共查询到20条相似文献,搜索用时 0 毫秒
1.
Abraam M. Yakoub Nistha Rawal Erika Maus John Baldwin Deepak Shukla Vaibhav Tiwari 《Journal of virology》2014,88(21):12915-12922
Binding of herpes simplex virus 1 (HSV-1) envelope glycoprotein D (gD) to the receptor 3-O-sulfated heparan sulfate (3-OS HS) mediates viral entry. 3-O-Sulfation of HS is catalyzed by the 3-O-sulfotransferase (3-OST) enzyme. Multiple isoforms of 3-OST are differentially expressed in tissues of zebrafish (ZF) embryos. Here, we performed a comprehensive analysis of the role of ZF 3-OST isoforms (3-OST-1, 3-OST-5, 3-OST-6, and 3-OST-7) in HSV-1 entry. We found that a group of 3-OST gene family isoforms (3-OST-2, -3, -4, and -6) with conserved catalytic and substrate-binding residues of the enzyme mediates HSV-1 entry and spread, while the other group (3-OST-1, -5, and -7) lacks these properties. These results demonstrate that HSV-1 entry can be recapitulated by certain ZF 3-OST enzymes, a significant step toward the establishment of a ZF model of HSV-1 infection and tissue-specific tropism. 相似文献
2.
3.
Despite its importance in modulating HSV-2 pathogenesis, the nature of tissue-resident immune memory to HSV-2 is not completely understood. We used genital HSV-2 infection of guinea pigs to assess the type and location of HSV-specific memory cells at peripheral sites of HSV-2 infection. HSV-specific antibody-secreting cells were readily detected in the spleen, bone marrow, vagina/cervix, lumbosacral sensory ganglia, and spinal cord of previously-infected animals. Memory B cells were detected primarily in the spleen and to a lesser extent in bone marrow but not in the genital tract or neural tissues suggesting that the HSV-specific antibody-secreting cells present at peripheral sites of HSV-2 infection represented persisting populations of plasma cells. The antibody produced by these cells isolated from neural tissues of infected animals was functionally relevant and included antibodies specific for HSV-2 glycoproteins and HSV-2 neutralizing antibodies. A vigorous IFN-γ-secreting T cell response developed in the spleen as well as the sites of HSV-2 infection in the genital tract, lumbosacral ganglia and spinal cord following acute HSV-2 infection. Additionally, populations of HSV-specific tissue-resident memory T cells were maintained at these sites and were readily detected up to 150 days post HSV-2 infection. Unlike the persisting plasma cells, HSV-specific memory T cells were also detected in uterine tissue and cervicothoracic region of the spinal cord and at low levels in the cervicothoracic ganglia. Both HSV-specific CD4+ and CD8+ resident memory cell subsets were maintained long-term in the genital tract and sensory ganglia/spinal cord following HSV-2 infection. Together these data demonstrate the long-term maintenance of both humoral and cellular arms of the adaptive immune response at the sites of HSV-2 latency and virus shedding and highlight the utility of the guinea pig infection model to investigate tissue-resident memory in the setting of HSV-2 latency and spontaneous reactivation. 相似文献
4.
Elena Rahn Katharina Thier Philipp Petermann Dagmar Knebel-M?rsdorf 《Journal of visualized experiments : JoVE》2015,(102)
To enter its human host, herpes simplex virus type 1 (HSV-1) must overcome the barrier of mucosal surfaces, skin, or cornea. HSV-1 targets keratinocytes during initial entry and establishes a primary infection in the epithelium, which is followed by latent infection of neurons. After reactivation, viruses can become evident at mucocutaneous sites that appear as skin vesicles or mucosal ulcers. How HSV-1 invades skin or mucosa and reaches its receptors is poorly understood. To investigate the invasion route of HSV-1 into epidermal tissue at the cellular level, we established an ex vivo infection model of murine epidermis, which represents the site of primary and recurrent infection in skin. The assay includes the preparation of murine skin. The epidermis is separated from the dermis by dispase II treatment. After floating the epidermal sheets on virus-containing medium, the tissue is fixed and infection can be visualized at various times postinfection by staining infected cells with an antibody against the HSV-1 immediate early protein ICP0. ICP0-expressing cells can be observed in the basal keratinocyte layer already at 1.5 hr postinfection. With longer infection times, infected cells are detected in suprabasal layers, indicating that infection is not restricted to the basal keratinocytes, but the virus spreads to other layers in the tissue. Using epidermal sheets of various mouse models, the infection protocol allows determining the involvement of cellular components that contribute to HSV-1 invasion into tissue. In addition, the assay is suitable to test inhibitors in tissue that interfere with the initial entry steps, cell-to-cell spread and virus production. Here, we describe the ex vivo infection protocol in detail and present our results using nectin-1- or HVEM-deficient mice. 相似文献
5.
Latent Herpes Simplex Virus from Trigeminal Ganglia of Rabbits with Recurrent Eye Infection 总被引:22,自引:0,他引:22
LATENTLY infected sensory ganglia have been thought to be the source of virus for various clinical manifestations of recurrent herpetic disease in man1,2. In direct support of this concept, we recently showed that herpes simplex virus can induce a latent infection in the spinal ganglia of mice3. This murine infection has not, however, been shown to be accompanied by recurrent disease. Recurrent herpetic eye infection can be produced in the rabbit4. If sensory ganglia are involved in recurrent disease, then trigeminal ganglia from rabbits undergoing such recurrent infection would be expected to harbour latent virus. We now report that herpes simplex virus does indeed induce latent infection in trigeminal ganglia of rabbits presenting recurrent eye infection. As in the experiments with mice, infectious virus could not be recovered directly; it was only found when ganglia were established as organ cultures in vitro. 相似文献
6.
Noboru Fujioka Rieko Akazawa Kunihiro Ohashi Mitsukiyo Fujii Masao Ikeda Masashi Kurimoto 《Journal of virology》1999,73(3):2401-2409
We examined the effects of interleukin-18 (IL-18) in a mouse model of acute intraperitoneal infection with herpes simplex virus type 1 (HSV-1). Four days of treatment with IL-18 (from 2 days before infection to 1 day after infection) improved the survival rate of BALB/c, BALB/c nude, and BALB/c SCID mice, suggesting innate immunity. One day after infection, HSV-1 titers were higher in the peritoneal washing fluid of control BALB/c mice than in that of IL-18-treated mice. A genetic deficiency of gamma interferon (IFN-γ), however, diminished the survival rate and the inhibition of HSV-1 growth at the injection site in the mice. Anti-asialo GM1 treatment had no influence on the protective effect of IL-18 in infected mice. IL-18 augmented IFN-γ release in vitro by peritoneal cells from uninfected mice, while no appreciable IFN-γ production was found in uninfected mice administered IL-18. Although IFN-γ has the ability to induce nitric oxide (NO) production by various types of cells, administration of the NO synthase inhibitor NG-monomethyl-l-arginine resulted in superficial loss of the improved survival, but there was no influence on the inhibition of HSV-1 replication at the injection site in IL-18-treated mice. Based on these results, we propose that IFN-γ produced before HSV-1 infection plays a key role as one of the IL-18-promoted protection mechanisms and that neither NK cells nor NO plays this role.Interleukin-18 (IL-18) is a newly cloned murine and human cytokine (28, 36) previously called gamma interferon (IFN-γ)-inducing factor. It is synthesized by activated macrophages and has a structural relationship to the IL-1 family (5). Precursor IL-18 is processed by IL-1β-converting enzyme and is cleaved into mature IL-18 (11). IL-18 induces IFN-γ production by murine helper T cells and NK cells and stimulates T-cell proliferation and NK activation (18, 28). Moreover, IL-18 augments the Fas ligand-mediated cytotoxic activity of the Th1 clone and the NK cell clone (8, 35). Thus, IL-18 shares some biological activities with IL-12, although no significant homology between the two cytokines has been detected at the protein level (34). Furthermore, treatment with IL-12 and IL-18 has a synergistic effect on IFN-γ production (2, 14, 38, 40).According to a review by Nash (27), not only nonspecific or innate immunity, such as that from IFN, NK cells, or macrophages, but also specific or adaptive immunity is important in protection against herpesvirus infection. Herpes simplex virus is known to be an IFN inducer (13). IFN is produced at an early stage of virus infection. In addition to the direct inhibition of viral replication, it enhances the efficiency of the adaptive (specific) immune response by stimulating increased expression of major histocompatibility complex class I and II or by activating macrophages and NK cells. In protection from infection by herpesviruses, especially cytomegalovirus, NK cells have been major effector cells because of the correlation of increased susceptibility to cytomegalovirus infection with the absence or reduction of NK cell activity, as seen in Chediak-Higashi syndrome patients and beige mice (27). Upon target cell disruption, NK and cytotoxic T cells share not only the perforin but also the Fas ligand as an effector molecule (4, 20, 37). Recently, nitric oxide (NO) was reported to be involved in host defense against bacteria, fungi, parasites, and viruses (10, 16, 19, 39). NO produced by herpes simplex virus type 1 (HSV-1)-infected macrophages is reported to inhibit viral replication (7). CD4+ T cells, macrophages, IFN-γ, and tumor necrosis factor (TNF) are important in adaptive immunity against HSV-1 infection. The Th2 response exacerbates HSV-1-induced disease (25).Recently a protective role of IL-18 was reported in microbial infections (6, 17). Here, we demonstrate that IL-18 treatment protects mice from acute viral infection via both IFN-γ-dependent and -independent pathways. Although IFN-γ has the ability to induce NO production by a variety of cells, including macrophages (9), it is not likely to be important, at least in the inhibition of HSV-1 proliferation at the injection site of IL-18-treated mice. Furthermore, the protective effect of IL-18 on HSV-1 infection also does not seem to require complete NK cell activity in our experimental system, whereas our colleagues have already reported that deletion of NK cells by administration of anti-asialo GM1 antibody resulted in lowering of the improved survival rate of tumor-bearing mice treated with IL-18 (23). 相似文献
7.
8.
Pattaraporn Sasivimolphan Vimolmas Lipipun Garnpimol Ritthidej Khanidtha Chitphet Yoshihiro Yoshida Tohru Daikoku Boonchoo Sritularak Kittisak Likhitwitayawuid Pornpen Pramyothin Masao Hattori Kimiyasu Shiraki 《AAPS PharmSciTech》2012,13(4):1266-1275
The physicochemical properties of the optimized microemulsion and the permeating ability of oxyresveratrol in microemulsion were evaluated, and the efficacy of oxyresveratrol microemulsion in cutaneous herpes simplex virus type 1 (HSV-1) infection in mice was examined. The optimized microemulsion was composed of 10% w/w of isopropyl myristate, 35% w/w of Tween 80, 35% w/w of isopropyl alcohol, and 20% w/w of water. The mean particle diameter was 9.67 ± 0.58 nm, and the solubility of oxyresveratrol in the microemulsion was 196.34 ± 0.80 mg/ml. After accelerated and long-term stability testing, the microemulsion base and oxyresveratrol-loaded microemulsion were stable. The cumulative amount of oxyresveratrol permeating through shed snake skin from microemulsion at 6 h was 93.04 times compared to that of oxyresveratrol from Vaseline, determined at 20% w/w concentration. In cutaneous HSV-1 infection in mice, oxyresveratrol microemulsion at 20%, 25%, and 30% w/w, topically applied five times daily for 7 days after infection, was significantly effective in delaying the development of skin lesions and protecting from death (p < 0.05) compared with the untreated control. Oxyresveratrol microemulsion at 25% and 30% w/w was significantly more effective than that of 30% w/w of oxyresveratrol in Vaseline (p < 0.05) and was as effective as 5% w/w of acyclovir cream, topically applied five times daily (p > 0.05). These results demonstrated that topical oxyresveratrol microemulsion at 20–30% w/w was suitable for cutaneous HSV-1 mouse infection.KEY WORDS: cutaneous infection in mice, herpes simplex virus, microemulsion, oxyresveratrol, therapeutic efficacy 相似文献
9.
10.
11.
Maitreyi Shivkumar Ricardo Milho Janet S. May Michael P. Nicoll Stacey Efstathiou Philip G. Stevenson 《Journal of virology》2013,87(19):10477-10488
Herpes simplex virus 1 (HSV-1) is a ubiquitous and important human pathogen. It is known to persist in trigeminal ganglia (TG), but how it reaches this site has been difficult to determine, as viral transmission is sporadic, pathogenesis is complicated, and early infection is largely asymptomatic. We used mice to compare the most likely natural HSV-1 host entry routes: oral and nasal. Intranasal infection was 100-fold more efficient than oral and targeted predominantly the olfactory neuroepithelium. Live imaging of HSV-1-expressed luciferase showed infection progressing from the nose to the TG and then reemerging in the facial skin. The brain remained largely luciferase negative throughout. Infected cell tagging by viral Cre recombinase expression in floxed reporter gene mice showed nasal virus routinely reaching the TG and only rarely reaching the olfactory bulbs. Thus, HSV-1 spread from the olfactory neuroepithelium to the TG and reemerged peripherally without causing significant neurological disease. This recapitulation of typical clinical infection suggests that HSV-1 might sometimes also enter humans via the respiratory tract. 相似文献
12.
《Autophagy》2013,9(1):24-29
The lysosomal pathway of autophagy is the major catabolic mechanism for degrading long-lived cellular proteins and cytoplasmic organelles. Recent studies have also shown that autophagy (xenophagy) may be used to degrade bacterial pathogens that invade intracellularly. However, it is not yet known whether xenophagy is a mechanism for degrading viruses. Previously, we showed that autophagy induction requires the antiviral eIF2alpha kinase signaling pathway (including PKR and eIF2alpha) and that this function ofeIF2alpha kinase signaling is antagonized by the herpes simplex virus (HSV-1) neurovirulence gene product, ICP34.5. Here, we show quantitative morphologic evidence of PKR-dependent xenophagic degradation of herpes simplex virions and biochemical evidence of PKR and eIF2alpha-dependent degradation of HSV-1 proteins, both of which are blocked by ICP34.5. Together, these findings indicate that xenophagy degrades HSV-1 and that this cellular function is antagonized by the HSV-1 neurovirulence gene product, ICP34.5. Thus, autophagy-related pathways are involved in degrading not only cellular constituents and intracellular bacteria, but also viruses. 相似文献
13.
14.
Herpes Simplex Virus Type 1 Infection of Isogenic Epstein-Barr Virus Genome-Negative and -Positive Burkitt''s Lymphoma-Derived Cell Lines
下载免费PDF全文

The Epstein-Barr virus (EBV) genome-negative Burkitt's lymphoma-derived cell lines BJAB and Ramos and their in vitro EBV-converted sublines BJAB-B1, BJAB-A5, BJAB-B95-8, and AW-Ramos were infected with high multiplicities of herpes simplex virus type 1 (HSV-1; 10 to 70 PFU/cell). Cultures were monitored for cell growth and HSV-1 DNA synthesis. EBV-converted BJAB cultures were more permissive for HSV-1 infection than BJAB cultures. Significant cell killing and HSV-1 DNA synthesis were observed during the first 48 h of infection in the EBV-converted BJAB cultures but not in the BJAB cultures. The EBV-converted BJAB-B1 cell line contains an appreciable fraction of EBV-negative cells. Therefore, it was cloned. EBV-positive and -negative cells were identified by using EBV-determined nuclear antigen anti-complement immunofluorescence. Two types of subclones were identified: (i) those which contained both EBV-determined nuclear antigen-positive and -negative cells and (ii) those which contained only EBV-determined nuclear antigen-negative cells. When levels of HSV-1 DNA synthesis were measured in these subclones, it was found that the former were more permissive for HSV-1 infection than the latter. Thus, the presence of the EBV genome in BJAB cells correlates with increased permissiveness of these cells for HSV-1 during the first 48 h of infection. Nonetheless, persistent HSV-1 infections were established in both BJAB and EBV-converted BJAB-B1 cultures. No differences in extent of permissiveness for HSV-1 infection were found for Ramos and EBV-converted AW-Ramos cells. 相似文献
15.
Sita Awasthi John W. Balliet Jessica A. Flynn John M. Lubinski Carolyn E. Shaw Daniel J. DiStefano Michael Cai Martha Brown Judith F. Smith Rose Kowalski Ryan Swoyer Jennifer Galli Victoria Copeland Sandra Rios Robert C. Davidson Maya Salnikova Susan Kingsley Janine Bryan Danilo R. Casimiro Harvey M. Friedman 《Journal of virology》2014,88(4):2000-2010
A prophylactic vaccine for genital herpes disease remains an elusive goal. We report the results of two studies performed collaboratively in different laboratories that assessed immunogenicity and vaccine efficacy in herpes simplex virus 1 (HSV-1)-seropositive guinea pigs immunized and subsequently challenged intravaginally with HSV-2. In study 1, HSV-2 glycoproteins C (gC2) and D (gD2) were produced in baculovirus and administered intramuscularly as monovalent or bivalent vaccines with CpG and alum. In study 2, gD2 was produced in CHO cells and given intramuscularly with monophosphoryl lipid A (MPL) and alum, or gC2 and gD2 were produced in glycoengineered Pichia pastoris and administered intramuscularly as a bivalent vaccine with Iscomatrix and alum to HSV-1-naive or -seropositive guinea pigs. In both studies, immunization boosted neutralizing antibody responses to HSV-1 and HSV-2. In study 1, immunization with gC2, gD2, or both immunogens significantly reduced the frequency of genital lesions, with the bivalent vaccine showing the greatest protection. In study 2, both vaccines were highly protective against genital disease in naive and HSV-1-seropositive animals. Comparisons between gD2 and gC2/gD2 in study 2 must be interpreted cautiously, because different adjuvants, gD2 doses, and antigen production methods were used; however, significant differences invariably favored the bivalent vaccine. Immunization of naive animals with gC2/gD2 significantly reduced the number of days of vaginal shedding of HSV-2 DNA compared with that for mock-immunized animals. Surprisingly, in both studies, immunization of HSV-1-seropositive animals had little effect on recurrent vaginal shedding of HSV-2 DNA, despite significantly reducing genital disease. 相似文献
16.
Tri Komala Sari Suzanne M. Pritchard Cristina W. Cunha George A. Wudiri Elizabeth I. Laws Hector C. Aguilar Naomi S. Taus Anthony V. Nicola 《Journal of virology》2013,87(24):13922-13926
Herpes simplex virus (HSV) proteins specifically required for endocytic entry but not direct penetration have not been identified. HSVs deleted of gE, gG, gI, gJ, gM, UL45, or Us9 entered cells via either pH-dependent or pH-independent endocytosis and were inactivated by mildly acidic pH. Thus, the required HSV glycoproteins, gB, gD, and gH-gL, may be sufficient for entry regardless of entry route taken. This may be distinct from entry mechanisms employed by other human herpesviruses. 相似文献
17.
18.
James Artwohl Susan Ball-Kell Tibor Valyi-Nagy Steven P Wilson Ying Lu Thomas J Park 《Comparative medicine》2009,59(1):83-90
Herpes simplex virus type 1 (HSV1) is widely used as a gene delivery vector in a variety of laboratory animals. In a recent study, a thymidine-kinase–inactive (replication-conditional) HSV1 used as a delivery vector was lethal in naked mole rats, whereas mice infected with the identical virus showed no adverse effects. This result prompted us to undertake a controlled comparative histologic study of the effect of HSV1 infection on naked mole rats and mice. Replication-competent and replication-conditional HSV1 caused widespread inflammation and necrosis in multiple organ systems of naked mole rats but not mice; naked mole rats infected with replication-defective virus showed no adverse effects. We conclude that the lethality of HSV1 for naked mole rats is likely the result of overwhelming infection, possibly in part due to this species’ natural lack of proinflammatory neuropeptides at the initial site of infection.Abbreviations: HSV1, herpes simplex virus type 1Herpes simplex virus type 1 (HSV1) belongs to the Simplexvirus genus of the Alphaherpesvirineae subfamily and is an important human pathogen.21 Similar to other herpesviruses, HSV1 is well adapted to its natural host. Fatal HSV1 infections of immunocompetent humans are relatively rare. In most cases, human HSV1 infections lead to lifelong latent infection that is interrupted by episodes of viral reactivation.32 Experimental infection of mice, rabbits, rats, and guinea pigs has been used widely to study HSV1 pathogenesis.33 The pathogenesis of HSV1 in these animals shows close resemblance to infections seen in humans. Infection of peripheral tissues leads to local viral replication and brief viremia. The virus also spreads by neural pathways to the peripheral and central nervous systems, where virus again may replicate, this time in neurons and nonneuronal cells, and may cause encephalitis. Animals surviving the acute phase of infection do not demonstrate signs of encephalitis, and infectious virus is no longer detectable in their nervous system or other organs. However, HSV1 usually is not cleared from these animals and typically establishes latency in neurons of sensory ganglia.Various HSV1 isolates possess a number of characteristics that make them promising as vectors for gene delivery.7 These properties include their capacity to package large amounts of heterologous DNA and an ability to establish persistent, lifelong infections, during which the viral genome remains as a circular nonintegrated episome. In addition, HSV1-based vectors can infect a wide range of human cell lines and primary cultures with high efficiencies. This attribute allows HSV1-based vectors to stably transduce neurons and provide sustained heterologous gene expression. As such, HSV1-based vectors offer the characteristics of an artificial chromosome combined with a highly efficient delivery system. HSV1 strains used for gene therapy typically are engineered to have decreased virulence; for example, strains with defective viral thymidine kinase cannot replicate in nervous tissue, will not cause encephalitis, and are avirulent to immunocompetent hosts.8Naked mole rats have been used to study pain because they do not produce substance P and calcitonin gene-related peptide from the C fibers in their skin17 and they lack C-fiber–related responses to capsaicin.18 In other mammals, these peptides play important roles in pain signaling in the spinal cord and in initiating local immune responses in the periphery.15,19 We infected naked mole rats with a thymidine-kinase–inactivated (replication-conditional) HSV1 engineered to express the preprotachykinin gene that encodes the pain-related neuropeptides substance P and neurokinin A.4 Viruses used in the comparative study did not carry transgenes. 相似文献
19.
Anterograde Transport of Herpes Simplex Virus Proteins in Axons of Peripheral Human Fetal Neurons: an Immunoelectron Microscopy Study
下载免费PDF全文

David J. Holland Monica Miranda-Saksena Ross A. Boadle Patricia Armati Anthony L. Cunningham 《Journal of virology》1999,73(10):8503-8511
Herpes simplex virus (HSV) reactivates from latency in the neurons of dorsal root ganglia (DRG) and is subsequently transported anterogradely along the axon to be shed at the skin or mucosa. Although we have previously shown that only unenveloped nucleocapsids are present in axons during anterograde transport, the mode of transport of tegument proteins and glycoproteins is not known. We used a two-chamber culture model with human fetal DRG cultivated in an inner chamber, allowing axons to grow out and penetrate an agarose barrier and interact with autologous epidermal cells in the outer chamber. After HSV infection of the DRG, anterograde transport of viral components could be examined in the axons in the outer chamber at different time points by electron and immunoelectron microscopy (IEM). In the axons, unenveloped nucleocapsids or focal collections of gold immunolabel for nucleocapsid (VP5) and/or tegument (VP16) were detected. VP5 and VP16 usually colocalized in both scanning and transmission IEM. In contrast, immunolabel for glycoproteins gB, gC, and gD was diffusely distributed in axons and was rarely associated with VP5 or VP16. In longitudinal sections of axons, immunolabel for glycoprotein was arrayed along the membranes of axonal vesicles. These findings provide evidence that in DRG axons, virus nucleocapsids coated with tegument proteins are transported separately from glycoproteins and suggest that final assembly of enveloped virus occurs at the axon terminus. 相似文献
20.
Modified VP22 Localizes to the Cell Nucleus during Synchronized Herpes Simplex Virus Type 1 Infection 总被引:10,自引:0,他引:10
下载免费PDF全文

The UL49 gene product (VP22) of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) is a virion phosphoprotein which accumulates inside infected cells at late stages of infection. We previously (J. A. Blaho, C. Mitchell, and B. Roizman, J. Biol. Chem. 269:17401-17410, 1994) discovered that the form of VP22 packaged into infectious virions differed from VP22 extracted from infected-cell nuclei in that the virion-associated form had a higher electrophoretic mobility in denaturing gels. Based on these results, we proposed that VP22 in virions was "undermodified" in some way. The goal of this study is to document the biological and biochemical properties of VP22 throughout the entire course of a productive HSV-1 infection. We now report the following. (i) VP22 found in infected cells is distributed in at least three distinct subcellular localizations, which we define as cytoplasmic, diffuse, and nuclear, as measured by indirect immunofluorescence. (ii) Using a synchronized infection system, we determined that VP22 exists predominantly in the cytoplasm early in infection and accumulates in the nucleus late in infection. (iii) While cytoplasmic VP22 colocalizes with the HSV-1 glycoprotein D early in infection, the nuclear form of VP22 is not restricted to replication compartments which accumulate ICP4. (iv) VP22 migrates as at least three unique electrophoretic species in denaturing sodium dodecyl sulfate-DATD-polyacrylamide gels. VP22a, VP22b, and VP22c have high, intermediate, and low mobility, respectively. (v) The relative distribution of the various forms of VP22 derived from infected whole-cell extracts varies during the course of infection such that low-mobility species predominate at early times and high-mobility forms accumulate later. (vi) The highest-mobility forms of VP22 partition with the cytoplasmic fraction of infected cells, while the lowest-mobility forms are associated with the nuclear fraction. (vii) Finally, full-length VP22 which partitions in the nucleus incorporates radiolabel from [32P]orthophosphate whereas cytoplasmic VP22 does not. Based on these results, we conclude that modification of VP22 coincides with its appearance in the nucleus during the course of productive HSV-1 infection. 相似文献