首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
We isolated three Escherichia coli suppressor strains that reduce the copy number of a mutant ColE1 high-copy-number plasmid. These mutations lower the copy number of the mutant plasmid in vivo up to 15-fold; the wild-type plasmid copy number is reduced by two- to threefold. The suppressor strains do not affect the copy numbers of non-ColE1-type plasmids tested, suggesting that their effects are specific for ColE1-type plasmids. Two of the suppressor strains show ColE1 allele-specific suppression; i.e., certain plasmid copy number mutations are suppressed more efficiently than others, suggesting specificity in the interaction between the suppressor gene product and plasmid replication component(s). All of the mutations were genetically mapped to the chromosomal polA gene, which encodes DNA polymerase I. The suppressor mutational changes were identified by DNA sequencing and found to alter single nucleotides in the region encoding the Klenow fragment of DNA polymerase I. Two mutations map in the DNA-binding cleft of the polymerase region and are suggested to affect specific interactions of the enzyme with the replication primer RNA encoded by the plasmid. The third suppressor alters a residue in the 3'-5' exonuclease domain of the enzyme. Implications for the interaction of DNA polymerase I with the ColE1 primer RNA are discussed.  相似文献   

6.
The replication of both ColE1-type plasmids and plasmids bearing the origin of replication of the Escherichia coli chromosome (oriC) has been shown to be inhibited by hemimethylation of adenine residues within GATC sequences. In the case of oriC plasmids, this inhibition was previously shown to be mediated by the specific affinity of the hemimethylated origin DNA for an outer cell membrane fraction. Here, we suggest that a similar mechanism is operating in the case of the ColE1-like plasmid pBR322 as (i) a hemimethylated DNA fragment carrying the promoter for the RNA which primes DNA synthesis (RNAII) is specifically bound by the same membrane fraction and, (ii) the addition of the membrane fraction to a soluble assay of pBR322 replication results in preferential inhibition of initiation on the hemimethylated template. We suggest that membrane sequestration of hemimethylated origin DNA and/or associated replication genes following replication may be a common element restricting DNA replication to precise moments in the cell cycle.  相似文献   

7.
8.
9.
Role of plasmid-coded RNA and ribonuclease III in plasmid DNA replication.   总被引:24,自引:0,他引:24  
S E Conrad  J L Campbell 《Cell》1979,18(1):61-71
  相似文献   

10.
11.
S Takechi  H Matsui    T Itoh 《The EMBO journal》1995,14(20):5141-5147
Initiation of in vitro ColE2 DNA replication requires the plasmid-specified Rep protein and DNA polymerase I but not RNA polymerase and DnaG primase. The ColE2 Rep protein binds specifically to the origin where replication initiates. Leading-strand synthesis initiates at a unique site in the origin and lagging-strand DNA synthesis terminates at another unique site in the origin. Here we show that the primer RNA for leading-strand synthesis at the origin has a unique structure of 5'-ppApGpA. We reconstituted the initiation reaction of leading-strand DNA synthesis by using purified proteins, the ColE2 Rep protein, Escherichia coli DNA polymerase I and SSB, and we showed that the ColE2 Rep protein is a priming enzyme, primase, which is specific for the ColE2 origin. The ColE2 Rep protein is unique among other primases in that it recognizes the origin region and synthesizes the primer RNA at a fixed site in the origin region. Specific requirement for ADP as a substrate and its direct incorporation into the 5' end of the primer RNA are also unique properties of the ColE2 Rep protein.  相似文献   

12.
Mutations affecting a region of the Escherichia coli RNA polymerase have been isolated that specifically reduce the copy number of ColE1-type plasmids. The mutations, which result in a single amino acid alteration (G1161R) or a 41-amino acid deletion (Delta1149-1190) are located near the 3'-terminal region in the rpoC gene, which encodes the largest subunit (beta ') of the RNA polymerase. The rpoC deletion and the point mutation cause over 20- and 10-fold reductions, respectively, in the copy number of ColE1. ColE1 plasmid numbers are regulated by two plasmid-encoded RNAs: RNA II, which acts as a preprimer for the DNA polymerase I to start initiation of replication, and RNA I, its antisense inhibitor. Altered expression from the RNA I and RNA II promoters in vivo was observed in the RNA polymerase mutants. The RNA I/RNA II ratio is higher in the mutants than in the wild-type strain and this is most probably the main reason for the reduction in the ColE1 copy number in the two rpoC mutants.  相似文献   

13.
14.
15.
Construction and characterization of a class of multicopy plasmid cloning vehicles containing the replication system of miniplasmid P15A are described. The constructed plasmids have cleavage sites within antibiotic resistance genes for a variety of commonly employed site-specific endonucleases, permitting convenient use of the insertional inactivation procedure for the selection of clones that contain hybrid DNA molecules. Although the constructed plasmids showed DNA sequence homology with the ColE1 plasmid within the replication region, were amplifiable by chloramphenicol or spectinomycin, required DNA polymerase I for replication, and shared other replication properties with ColE1, they were nevertheless compatible with ColE1. P15A-derived plasmids were not self-transmissible and were mobilized poorly by Hfr strains; however, mobilization was complemented by the presence of a ColE1 plasmid within the same cell.  相似文献   

16.
Replication of plasmids in gram-negative bacteria.   总被引:29,自引:1,他引:28       下载免费PDF全文
Replication of plasmid deoxyribonucleic acid (DNA) is dependent on three stages: initiation, elongation, and termination. The first stage, initiation, depends on plasmid-encoded properties such as the replication origin and, in most cases, the replication initiation protein (Rep protein). In recent years the understanding of initiation and regulation of plasmid replication in Escherichia coli has increased considerably, but it is only for the ColE1-type plasmids that significant biochemical data about the initial priming reaction of DNA synthesis exist. Detailed models have been developed for the initiation and regulation of ColE1 replication. For other plasmids, such as pSC101, some hypotheses for priming mechanisms and replication initiation are presented. These hypotheses are based on experimental evidence and speculative comparisons with other systems, e.g., the chromosomal origin of E. coli. In most cases, knowledge concerning plasmid replication is limited to regulation mechanisms. These mechanisms coordinate plasmid replication to the host cell cycle, and they also seem to determine the host range of a plasmid. Most plasmids studied exhibit a narrow host range, limited to E. coli and related bacteria. In contrast, some others, such as the IncP plasmid RK2 and the IncQ plasmid RSF1010, are able to replicate in nearly all gram-negative bacteria. This broad host range may depend on the correct expression of the essential rep genes, which may be mediated by a complex regulatory mechanism (RK2) or by the use of different promoters (RSF1010). Alternatively or additionally, owing to the structure of their origin and/or to different forms of their replication initiation proteins, broad-host-range plasmids may adapt better to the host enzymes that participate in initiation. Furthermore, a broad host range can result when replication initiation is independent of host proteins, as is found in the priming reaction of RSF1010.  相似文献   

17.
The ColE2 DNA can be replicated in an in vitro system consisting of a crude extract of Escherichia coli cells. DNA synthesis requires a plasmid-coded protein (Rep) and host DNA polymerase I but not host RNA polymerase. Replication starts at a fixed region containing the origin and proceeds unidirectionally. The leading- and lagging-strand DNA fragments synthesized around the origin were identified from early replicative intermediates. The 5' end of the leading-strand DNA fragment was mapped at a unique position in the minimal origin and carried RNA of a few residues. The results suggested that the initiation of the leading-strand DNA synthesis does not require the host DnaG protein. Thus the Rep protein itself seems to be a primase. Synthesis of the primer RNA at a fixed site in the origin region on a double-stranded DNA template is a unique property of the ColE2 Rep protein among other known primases. The 3' end of the lagging-strand DNA fragment was mapped at a unique position just at the end of the minimal origin region. Termination of the lagging-strand DNA fragment at that position seems to be the mechanism of the unidirectional replication of ColE2 plasmid.  相似文献   

18.
The plasmid ColE2-P9 origin is a 32-bp region which is specifically recognized by the plasmid-specified Rep protein to initiate DNA replication. We analyzed the structural and functional organization of the ColE2 origin by using various derivatives carrying deletions and single-base-pair substitutions. The origin may be divided into three subregions: subregion I, which is important for stable binding of the Rep protein; subregion II, which is important for binding of the Rep protein and for initiation of DNA replication; and subregion III, which is important for DNA replication but apparently not for binding of the Rep protein. The Rep protein might recognize three specific DNA elements in subregions I and II. The relative transformation frequency of the autonomously replicating plasmids carrying deletions in subregion I is lower, and nevertheless the copy numbers of these plasmids in host bacteria are higher than those of the wild-type plasmid. Efficient and stable binding of the Rep protein to the origin might be important for the replication efficiency to be at the normal (low) level. Subregion II might be essential for interaction with the catalytic domain of the Rep protein for primer RNA synthesis. The 8-bp sequence across the border of subregions II and III, including the primer sequence, is conserved in the (putative) origins of many plasmids, the putative Rep proteins of which are related to the ColE2-P9 Rep protein. Subregion III might be required for a step that is necessary after Rep protein binding has taken place.  相似文献   

19.
20.
RNase H and replication of ColE1 DNA in Escherichia coli   总被引:3,自引:1,他引:2       下载免费PDF全文
Amber mutations within the rnh (RNase H) gene of Escherichia coli K-12 were isolated by selecting for bacteria capable of replicating in a sup+ background replication-defective cer-6 mutant of the ColE1 replicon. The cer-6 mutation is an alteration of one base pair located 160 nucleotides upstream of the unique replication origin of this plasmid. Subsequently, we determined the DNA alterations present within these mutants. ColE1 DNA replicated in rnh(Am) recA cells, indicating that (i) RNase H, which has been shown to be absolutely required for in vitro initiation of ColE1 DNA replication, is dispensable in vivo, and (ii) ColE1 replication in the absence of RNase H is not dependent on "stable DNA replication," which has been reported to be an alternative mode of chromosomal DNA replication. Another class of bacterial mutations was also isolated. These mutations, named herB, suppressed cer-6 replication in rnh+ bacteria. herB mutations mapped close to the polA gene on the E. coli chromosome and increased the activity of DNA polymerase I. These findings suggest that when the DNA polymerase I has an opportunity to initiate DNA synthesis before RNase H acts, the replication-defective cer-6 mutant or the wild-type ColE1 replicates in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号