首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Vmw65, a herpes simplex virus type 1 (HSV-1) tegument protein, in association with cellular proteins, transactivates viral immediate early genes. In order to examine the role of Vmw65 during acute and latent infection in vivo, a mutant virus (in1814), containing a 12-base-pair insertion in the Vmw65 gene, which lacks the transactivating function of Vmw65 (C. I. Ace, T. A. McKee, J. M. Ryan, J. M. Cameron, and C. M. Preston, J. Virol. 63:2260-2269, 1989) was examined in mice. Following corneal inoculation, the parental virus (17+) and the revertant (1814R) replicated effectively in eyes and trigeminal ganglia with 30 to 60% mortality. At either equal PFU or equal particle numbers, in1814 did not replicate in trigeminal ganglia and none of the infected mice died. Although in1814 did not replicate following corneal inoculation, it established latent infection in trigeminal ganglia. HSV-1 in1814 reactivated at explant as efficiently and rapidly as did 17+ and 1814R. Even low amounts of inoculated in1814 (10(2) PFU) were sufficient to establish latent infection in some animals. Since infectious in1814 was not detected at any time in mouse trigeminal ganglia, in1814 provided a unique opportunity to determine how soon after primary infection latency begins. Latent in1814 infection was detected shortly after virus reached the sensory ganglia, between 24 to 48 h postinfection. Thus, though Vmw65 may be required for lytic infection in vivo, it is dispensable for the establishment of and reactivation from latent infection. These data support the hypotheses that the latent and lytic pathways of HSV-1 are distinct and that latency is established soon after infection without a requirement for viral replication. However, the levels of Vmw65 reaching neuronal nuclei may be a critical determinant of whether HSV-1 forms a lytic or latent infection.  相似文献   

3.
T Liu  Q Tang    R L Hendricks 《Journal of virology》1996,70(1):264-271
Following herpes simplex virus type 1 (HSV-1) infection of the cornea, the virus is transmitted to the trigeminal ganglion, where a brief period of virus replication is followed by establishment of a latent infection in neurons. A possible role of the immune system in regulating virus replication and maintaining latency in the sensory neurons has been suggested. We have investigated the phenotype and cytokine pattern of cells that infiltrate the A/J mouse trigeminal ganglion at various times after HSV-1 corneal infection. HSV antigen expression in the trigeminal ganglion (indicative of the viral lytic cycle) increased until day 3 postinfection (p.i.) and then diminished to undetectable levels by day 7 p.i. The period of declining HSV antigen expression. was associated with a marked increase in Mac-1+ cells. These cells did not appear to coexpress the F4/80+ (macrophage) or the CD8+ (T cell) markers, and none showed polymorphonuclear leukocyte morphology, suggesting a possible early infiltration of natural killer cells. There was also a significant increase in the trigeminal ganglion of cells expressing the gamma delta T-cell receptor, and these cells were found almost exclusively in very close association with neurons. This period was also characterized by a rapid and equivalent increase in cells expressing gamma interferon and interleukin-4. The density of the inflammatory infiltrate in the trigeminal ganglion increased until days 12 to 21 p.i., when it was predominated by CD8+, Mac-1+, and tumor necrosis factor-expressing cells, which surrounded many neurons. By day 92 p.i., the inflammatory infiltrate diminished but was heaviest in mice with active periocular skin disease. Our data are consistent with the notion that gamma interferon produced by natural killer cells and/or gamma delta T cells may play an important role in limiting HSV-1 replication in the trigeminal ganglion during the acute stage of infection. In addition, tumor necrosis factor produced by CD8+ T cells and macrophages may function to maintain the virus in a latent state.  相似文献   

4.
5.
6.
Herpes simplex virus type 1 (HSV-1) immediate-early (IE) proteins are required for the expression of viral early and late proteins. It has been hypothesized that host neuronal proteins regulate expression of HSV-1 IE genes that in turn control viral latency and reactivation. We investigated the ability of neuronal proteins in vivo to activate HSV-1 IE gene promoters (ICP0 and ICP27) and a late gene promoter (gC). Transgenic mice containing IE (ICP0 and ICP27) and late (gC) gene promoters of HSV-1 fused to the Escherichia coli beta-galactosidase coding sequence were generated. Expression of the ICP0 and ICP27 reporter transgenes was present in anatomically distinct subsets of neurons in the absence of viral proteins. The anatomic locations of beta-galactosidase-positive neurons in the brains of ICP0 and ICP27 reporter transgenic mice were similar and included cerebral cortex, lateral septal nucleus, cingulum, hippocampus, thalamus, amygdala, and vestibular nucleus. Trigeminal ganglion neurons were positive for beta-galactosidase in adult ICP0 and ICP27 reporter transgenic mice. The ICP0 reporter transgene was differentially regulated in trigeminal ganglion neurons depending upon age. beta-galactosidase-labeled cells in trigeminal ganglia and cerebral cortex of ICP0 and ICP27 reporter transgenic mice were confirmed as neurons by double labeling with antineurofilament antibody. Nearly all nonneuronal cells in ICP0 and ICP27 reporter transgenic mice and all neuronal and nonneuronal cells in gC reporter transgenic mice were negative for beta-galactosidase labeling in the absence of HSV-1. We conclude that factors in neurons are able to differentially regulate the HSV-1 IE gene promoters (ICP0 and ICP27) in transgenic mice in the absence of viral proteins. These findings are important for understanding the regulation of the latent and reactivated stages of HSV-1 infection in neurons.  相似文献   

7.
8.
9.
10.
11.
McMahon R  Walsh D 《Journal of virology》2008,82(20):10218-10230
Quiescent infection of cultured cells with herpes simplex virus type 1 (HSV-1) provides an important, amenable means of studying the molecular mechanics of a nonproductive state that mimics key aspects of in vivo latency. To date, establishing high-multiplicity nonproductive infection of human cells with wild-type HSV-1 has proven challenging. Here, we describe simple culture conditions that established a cell state in normal human diploid fibroblasts that supported efficient quiescent infection using wild-type virus and exhibited many important properties of the in vivo latent state. Despite the efficient production of immediate early (IE) proteins ICP4 and ICP22, the latter remained unprocessed, and viral late gene products were only transiently and inefficiently produced. This low level of virus activity in cultures was rapidly suppressed as the nonproductive state was established. Entry into quiescence was associated with inefficient production of the viral trans-activating protein ICP0, and the accumulation of enlarged nuclear PML structures normally dispersed during productive infection. Lytic replication was rapidly and efficiently restored by exogenous expression of HSV-1 ICP0. These findings are in agreement with previous models in which quiescence was established with HSV mutants disrupted in their expression of IE gene products that included ICP0 and, importantly, provide a means to study cellular mechanisms that repress wild-type viral functions to prevent productive replication. We discuss this model in relation to existing systems and its potential as a simple tool to study the molecular mechanisms of quiescent infection in human cells using wild-type HSV-1.  相似文献   

12.
The herpes simplex virus type 1 (HSV-1) immediate-early (IE) protein ICP0 has been implicated in the regulation of viral gene expression and the reactivation of latent HSV-1. Evidence demonstrates that ICP0 is an activator of viral gene expression yet does not distinguish between a direct or indirect role in this process. To further our understanding of the function of ICP0 in the context of the virus life cycle, site-directed mutagenesis of the consensus C3HC4 zinc finger domain was performed, and the effects of these mutations on the growth and replication of HSV-1 were assessed. We demonstrate that alteration of any of the consensus C3HC4 cysteine or histidine residues within this domain abolishes ICP0-mediated transactivation, alters the intranuclear localization of ICP0, and significantly increases its stability. These mutations result in severe defects in the growth and DNA replication of recombinant herpesviruses and in their ability to initiate lytic infections at low multiplicities of infection. These viruses, at low multiplicities of infection, synthesize wild-type levels of the IE proteins ICP0 and ICP4 at early times postinfection yet exhibit significant decreases in the synthesis of the essential IE protein ICP27. These findings reveal a role for ICP0 in the expression of ICP27 and suggest that the multiplicity-dependent growth of alpha0 mutant viruses results partially from reduced levels of ICP27.  相似文献   

13.
14.
The life long relationship between herpes simplex virus and its host hinges on the ability of the virus to aggressively replicate in epithelial cells at the site of infection and transport into the nervous system through axons innervating the infection site. Interaction between the virus and the sensory neuron represents a pivot point where largely unknown mechanisms lead to a latent or a lytic infection in the neuron. Regulation at this pivot point is critical for balancing two objectives, efficient widespread seeding of the nervous system and host survival. By combining genetic and in vivo in approaches, our studies reveal that the balance between latent and lytic programs is a process occurring early in the trigeminal ganglion. Unexpectedly, activation of the latent program precedes entry into the lytic program by 12 -14hrs. Importantly, at the individual neuronal level, the lytic program begins as a transition out of this acute stage latent program and this escape from the default latent program is regulated by de novo VP16 expression. Our findings support a model in which regulated de novo VP16 expression in the neuron mediates entry into the lytic cycle during the earliest stages of virus infection in vivo. These findings support the hypothesis that the loose association of VP16 with the viral tegument combined with sensory axon length and transport mechanisms serve to limit arrival of virion associated VP16 into neuronal nuclei favoring latency. Further, our findings point to specialized features of the VP16 promoter that control the de novo expression of VP16 in neurons and this regulation is a key component in setting the balance between lytic and latent infections in the nervous system.  相似文献   

15.
Primary cultures of rat and mouse sensory neurons were used to study the entry of herpes simplex virus type 1 (HSV-1). Soluble, truncated nectin-1 but not HveA prevented viral entry. Antibodies against nectin-1 also blocked infection of rat neurons. These results indicate that nectin-1 is the primary receptor for HSV-1 infection of sensory neurons.  相似文献   

16.
17.
Herpes simplex virus type 1 (HSV-1) immediate-early (IE) regulatory protein ICP0 is required for efficient progression of infected cells into productive lytic infection, especially in low-multiplicity infections of limited-passage human fibroblasts. We have used single-cell-based assays that allow detailed analysis of the ICP0-null phenotype in low-multiplicity infections of restrictive cell types. The major conclusions are as follows: (i) there is a threshold input multiplicity above which the mutant virus replicates normally; (ii) individual cells infected below the threshold multiplicity have a high probability of establishing a nonproductive infection; (iii) such nonproductively infected cells have a high probability of expressing IE products at 6 h postinfection; (iv) even at 24 h postinfection, IE protein-positive nonproductively infected human fibroblast cells exceed the number of cells that lead to plaque formation by up to 2 orders of magnitude; (v) expression of individual IE proteins in a proportion of the nonproductively infected cells is incompletely coordinated; (vi) the nonproductive cells can also express early gene products at low frequencies and in a stochastic manner; and (vii) significant numbers of human fibroblast cells infected at low multiplicity by an ICP0-deficient virus are lost through cell death. We propose that in the absence of ICP0 expression, HSV-1 infected human fibroblasts can undergo a great variety of fates, including quiescence, stalled infection at a variety of different stages, cell death, and, for a minor population, initiation of formation of a plaque.  相似文献   

18.
19.
20.
After corneal infection, herpes simplex virus type 1 (HSV-1) invades sensory neurons with cell bodies in the trigeminal ganglion (TG), replicates briefly, and then establishes a latent infection in these neurons. HSV-1 replication in the TG can be detected as early as 2 days after corneal infection, reaches peak titers by 3-5 days after infection, and is undetectable by 7-10 days. During the period of HSV-1 replication, macrophages and gammadelta TCR+ T lymphocytes infiltrate the TG, and TNF-alpha, IFN-gamma, the inducible nitric oxide synthase (iNOS) enzyme, and IL-12 are expressed. TNF-alpha, IFN-gamma, and the iNOS product nitric oxide (NO) all inhibit HSV-1 replication in vitro. Macrophage and gammadelta TCR+ T cell depletion studies demonstrated that macrophages are the main source of TNF-alpha and iNOS, whereas gammadelta TCR+ T cells produce IFN-gamma. Macrophage depletion, aminoguanidine inhibition of iNOS, and neutralization of TNF-alpha or IFN-gamma all individually and synergistically increased HSV-1 titers in the TG after HSV-1 corneal infection. Moreover, individually depleting macrophages or neutralizing TNF-alpha or IFN-gamma markedly reduced the accumulation of both macrophages and gammadelta TCR+ T cells in the TG. Our findings establish that after primary HSV-1 infection, the bulk of virus replication in the sensory ganglia is controlled by macrophages and gammadelta TCR+ T lymphocytes through their production of antiviral molecules TNF-alpha, NO, and IFN-gamma. Our findings also strongly suggest that cross-regulation between these two cell types is necessary for their accumulation and function in the infected TG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号