virus (PFV), where attachment of ubiquitin to Gag can be controlled, we show that several different HECT domains can replace the WWP1 HECT domain in chimeric ubiquitin ligases and drive budding. Moreover, artificial recruitment of isolated HECT domains to Gag is sufficient to stimulate budding. Conversely, the HECT domain becomes dispensable if the other domains of WWP1 are directly fused to an ESCRT-1 protein. In each case where budding is driven by a HECT domain, its catalytic activity is essential, but Gag ubiquitination is dispensable, suggesting that ubiquitin ligation to trans-acting proteins drives budding. Paradoxically, however, we also demonstrate that direct fusion of a ubiquitin moiety to the C-terminus of PFV Gag can also promote budding, suggesting that ubiquitination of Gag can substitute for ubiquitination of trans-acting proteins. Depletion of Tsg101 and ALIX inhibits budding that is dependent on ubiquitin that is fused to Gag, or ligated to trans-acting proteins through the action of a PPxY motif. These studies underscore the flexibility in the ways that the ESCRT pathway can be engaged, and suggest a model in which the identity of the protein to which ubiquitin is attached is not critical for subsequent recruitment of ubiquitin-binding components of the ESCRT pathway and viral budding to proceed.  相似文献   

11.
Receptor-like kinases (RLKs) play significant roles in mediating innate immunity and development of plants. The evolution of plant RLKs has been characterized by extensive variation in copy numbers and domain configurations. However, much remains unknown about the origin, evolution, and early diversification of plant RLKs. Here, we perform phylogenomic analyses of RLKs across plants (Archaeplastida), including embryophytes, charophytes, chlorophytes, prasinodermophytes, glaucophytes, and rhodophytes. We identify the presence of RLKs in all the streptophytes (land plants and charophytes), nine out of 18 chlorophytes, one prasinodermophyte, and one glaucophyte, but not in rhodophytes. Interestingly, the copy number of RLKs increased drastically in streptophytes after the split of the clade of Mesostigmatophyceae and Chlorokybophyceae and other streptophytes. Moreover, phylogenetic analyses suggest RLKs from charophytes form diverse distinct clusters, and are dispersed along the diversity of land plant RLKs, indicating that RLKs have extensively diversified in charophytes and charophyte RLKs seeded the major diversity of land plant RLKs. We identify at least 81 and 76 different kinase-associated domains for charophyte and land plant RLKs, 23 of which are shared, suggesting that RLKs might have evolved in a modular fashion through frequent domain gains or losses. We also detect signatures of positive selection for many charophyte RLK groups, indicating potential functions in host–microbe interaction. Taken together, our findings provide significant insights into the early evolution and diversification of plant RLKs and the ancient evolution of plant–microbe symbiosis.  相似文献   

12.

Background  

Ubiquitin (Ub)-mediated signaling is one of the hallmarks of all eukaryotes. Prokaryotic homologs of Ub (ThiS and MoaD) and E1 ligases have been studied in relation to sulfur incorporation reactions in thiamine and molybdenum/tungsten cofactor biosynthesis. However, there is no evidence for entire protein modification systems with Ub-like proteins and deconjugation by deubiquitinating enzymes in prokaryotes. Hence, the evolutionary assembly of the eukaryotic Ub-signaling apparatus remains unclear.  相似文献   

13.
The Notch signaling pathway controls several cell fate decisions during lymphocyte development, from T-cell lineage commitment to the peripheral differentiation of B and T lymphocytes. Deltex-1 is a RING finger ubiquitin ligase which is conserved from Drosophila to humans and has been proposed to be a regulator of Notch signaling. Its pattern of lymphoid expression as well as gain-of-function experiments suggest that Deltex-1 regulates both B-cell lineage and splenic marginal-zone B-cell commitment. Deltex-1 was also found to be highly expressed in germinal-center B cells. To investigate the physiological function of Deltex-1, we generated a mouse strain lacking the Deltex-1 RING finger domain, which is essential for its ubiquitin ligase activity. Deltex-1(Delta/Delta) mice were viable and fertile. A detailed histological analysis did not reveal any defects in major organs. T- and B-cell development was normal, as were humoral responses against T-dependent and T-independent antigens. These data indicate that the Deltex-1 ubiquitin ligase activity is dispensable for mouse development and immune function. Possible compensatory mechanisms, in particular those from a fourth Deltex gene identified during the course of this study, are also discussed.  相似文献   

14.
Although biologists have long recognized the importance of studying evolution to understand the organization of living organisms, only with the development of genomics have evolutionary studies become part of their routine toolkit. Placing genomes into an evolutionary framework has proved useful for understanding the functioning of organisms. It has also substantially increased understanding of the processes by which genomes evolve and led to a re-evaluation of our representation of the diversity and the history of life. In this review, we present some of the most important recent advances and promising leads in the field of microbial evolutionary genomics.  相似文献   

15.
It has been suggested that the evolution of the respiratory system coupled to oxidative phosphorylation occurred under anaerobic conditions in which inorganic compounds, principally nitrate, served as electron acceptors. Such a hypothesis requires that nitrate be produced, consistently and at adequate concentrations for utilization in biological processes, at a time when much of the Earth's surface was still in a relatively reduced state. This paper is directed towards a consideration of the possible sources of nitrate under primeval conditions, its stability, and its concentration in sites favorable to the evolution of the bacteria.  相似文献   

16.
Early cellular events associated with tumorigenesis often include loss of cell cycle checkpoints or alteration in growth signaling pathways. Identification of novel genes involved in cellular proliferation may lead to new classes of cancer therapeutics. By screening a tetracycline-inducible cDNA library in A549 cells for genes that interfere with proliferation, we have identified a fragment of UHRF1 (ubiquitin-like protein containing PHD and RING domains 1), a nuclear RING finger protein, that acts as a dominant negative effector of cell growth. Reduction of UHRF1 levels using an UHRF1-specific shRNA decreased growth rates in several tumor cell lines. In addition, treatment of A549 cells with agents that activated different cell cycle checkpoints resulted in down-regulation of UHRF1. The primary sequence of UHRF1 contains a PHD and a RING motif, both of which are structural hallmarks of ubiquitin E3 ligases. We have confirmed using an in vitro autoubiquitination assay that UHRF1 displays RING-dependent E3 ligase activity. Overexpression of a GFP-fused UHRF1 RING mutant that lacks ligase activity sensitizes cells to treatment with various chemotherapeutics. Taken together, our results suggest a general requirement for UHRF1 in tumor cell proliferation and implicate the RING domain of UHRF1 as a functional determinant of growth regulation.  相似文献   

17.
B-class MADS-box genes have been shown to be the key regulators of petal and stamen specification in several eudicot model species such as Arabidopsis thaliana, Antirrhinum majus, and Petunia hybrida. Orthologs of these genes have been found across angiosperms and gymnosperms, and it is thought that the basic regulatory function of B proteins is conserved in seed plant lineages. The evolution of B genes is characterized by numerous duplications that might represent key elements fostering the functional diversification of duplicates with a deep impact on their role in the evolution of the floral developmental program. To evaluate this, we performed a rigorous statistical analysis with B gene sequences. Using maximum likelihood and Bayesian methods, we estimated molecular substitution rates and determined the selective regimes operating at each residue of B proteins. We implemented tests that rely on phylogenetic hypotheses and codon substitution models to detect significant differences in substitution rates (DSRs) and sites under positive adaptive selection (PS) in specific lineages before and after duplication events. With these methods, we identified several protein residues fixed by PS shortly after the origin of PISTILLATA-like and APETALA3-like lineages in angiosperms and shortly after the origin of the euAP3-like lineage in core eudicots, the 2 main B gene duplications. The residues inferred to have been fixed by positive selection lie mostly within the K domain of the protein, which is key to promote heterodimerization. Additionally, we used a likelihood method that accommodates DSRs among lineages to estimate duplication dates for AP3-PI and euAP3-TM6, calibrating with data from the fossil record. The dates obtained are consistent with angiosperm origins and diversification of core eudicots. Our results strongly suggest that novel multimer formation with other MADS proteins could have been crucial for the functional divergence of B MADS-box genes. We thus propose a mechanism of functional diversification and persistence of gene duplicates by the appearance of novel multimerization capabilities after duplications. Multimer formation in different combinations of regulatory proteins can be a mechanistic basis for the origin of novel regulatory functions and a gene regulatory mechanism for the appearance of morphological innovations.  相似文献   

18.
Anaerobic respiration preceded photosynthesis. Chemoautotrophy, photoautotrophy, and oxygen respiration were induced directly or indirectly from anaerobic respiration.  相似文献   

19.
The conquest of land was arguably one of the most fundamental ecological transitions in vertebrates and entailed significant changes in skin structure and appendages to cope with the new environment. In extant tetrapods, the rigidity of the integument is largely created by type I and type II keratins, which are structural proteins essential in forming a strong cytoplasmic network. It is expected that such proteins have undergone fundamental changes in both stem and crown tetrapods. Here, we integrate genomic, phylogenetic, and expression data in a comprehensive study on the early evolution and functional diversification of tetrapod keratins. Our analyses reveal that all type I and type II tetrapod keratins evolved from only two genes that were present in the ancestor of extant vertebrates. Subsequently, the water-to-land transition in the stem lineage of tetrapods was associated with a major radiation and functional diversification of keratin genes. These duplications acquired functions that serve rigidity in integumental hard structures and were the prime for subsequent independent keratin diversification in tetrapod lineages.  相似文献   

20.
The v-erb A oncogene of avian erythroblastosis virus is a mutated and virally transduced copy of a host cell gene encoding a thyroid hormone receptor. The protein expressed by the v-erb A oncogene binds to DNA and acts as a dominant negative inhibitor of both the thyroid hormone receptor and the closely related retinoic acid receptor. The v-erb A protein has sustained two amino acid alterations within its DNA-binding domain relative to that of c-erb A, one of which, at serine 61, is known to be important for v-erb A function in the neoplastic cell. We report here that the second alteration, at threonine 78, also plays an important, although more indirect, role: alteration of the sequence at threonine 78 such that it resembles that of c-erb A can act as an intragenic suppressor and can partially restore function to a v-erb A protein rendered defective due to a mutation at position 61. Threonine 78 lies within the D-box of the v-erb A protein, a region thought to mediate receptor-receptor dimerizations, and is not in physical proximity to the serine at position 61. It therefore appears that an indirect interaction occurs between these two sites and that this interaction is crucial for v-erb A function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号