首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An intrinsic pathway of apoptosis is regulated by the B-cell lymphoma-2 (Bcl-2) family proteins. We previously reported that a fine rheostatic balance between the anti- and pro-apoptotic multidomain Bcl-2 family proteins controls hepatocyte apoptosis in the healthy liver. The Bcl-2 homology domain 3 (BH3)-only proteins set this rheostatic balance toward apoptosis upon activation in the diseased liver. However, their involvement in healthy Bcl-2 rheostasis remains unknown. In the present study, we focused on two BH3-only proteins, Bim and Bid, and we clarified the Bcl-2 network that governs hepatocyte life and death in the healthy liver. We generated hepatocyte-specific Bcl-xL- or Mcl-1-knock-out mice, with or without disrupting Bim and/or Bid, and we examined hepatocyte apoptosis under physiological conditions. We also examined the effect of both Bid and Bim disruption on the hepatocyte apoptosis caused by the inhibition of Bcl-xL and Mcl-1. Spontaneous hepatocyte apoptosis in Bcl-xL- or Mcl-1-knock-out mice was significantly ameliorated by Bim deletion. The disruption of both Bim and Bid completely prevented hepatocyte apoptosis in Bcl-xL-knock-out mice and weakened massive hepatocyte apoptosis via the additional in vivo knockdown of mcl-1 in these mice. Finally, the hepatocyte apoptosis caused by ABT-737, which is a Bcl-xL/Bcl-2/Bcl-w inhibitor, was completely prevented in Bim/Bid double knock-out mice. The BH3-only proteins Bim and Bid are functionally active but are restrained by the anti-apoptotic Bcl-2 family proteins under physiological conditions. Hepatocyte integrity is maintained by the dynamic and well orchestrated Bcl-2 network in the healthy liver.  相似文献   

2.
Bcl-2 family proteins regulate a critical step in apoptosis referred to as mitochondrial outer membrane permeabilization (MOMP). Members of a subgroup of the Bcl-2 family, known as the BH3-only proteins, activate pro-apoptotic effectors (Bax and Bak) to initiate MOMP. They do so by neutralizing pro-survival Bcl-2 proteins and/or directly activating Bax/Bak. Bim and Bid are reported to be direct activators; however, here we show that BH3 peptides other than Bim and Bid exhibited various degrees of direct activation of the effector Bax or Bak, including Bmf and Noxa BH3s. In the absence of potent direct activators, such as Bim and Bid, we unmasked novel direct activator BH3 ligands capable of inducing effector-mediated cytochrome c release and liposome permeabilization, even when both Bcl-xL- and Mcl-1-type anti-apoptotic proteins were inhibited. The ability of these weaker direct activator BH3 peptides to cause MOMP correlated with that of the corresponding full-length proteins to induce apoptosis in the absence of Bim and Bid. We propose that, in certain contexts, direct activation by BH3-only proteins other than Bim and Bid may significantly contribute to MOMP and apoptosis.  相似文献   

3.
Using a Bax-dependent membrane-permeabilization assay, we show that peptides corresponding to the BH3 domains of Bcl-2 family "BH3-only" proteins have dual functions. Several BH3 peptides relieved the inhibition of Bax caused by the antiapoptotic Bcl-x(L) and/or Mcl-1 proteins, some displaying a specificity for either Bcl-x(L) or Mcl-1. Besides having this derepression function, the Bid and Bim peptides activated Bax directly and were the only BH3 peptides tested that could potently induce cytochrome c release from mitochondria in cultured cells. Furthermore, Bax activator molecules (cleaved Bid protein and the Bim BH3 peptide) synergistically induced cytochrome c release when introduced into cells along with derepressor BH3 peptides. These observations support a unified model of BH3 domain function, encompassing both positive and negative regulation of other Bcl-2 family members. In this model, the simple inhibition of antiapoptotic functions is insufficient to induce apoptosis unless a direct activator of Bax or Bak is present.  相似文献   

4.
细胞凋亡中的Bcl-2家族蛋白及其BH3结构域的功能研究   总被引:8,自引:0,他引:8  
凋亡相关蛋白中的Bcl-2家族是细胞凋亡的关键调节分子,由抗凋亡和促凋亡成员组成,这些成员之间通过相互协同作用调节了线粒体结构与功能的稳定性,从而在线粒体水平发挥着细胞凋亡的“开关”作用.抗凋亡成员大都分布于线粒体的外膜,与促凋亡成员的BH3结构域相互作用对细胞凋亡发挥抵抗作用.促凋亡成员则主要分布于细胞浆中,细胞接受死亡信号刺激后,促凋亡成员自身受到一系列的调节,如典型的Bax构象改变、BAD和Bik的磷酸化调节以及Bid和Bim的蛋白裂解效应等,使得促凋亡成员在凋亡信号的刺激下整合于线粒体外膜,最终导致线粒体通透转换孔的开放,进而释放包括细胞色素c、凋亡诱导因子、Smac等重要的凋亡因子,随后caspase被激活进而断裂重要的细胞内结构蛋白与功能分子,执行细胞凋亡.  相似文献   

5.
The pro-apoptotic "BH3 domain-only" proteins of the Bcl-2 family (e.g. Bid and Bad) transduce multiple death signals to the mitochondrion. They interact with the anti-apoptotic Bcl-2 family members and induce apoptosis by a mechanism that requires the presence of at least one of the multidomain pro-apoptotic proteins Bax or Bak. Although the BH3 domain of Bid can promote the pro-apoptotic assembly and function of Bax/Bak by itself, other BH3 domains do not function as such. The latter point raises the question of whether, and how, these BH3 domains induce apoptosis. We show here that a peptide comprising the minimal BH3 domain from Bax induces apoptosis but is unable to stimulate the apoptotic activity of microinjected recombinant Bax. This relies on the inability of the peptide to directly induce Bax translocation to mitochondria or a change in its conformation. This peptide nevertheless interferes with Bax/Bcl-xL interactions in vitro and stimulates the apoptotic activity of Bax when combined with Bcl-xL. Similarly, a peptide derived from the BH3 domain of Bad stimulates Bax activity only in the presence of Bcl-xL. Thus, BH3 domains do not necessarily activate multidomain pro-apoptotic proteins directly but promote apoptosis by releasing active multidomain pro-apoptotic proteins from their anti-apoptotic counterparts.  相似文献   

6.
Life in the balance: how BH3-only proteins induce apoptosis   总被引:22,自引:0,他引:22  
  相似文献   

7.
A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-X(L), and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-X(L) and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-X(L), Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-X(L)/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-X(L), Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612.  相似文献   

8.
9.
During mitochondrial apoptosis, pro-apoptotic BH3-only proteins cause the translocation of cytosolic Bcl-2-associated X protein (Bax) to the outer mitochondrial membrane (OMM) where it is activated to release cytochrome c from the mitochondrial intermembrane space, but the mechanism is under dispute. We show that most BH3-only proteins are mitochondrial proteins that are imported into the OMM via a C-terminal tail-anchor domain in isolated yeast mitochondria, independently of binding to anti-apoptotic Bcl-2 proteins. This C-terminal domain acted as a classical mitochondrial targeting signal and was sufficient to direct green fluorescent protein to mitochondria in human cells. When expressed in mouse fibroblasts, these BH3-only proteins localised to mitochondria and were inserted in the OMM. The BH3-only proteins Bcl-2-interacting mediator of cell death (Bim), tBid and p53-upregulated modulator of apoptosis sensitised isolated mitochondria from Bax/Bcl-2 homologous antagonist/killer-deficient fibroblasts to cytochrome c-release by recombinant, extramitochondrial Bax. For Bim, this activity is shown to require the C-terminal-targeting signal and to be independent of binding capacity to and presence of anti-apoptotic Bcl-2 proteins. Bim further enhanced Bax-dependent killing in yeast. A model is proposed where OMM-tail-anchored BH3-only proteins permit passive 'recruitment' and catalysis-like activation of extra-mitochondrial Bax. The recognition of C-terminal membrane-insertion of BH3-only proteins will permit the development of a more detailed concept of the initiation of mitochondrial apoptosis.  相似文献   

10.
11.
Alanine scanning has been widely employed as a method of identifying side chains that play important roles in protein-protein and protein-peptide interactions. Here we show how an analogous and complementary technique, hydrophile scanning, can provide additional insight on such interactions. Mutation of a wild-type residue to alanine removes most of the side-chain atoms, and the effect of this removal is typically interpreted to indicate contribution of the deleted side chain to the stability of the complex. Hydrophile scanning involves systematic mutation of wild-type residues to a cationic or anionic residue (lysine or glutamic acid, in this case). We find that the results of these mutations provide insights on interactions between polypeptide surfaces that are complementary to the information obtained via alanine scanning. We have applied this technique to a peptide that corresponds to the BH3 domain of the pro-apoptotic protein Bim. The wild-type Bim BH3 domain binds strongly to the anti-apoptotic proteins Bcl-x(L) and Mcl-1. Combining information from the alanine, lysine, and glutamic acid scans has enabled us to identify Bim BH3 domain mutants containing only two or three sequence changes that bind very selectively either to Bcl-x(L) or Mcl-1. Our findings suggest that hydrophile scanning may prove to be a broadly useful tool for revealing sources of protein-protein recognition and for engineering selectivity into natural sequences.  相似文献   

12.
Overexpression of antiapoptotic proteins including Bcl-XL and/or Bcl-2 contributes to tumor initiation, progression, and resistance to therapy by direct interactions with proapoptotic BH3 proteins. Release of BH3 proteins from antiapoptotic proteins kills some cancer cells and sensitizes others to chemotherapy. Binding of Bcl-XL and Bcl-2 to the BH3 proteins Bad, Bid, and the three major isoforms of Bim was measured for fluorescent protein fusions in live cells using fluorescence lifetime imaging microscopy and fluorescence resonance energy transfer. In cells the binding of the proteins at mitochondria is similar to the results from in vitro measurements. However, mutations in the BH3 region of Bim known to inhibit binding to Bcl-XL and Bcl-2 in vitro had much less effect in MCF-7 cells. Moreover, the BH3 mimetic ABT-737 inhibited Bad and Bid but not Bim binding to Bcl-XL and Bcl-2. Thus, the selectivity of ABT-737 also differs markedly from predictions made from in vitro measurements.  相似文献   

13.
14.
Upon activation of the Fas apoptotic signaling pathway, Bid, a "BH3 domain-only" pro-apoptotic molecule, is cleaved by caspase-8 into a 6.5-kDa N-terminal and a 15-kDa BH3 domain-containing C-terminal fragment, referred to as t(n)-Bid and t(c)-Bid, respectively. t(c)-Bid is a more potent inducer of apoptosis than full-length Bid, suggesting that the N-terminal region of Bid has an inhibitory effect on its pro-apoptotic activity. Here, we report the identification of a novel BH3-like motif (amino acid residues 35-43) in t(n)-Bid. Although Bid does not homodimerize, t(n)-Bid is able to associate avidly with t(c)-Bid. Site-directed mutagenesis revealed that both the novel BH3-like and BH3 domains are necessary for direct binding between t(n)-Bid and t(c)-Bid. While full-length Bid does not associate with t(n)-Bid, substitution of Leu(35), a critical residue in mediating t(n)-Bid/t(c)-Bid interaction, with Ala in full-length Bid is sufficient to establish Bid/t(n)-Bid interaction. Interestingly, the L35A Bid mutant is as effective as t(c)-Bid in inducing apoptosis and binding Bcl-X(L). We propose that the intramolecular interaction involving the BH3-like and BH3 domains serves to regulate the pro-apoptotic potential of Bid.  相似文献   

15.
Pro-survival proteins in the B-cell lymphoma-2 (Bcl-2) family have a defined specificity profile for their cell death-inducing BH3-only antagonists. Solution structures of myeloid cell leukaemia-1 (Mcl-1) in complex with the BH3 domains from Noxa and Puma, two proteins regulated by the tumour suppressor p53, show that they bind as amphipathic α-helices in the same hydrophobic groove of Mcl-1, using conserved residues for binding. Thermodynamic parameters for the interaction of Noxa, Puma and the related BH3 domains of Bmf, Bim, Bid and Bak with Mcl-1 were determined by calorimetry. These unstructured BH3 domains bind Mcl-1 with affinities that span 3 orders of magnitude, and binding is an enthalpically driven and entropy-enthalpy-compensated process. Alanine scanning analysis of Noxa demonstrated that only a subset of residues is required for interaction with Mcl-1, and these residues are localised to a short highly conserved sequence motif that defines the BH3 domain. Chemical shift mapping of Mcl-1:BH3 complexes showed that Mcl-1 engages all BH3 ligands in a similar way and that, in addition to changes in the immediate vicinity of the binding site, small molecule-wide structural adjustments accommodate ligand binding. Our studies show that unstructured peptides, such as the BH3 domains, behave like their structured counterparts and can bind tightly and selectively in an enthalpically driven process.  相似文献   

16.
Apoptosis has a crucial role in anti-cancer treatment. The proteins of the BCL-2 family are core members of the apoptotic program. Thus, we postulated that alterations in the expression of BCL-2 protein family, and in particular in that of the Bcl-2 homology domain 3 (BH3)-only proteins (which can neutralized anti-apoptotic proteins or activate pro-apoptotic proteins) could account for differences in the overall survival (OS) of patients. To test this hypothesis, we analyzed the expression of 15 members of the BCL-2 protein family (Bax, Bak, Bok, Bcl-2, Bcl-xl, Bcl-w, Mcl-1, Bad, Bid, Bim, Bik, Bmf, Hrk, Noxa and Puma) in glioblastoma multiforme (GBM) tumors, the most frequent brain tumor in adults. We found that none of the individual expression of these proteins is associated with a significant variation in OS of the patients. However, when all BH3 proteins were pooled to determine a BH3score, this score was significantly correlated with OS of GBM patients. We also noted that patients with a have high level of phospho-Bad and phospho-Bim displayed a lower OS. Thus, BH3 scoring/profiling could be used as an independent prognostic factor in GBM when globally analyzed.  相似文献   

17.
Apoptosis is an important part of the host's defense mechanism for eliminating invading pathogens. Some viruses express proteins homologous in sequence and function to mammalian pro-survival Bcl-2 proteins. Anti-apoptotic F1L expressed by vaccinia virus is essential for survival of infected cells, but it bears no discernable sequence homology to proteins other than its immediate orthologues in related pox viruses. Here we report that the crystal structure of F1L reveals a Bcl-2-like fold with an unusual N-terminal extension. The protein forms a novel domain-swapped dimer in which the alpha1 helix is the exchanged domain. Binding studies reveal an atypical BH3-binding profile, with sub-micromolar affinity only for the BH3 peptide of pro-apoptotic Bim and low micromolar affinity for the BH3 peptides of Bak and Bax. This binding interaction is sensitive to F1L mutations within the predicted canonical BH3-binding groove, suggesting parallels between how vaccinia virus F1L and myxoma virus M11L bind BH3 domains. Structural comparison of F1L with other Bcl-2 family members reveals a novel sequence signature that redefines the BH4 domain as a structural motif present in both pro- and anti-apoptotic Bcl-2 members, including viral Bcl-2-like proteins.  相似文献   

18.
Release of cytochrome c from the mitochondrial intermembrane space is critical to apoptosis induced by a variety of death stimuli. Bid is a BH3-only prodeath Bcl-2 family protein that can potently activate this efflux. In the current study, we investigated the mitochondrial localization of Bid and its interactions with mitochondrial phospholipids, focusing on their relationships with Bid-induced cytochrome c release. We found that Bid binding to the mitochondria required only three of its eight helical structures (alpha4-alpha6), but not the BH3 domain, and the binding could not be inhibited by the antideath molecule Bcl-x(L). Membrane fractionations indicated that tBid bound to mitochondrial outer membranes at both contact and noncontact sites. Bid could interact with specific cardiolipin species on intact mitochondria as identified by mass spectrometry. Like the binding to the mitochondria, this interaction could not be blocked by the mutation in the BH3 domain or by Bcl-x(L.) However, a cardiolipin-specific dye, 10-N-nonyl acridine orange, could preferentially suppress Bid binding to the mitochondrial contact site and inhibit Bid-induced mitochondrial cristae reorganization and cytochrome c release. These findings thus suggest that interactions of Bid with mitochondrial cardiolipin at the contact site can contribute significantly to its functions.  相似文献   

19.
D C Huang  J M Adams    S Cory 《The EMBO journal》1998,17(4):1029-1039
Bcl-2 and close homologues such as Bcl-xL promote cell survival, while other relatives such as Bax antagonize this function. Since only the pro-survival family members possess a conserved N-terminal region denoted BH4, we have explored the role of this amphipathic helix for their survival function and for interactions with several agonists of apoptosis, including Bax and CED-4, an essential regulator in the nematode Caenorhabditis elegans. BH4 of Bcl-2 could be replaced by that of Bcl-x without perturbing function but not by a somewhat similar region near the N-terminus of Bax. Bcl-2 cell survival activity was reduced by substitutions in two of ten conserved BH4 residues. Deletion of BH4 rendered Bcl-2 (and Bcl-xL) inactive but did not impair either Bcl-2 homodimerization or ability to bind to Bax or five other pro-apoptotic relatives (Bak, Bad, Bik, Bid or Bim). Hence, association with these death agonists is not sufficient to promote cell survival. Significantly, however, Bcl-xL lacking BH4 lost the ability both to bind CED-4 and antagonize its pro-apoptotic activity. These results favour the hypothesis that the BH4 domain of pro-survival Bcl-2 family members allows them to sequester CED-4 relatives and thereby prevent apoptosis.  相似文献   

20.
The B-cell CLL/lymphoma-2 (Bcl-2) family of proteins are important regulators of the intrinsic pathway of apoptosis, and their interactions, driven by Bcl-2 homology (BH) domains, are of great interest in cancer research. Particularly, the BH3 domain is of clinical relevance, as it promotes apoptosis through activation of Bcl-2-associated x protein (Bax) and Bcl-2 antagonist killer (Bak), as well as by antagonising the anti-apoptotic Bcl-2 family members. Although investigated extensively in vitro, the study of the BH3 domain alone inside cells is more problematic because of diminished secondary structure of the unconstrained peptide and a lack of stability. In this study, we report the successful use of a novel peptide aptamer scaffold – Stefin A quadruple mutant – to anchor and present the BH3 domains from Bcl-2-interacting mediator of cell death (Bim), p53 upregulated modulator of apoptosis (Puma), Bcl-2-associated death promoter (Bad) and Noxa, and demonstrate its usefulness in the study of the BH3 domains in vivo. When expressed intracellularly, anchored BH3 peptides exhibit much the same binding specificities previously established in vitro, however, we find that, at endogenous expression levels, Bcl-2 does not bind to any of the anchored BH3 domains tested. Nonetheless, when expressed inside cells the anchored PUMA and Bim BH3 α-helices powerfully induce cell death in the absence of efficient targeting to the mitochondrial membrane, whereas the Noxa helix requires a membrane insertion domain in order to kill Mcl-1-dependent myeloma cells. Finally, the binding of the Bim BH3 peptide to Bax was the only interaction with a pro-apoptotic effector protein observed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号