首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Synapses are asymmetric intercellular junctions that mediate neuronal communication. The number, type, and connectivity patterns of synapses determine the formation, maintenance, and function of neural circuitries. The complexity and specificity of synaptogenesis relies upon modulation of adhesive properties, which regulate contact initiation, synapse formation, maturation, and functional plasticity. Disruption of adhesion may result in structural and functional imbalance that may lead to neurodevelopmental diseases, such as autism, or neurodegeneration, such as Alzheimer''s disease. Therefore, understanding the roles of different adhesion protein families in synapse formation is crucial for unraveling the biology of neuronal circuit formation, as well as the pathogenesis of some brain disorders. The present review summarizes some of the knowledge that has been acquired in vertebrate and invertebrate genetic model organisms.Synapses are asymmetric, intercellular junctions that are the basic structural units of neuronal transmission. The correct development of synaptic specializations and the establishment of appropriate connectivity patterns are crucial for the assembly of functional neuronal circuits. Improper synapse formation and function may cause neurodevelopmental disorders, such as mental retardation (MsR) and autism spectrum disorders (ASD) (McAllister 2007; Sudhof 2008), and likely play a role in neurodegenerative disorders, such as Alzheimer''s disease (AD) (Haass and Selkoe 2007).At chemical synapses (reviewed in Sudhof 2004; Zhai and Bellen 2004; Waites et al. 2005; McAllister 2007; Jin and Garner 2008), the presynaptic compartment contains synaptic vesicles (SV), organized in functionally distinct subcellular pools. A subset of SVs docks to the presynaptic membrane around protein-dense release sites, named active zones (AZ). Upon the arrival of an action potential at the terminal, the docked and “primed” SVs fuse with the plasma membrane and release neurotransmitter molecules into the synaptic cleft. Depending on the type of synapse (i.e., excitatory vs. inhibitory synapses), neurotransmitters ultimately activate an appropriate set of postsynaptic receptors that are accurately apposed to the AZ.Synapse formation occurs in several steps (Fig. 1) (reviewed in Eaton and Davis 2003; Goda and Davis 2003; Waites et al. 2005; Garner et al. 2006; Gerrow and El-Husseini 2006; McAllister 2007). Spatiotemporal signals guide axons through heterogeneous cellular environments to contact appropriate postsynaptic targets. At their destination, axonal growth cones initiate synaptogenesis through adhesive interactions with target cells. In the mammalian central nervous system (CNS), immature postsynaptic dendritic spines initially protrude as thin, actin-rich filopodia on the surface of dendrites. Similarly, at the Drosophila neuromuscular junction (NMJ), myopodia develop from the muscles (Ritzenthaler et al. 2000). The stabilization of intercellular contacts and their elaboration into mature, functional synapses involves cytoskeletal arrangements and recruitment of pre- and postsynaptic components to contact sites in spines and boutons. Conversely, retraction of contacts results in synaptic elimination. Both stabilization and retraction sculpt a functional neuronal circuitry.Open in a separate windowFigure 1.(A–C) Different stages of synapse formation. (A) Target selection, (B) Synapse assembly, (C) Synapse maturation and stabilization. (D–F) The role of cell adhesion molecules in synapse formation is exemplified by the paradigm of N-cadherin and catenins in regulation of the morphology and strength of dendritic spine heads. (D) At an early stage the dendritic spines are elongated from motile structures “seeking” their synaptic partners. (E) The contacts between the presynaptic and postsynaptic compartments are stabilized by recruitment of additional cell adhesion molecules. Adhesional interactions activate downstream pathways that remodel the cytoskeleton and organize pre- and postsynaptic apparatuses. (F) Cell adhesion complexes, stabilized by increased synaptic activity, promote the expansion of the dendritic spine head and the maturation/ stabilization of the synapse. Retraction and expansion is dependent on synaptic plasticity.In addition to the plastic nature of synapse formation, the vast heterogeneity of synapses (in terms of target selection, morphology, and type of neurotransmitter released) greatly enhances the complexity of synaptogenesis (reviewed in Craig and Boudin 2001; Craig et al. 2006; Gerrow and El-Husseini 2006). The complexity and specificity of synaptogenesis relies upon the modulation of adhesion between the pre- and postsynaptic components (reviewed in Craig et al. 2006; Gerrow and El-Husseini 2006; Piechotta et al. 2006; Dalva et al. 2007; Shapiro et al. 2007; Yamada and Nelson 2007; Gottmann 2008). Cell adhesive interactions enable cell–cell recognition via extracellular domains and also mediate intracellular signaling cascades that affect synapse morphology and organize scaffolding complexes. Thus, cell adhesion molecules (CAMs) coordinate multiple synaptogenic steps.However, in vitro and in vivo studies of vertebrate CAMs are often at odds with each other. Indeed, there are no examples of mutants for synaptic CAMs that exhibit prominent defects in synapse formation. This apparent “resilience” of synapses is probably caused by functional redundancy or compensatory effects among different CAMs (Piechotta et al. 2006). Hence, studies using simpler organisms less riddled by redundancy, such as Caenorhabditis elegans and Drosophila, have aided in our understanding of the role that these molecules play in organizing synapses.In this survey, we discuss the roles of the best characterized CAM families of proteins involved in synaptogenesis. Our focus is to highlight the complex principles that govern the molecular basis of synapse formation and function from a comparative perspective. We will present results from cell culture studies as well as in vivo analyses in vertebrate systems and refer to invertebrate studies, mainly performed in Drosophila and C. elegans, when they have provided important insights into the role of particular CAM protein families. However, we do not discuss secreted factors, for which we refer the reader to numerous excellent reviews (as for example Washbourne et al. 2004; Salinas 2005; Piechotta et al. 2006; Shapiro et al. 2006; Dalva 2007; Yamada and Nelson 2007; Biederer and Stagi 2008; Salinas and Zou 2008).  相似文献   

2.
3.
4.
Matriliny has long been debated by anthropologists positing either its primitive or its puzzling nature. More recently, evolutionary anthropologists have attempted to recast matriliny as an adaptive solution to modern social and ecological environments, tying together much of what was known to be associated with matriliny. This paper briefly reviews the major anthropological currents in studies of matriliny and discusses the contribution of evolutionary anthropology to this body of literature. It discusses the utility of an evolutionary framework in the context of the first independent test of Holden et al.'s 2003 model of matriliny as daughter-biased investment. It finds that historical daughter-biased transmission of land among the Mosuo is consistent with the model, whereas current income transmission is not. In both cases, resources had equivalent impacts on male and female reproduction, a result which predicts daughter-biased resource transmission given any nonzero level of paternity uncertainty. However, whereas land was transmitted traditionally to daughters, income today is invested in both sexes. Possible reasons for this discrepancy are discussed.  相似文献   

5.
6.
Vasopressin controls renal water excretion largely through actions to regulate the water channel aquaporin-2 in collecting duct principal cells. Our knowledge of the mechanisms involved has increased markedly in recent years with the advent of methods for large-scale systems-level profiling such as protein mass spectrometry, yeast two-hybrid analysis, and oligonucleotide microarrays. Here we review this progress.Regulation of water excretion by the kidney is one of the most visible aspects of everyday physiology. An outdoor tennis game on a hot summer day can result in substantial water losses by sweating, and the kidneys respond by reducing water excretion. In contrast, excessive intake of water, a frequent occurrence in everyday life, results in excretion of copious amounts of clear urine. These responses serve to exact tight control on the tonicity of body fluids, maintaining serum osmolality in the range of 290–294 mosmol/kg of H2O through the regulated return of water from the pro-urine in the renal collecting ducts to the bloodstream.The importance of this process is highlighted when the regulation fails. For example, polyuria (rapid uncontrolled excretion of water) is a sometimes devastating consequence of lithium therapy for bipolar disorder. On the other side of the coin are water balance disorders that result from excessive renal water retention causing systemic hypo-osmolality or hyponatremia. Hyponatremia due to excessive water retention can be seen with severe congestive heart failure, hepatic cirrhosis, and the syndrome of inappropriate antidiuresis.The chief regulator of water excretion is the peptide hormone AVP,2 whereas the chief molecular target for regulation is the water channel AQP2. In this minireview, we describe new progress in the understanding of the molecular mechanisms involved in regulation of AQP2 by AVP in collecting duct cells, with emphasis on new information derived from “systems-level” approaches involving large-scale profiling and screening techniques such as oligonucleotide arrays, protein mass spectrometry, and yeast two-hybrid analysis. Most of the progress with these techniques is in the identification of individual molecules involved in AVP signaling and binding interactions with AQP2. Additional related issues are addressed in several recent reviews (14).  相似文献   

7.
8.
Although mesenchymal stem cells (MSCs) are the natural source for bone regeneration, the exact mechanisms governing MSC crosstalk with collagen I have not yet been uncovered. Cell adhesion to collagen I is mostly mediated by three integrin receptors – α1β1, α2β1 and α11β1. Using human MSC (hMSC), we show that α11 subunit exhibited the highest basal expression levels but on osteogenic stimulation, both α2 and α11 integrins were significantly upregulated. To elucidate the possible roles of collagen-binding integrins, we applied short hairpin RNA (shRNA)-mediated knockdown in hMSC and found that α2 or α11 deficiency, but not α1, results in a tremendous reduction of hMSC numbers owing to mitochondrial leakage accompanied by Bcl-2-associated X protein upregulation. In order to clarify the signaling conveyed by the collagen-binding integrins in hMSC, we analyzed the activation of focal adhesion kinase, extracellular signal-regulated protein kinase and serine/threonine protein kinase B (PKB/Akt) kinases and detected significantly reduced Akt phosphorylation only in α2- and α11-shRNA hMSC. Finally, experiments with hMSC from osteoporotic patients revealed a significant downregulation of α2 integrin concomitant with an augmented mitochondrial permeability. In conclusion, our study describes for the first time that disturbance of α2β1- or α11β1-mediated interactions to collagen I results in the cell death of MSCs and urges for further investigations examining the impact of MSCs in bone conditions with abnormal collagen I.  相似文献   

9.
The amyloid-β (Aβ) peptide, widely known as the causative molecule of Alzheimer disease (AD), is generated by the sequential cleavage of amyloid precursor protein (APP) by the aspartyl proteases BACE1/β-secretase and presenilin/γ-secretase. Inhibition of BACE1, therefore, is a promising strategy for preventing the progression of AD. However, β-secretase inhibitors (BSIs) exhibit unexpectedly low potency in cells expressing “Swedish mutant” APP (APPswe) and in the transgenic mouse Tg2576, an AD model overexpressing APPswe. The Swedish mutation dramatically accelerates β-cleavage of APP and hence the generation of Aβ; this acceleration has been assumed to underlie the poor inhibitory activity of BSI against APPswe processing. Here, we studied the mechanism by which the Swedish mutation causes this BSI potency decrease. Surprisingly, decreased BSI potency was not observed in an in vitro assay using purified BACE1 and substrates, indicating that the accelerated β-cleavage resulting from the Swedish mutation is not its underlying cause. By focusing on differences between the cell-based and in vitro assays, we have demonstrated here that the potency decrease is caused by the aberrant subcellular localization of APPswe processing and not by accelerated β-cleavage or the accumulation of the C-terminal fragment of β-cleaved APP. Because most patients with sporadic AD express wild type APP, our findings suggest that the wild type mouse is superior to the Tg2576 mouse as a model for determining the effective dose of BSI for AD patients. This work provides novel insights into the potency decrease of BSI and valuable suggestions for its development as a disease-modifying agent.  相似文献   

10.
11.
12.
13.
We developed a highly scalable ‘shotgun’ DNA synthesis technology by utilizing microchip oligonucleotides, shotgun assembly and next-generation sequencing technology. A pool of microchip oligonucleotides targeting a penicillin biosynthetic gene cluster were assembled into numerous random fragments, and tagged with 20 bp degenerate barcode primer pairs. An optimal set of error-free fragments were identified by high-throughput DNA sequencing, selectively amplified using the barcode sequences, and successfully assembled into the target gene cluster.  相似文献   

14.
15.
16.
17.
A typical plasmid replicon of Escherichia coli, such as ori γ of R6K, contains tandem iterons (iterated initiator protein binding sites), an AT-rich region that melts upon initiator-iteron interaction, two binding sites for the bacterial initiator protein DnaA, and a binding site for the DNA-bending protein IHF. R6K also contains two structurally atypical origins called α and β that are located on either side of γ and contain a single and a half-iteron, respectively. Individually, these sites do not bind to initiator protein π but access it by DNA looping-mediated interaction with the seven π-bound γ iterons. The π protein exists in 2 interconvertible forms: inert dimers and active monomers. Initiator dimers generally function as negative regulators of replication by promoting iteron pairing (“handcuffing”) between pairs of replicons that turn off both origins. Contrary to this existing paradigm, here we show that both the dimeric and the monomeric π are necessary for ori α-driven plasmid maintenance. Furthermore, efficient looping interaction between α and γ or between 2 γ iterons in vitro also required both forms of π. Why does α-γ iteron pairing promote α activation rather than repression? We show that a weak, transitory α-γ interaction at the iteron pairs was essential for α-driven plasmid maintenance. Swapping the α iteron with one of γ without changing the original sequence context that caused enhanced looping in vitro caused a significant inhibition of α-mediated plasmid maintenance. Therefore, the affinity of α iteron for π-bound γ and not the sequence context determined whether the origin was activated or repressed.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号