首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Amyloid fibril formation is widely believed to be a generic property of polypeptide chains. In the present study, alpha-chymotrypsin, a well-known serine protease has been driven toward these structures by the use of two different conditions involving (I) high temperature, pH 2.5, and (II) low concentration of trifluoroethanol (TFE), pH 2.5. A variety of experimental methods, including fluorescence emission, dynamic quenching, steady-state fluorescence anisotropy, far-UV circular dichroism, nuclear magnetic resonance spectroscopy, and dynamic light scattering were employed to characterize the conformational states of alpha-chymotrypsin that precede formation of amyloid fibrils. The structure formed under Condition I was an unfolded monomer, whereas an alpha-helical rich oligomer was induced in Condition II. Both the amyloid aggregation-prone species manifested a higher solvent exposure of hydrophobic and aromatic residues compared with the native state. Upon incubation of the protein in these conditions for 48 h, amyloid-like fibrils were formed with diameters of about 10-12 nm. In contrast, at neutral pH and low concentration of TFE, a significant degree of amorphous aggregation was observed, suggesting that charge neutralization of acidic residues in the amyloid core region has a positive influence on amyloid fibril formation. In summary, results presented in this communication suggest that amyloid fibrils of alpha-chymotrypsin may be obtained from a variety of structurally distinct conformational ensembles highlighting the critical importance of protein evolution mechanisms related to prevention of protein misfolding.  相似文献   

2.
We have recently reported that electrostatic interactions may play a critical role in alcohol-induced aggregation of alpha-chymotrypsin (CT). In the present study, we have investigated the heat-induced aggregation of this protein. Thermal aggregation of CT obeyed a characteristic pattern, with a clear lag phase followed by a sharp rise in turbidity. Intrinsic and ANS fluorescence studies, together with fluorescence quenching by acrylamide, suggested that the hydrophobic patches are more exposed in the denatured conformation. Typical chaperone-like proteins, including alpha- and beta-caseins and alpha-crystalline could inhibit thermal aggregation of CT, and their inhibitory effect was nearly pH-independent (within the pH range of 7-9). This was partially counteracted by alpha-, beta- and especially gamma-cyclodextrins, suggesting that hydrophobic interactions may play a major role. Loss of thermal aggregation at extreme acidic and basic conditions, combined with changes in net charge/pH profile of aggregation upon chemical modification of lysine residues are taken to support concomitant involvement of electrostatic interactions.  相似文献   

3.
4.
The stability of alpha-chymotrypsin in the ionic liquid, 1-ethyl-3-methyl-imidizolium bis[(trifluoromethyl)sulfonyl]amide ([emim][NTf2]), was studied at 30 and 50 degrees C and compared with the stability in other liquid media, such as water, 3 M sorbitol, and 1-propanol. The kinetic analysis of the enzyme stability pointed to the clear denaturative effect of 1-propanol, while both 3M sorbitol and [emim][NTf2] displayed a strong stabilizing power. For the first time, it is shown that enzyme stabilization by ionic liquids seems to be related to the associated structural changes of the protein that can be observed by differential scanning calorimetry (DSC) and fluorescence and circular dichroism (CD). The [emim][NTf2] enhanced both the melting temperature and heat capacity of the enzyme compared to the other media assayed. The fluorescence spectra clearly showed the ability of [emim][NTf2] to compact the native structural conformation of alpha-chymotrypsin, preventing the usual thermal unfolding which occurs in other media. Changes in the secondary structure of this beta/beta protein, as quantified by the CD spectra, pointed to the great enhancement (up 40% with respect to that in water) of beta-strands in the presence of the ionic liquid, which reflects its stabilization power.  相似文献   

5.
α‐Crystallin is a member of small heat shock proteins and is believed to play an exceptional role in the stability of eye lens proteins. The disruption or denaturation of the protein arrangement or solubility of the crystallin proteins can lead to vision problems including cataract. In the present study, we have examined the effect of chemical denaturants urea and guanidine hydrochloride (GdnHCl) on α‐crystallin aggregation, with special emphasis on protein conformational changes, unfolding, and amyloid fibril formation. GdnHCl (4 M) induced a 16 nm red shift in the intrinsic fluorescence of α‐crystallin, compared with 4 nm shift by 8 M urea suggesting a major change in α‐crystallin structure. Circular dichroism analysis showed marked increase in the ellipticity of α‐crystallin at 216 nm, suggesting gain in β‐sheet structure in the presence of GdnHCl (0.5–1 M) followed by unfolding at higher concentration (2–6 M). However, only minor changes in the secondary structure of α‐crystallin were observed in the presence of urea. Moreover, 8‐anilinonaphthalene‐1‐sulfonic acid fluorescence measurement in the presence of GdnHCl and urea showed changes in the hydrophobicity of α‐crystallin. Amyloid studies using thioflavin T fluorescence and congo red absorbance showed that GdnHCl induced amyloid formation in α‐crystallin, whereas urea induced aggregation in this protein. Electron microscopy studies further confirmed amyloid formation of α‐crystallin in the presence of GdnHCl, whereas only aggregate‐like structures were observed in α‐crystallin treated with urea. Our results suggest that α‐crystallin is susceptible to unfolding in the presence of chaotropic agents like urea and GdnHCl. The destabilized protein has increased likelihood to fibrillate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
In this work we establish the relationship between chemical glycosylation and protein thermodynamic, kinetic, and colloidal stability. While there have been reports in the literature that chemical glycosylation modulates protein stability, mechanistic details still remain uncertain. To address this issue, we designed and coupled monofunctional activated glycans (lactose and dextran) to the model protein alpha-chymotrypsin (alpha-CT). This resulted in a series of glycoconjugates with variations in the glycan size and degree of glycosylation. Thermodynamic unfolding, thermal inactivation, and temperature-induced aggregation experiments revealed that chemical glycosylation increased protein thermodynamic (Delta G(25 degrees C)), kinetic (t(1/2)(45 degrees C)), and colloidal stability. These results highlight the potential of chemical glycosylation with monofunctional activated glycans as a technology for increasing the long-term stability of liquid protein formulations for industrial and biotherapeutic applications.  相似文献   

7.
Three synthetic polyamine analogs, α-methylspermine, and α,α′-dimethylspermine, were compared with their naturally occurring counterparts, spermidine and spermine, by two different spectral techniques. The interaction of polyamines with oligodeoxynucleotides was measured by circular dichroism in order to monitor the polyamine-induced conversion of right-handed B-DNA to the left-handed Z-form. The methylated analogs were shown to be equally effective as the natural polyamines in inducing the B → Z transition. The pH dependence of the chemical shift of all carbon atoms in each of the five polyamines was measured by 13C-NMR spectroscopy. With the exception of expected changes in chemical shift due to the presence of the α-methyl substituents, the chemical shifts and pH dependence of all carbon atoms in the three α-methyl polyamines were similar to the corresponding naturally occurring polyamines. The combined data indicate that α-methyl polyamines have physical properties that are very similar to their natural counterparts. The two metabolically stable polyamine analogs, α-methylspermidine and α,α′-dimethylspermine, are therefore useful surrogates for spermidine and spermine in the study of numerous polyamine-mediated effects in mammalian cell cultures and can be used in such studies without the requirement for coadministration of amine oxidase inhibitors.  相似文献   

8.
Detailed knowledge of conformation and dynamics of native, intermediate and unfolded states of a protein is essential in searching for effective small molecules to prevent its aggregation. In a recent study we have demonstrated how allosteric effectors may influence protein-protein interactions at high temperatures using glutamate dehydrogenase (GDH) as a model allosteric protein. In the present study, thermal aggregation of this well-characterized enzyme was investigated in the presence of a number of amino acids (including Gly, Glu, Trp, Pro, Lys, Arg), polyamines (putrescine and spermidine) and chaperone-like molecules (cyclodextrins and caseins) as non-specific effectors. It was shown that some amino acids and polyamines may suppress aggregation via interaction with native species and may preserve the activity of the enzyme while cyclodextrins and caseins may exert their anti-aggregation potential via binding to aggregation-prone intermediates, without having any capacity to protect its native structure from unfolding. Observations describing the similarities and differences between the specific ligands and non-specific small molecules related to their interaction with native and aggregation-prone states of GDH are presented and discussed. It is argued that the type of studies described in the present communication is useful for the development of effective strategies for prevention of aggregation by small molecules.  相似文献   

9.
Protein folding has been studied extensively for decades, yet our ability to predict how proteins reach their native state from a mechanistic perspective is still rudimentary at best, limiting our understanding of folding‐related processes in vivo and our ability to manipulate proteins in vitro. Here, we investigate the in vitro refolding mechanism of a large β‐helix protein, pertactin, which has an extended, elongated shape. At 55 kDa, this single domain, all‐β‐sheet protein allows detailed analysis of the formation of β‐sheet structure in larger proteins. Using a combination of fluorescence and far‐UV circular dichroism spectroscopy, we show that the pertactin β‐helix refolds remarkably slowly, with multiexponential kinetics. Surprisingly, despite the slow refolding rates, large size, and β‐sheet‐rich topology, pertactin refolding is reversible and not complicated by off‐pathway aggregation. The slow pertactin refolding rate is not limited by proline isomerization, and 30% of secondary structure formation occurs within the rate‐limiting step. Furthermore, site‐specific labeling experiments indicate that the β‐helix refolds in a multistep but concerted process involving the entire protein, rather than via initial formation of the stable core substructure observed in equilibrium titrations. Hence pertactin provides a valuable system for studying the refolding properties of larger, β‐sheet‐rich proteins, and raises intriguing questions regarding the prevention of aggregation during the prolonged population of partially folded, β‐sheet‐rich refolding intermediates. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Protein aggregation is problematic in various fields, where aggregation can frequently occur during routine experiments. This study showed that tetraethylene glycol (TEG) and tetraethylene glycol dimethyl ether (TEGDE) act as aggregation suppressors that have different unique properties from typical additives to prevent protein aggregation, such as arginine (Arg) and NaCl. Thermal aggregation of α‐chymotrypsin was well suppressed with the addition of both TEG and TEGDE. Interestingly, the suppressive effects of Arg and NaCl on thermal aggregation were almost unchanged when temperature was shifted from 65°C to 85°C, whereas both TEG and TEGDE significantly decreased the aggregation rate with increasing temperature. Note that the effects of TEG and TEGDE were higher than Arg above 75°C. This temperature‐dependent behavior of TEG and TEGDE provides a novel design guideline to develop aggregation suppressors for use at high temperature, i.e., the importance of the ethylene oxide group. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1325–1330, 2013  相似文献   

11.
Effect of α-crystallin on thermal inactivation, denaturation and aggregation of aspartate aminotransferase from pig heart mitochondria (mAAT) has been in the focus of this study. Acceleration of heat-induced inactivation of mAAT was demonstrated in the presence of α-crystallin. According to the data of differential scanning calorimetry, α-crystallin induces destabilization of the mAAT molecule. The size of protein aggregates formed at heating of mAAT at a constant rate (1 °C/min) has been defined by dynamic light scattering. The obtained data show that aggregation of mAAT in the presence of α-crystallin proceeds in the regime of reaction-limited cluster–cluster aggregation.  相似文献   

12.
The study of the kinetics of thermal aggregation of glycogen phosphorylase b (Phb) from rabbit skeletal muscles by dynamic light scattering at 48°C showed that 2‐hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) accelerated the aggregation process and induced the formation of the larger protein aggregates. The reason of the accelerating effect of HP‐β‐CD is destabilization of the protein molecule under action of HP‐β‐CD. This conclusion was supported by the data on differential scanning calorimetry and the kinetic data on thermal inactivation of Phb. It is assumed that destabilization of the Phb molecule is due to preferential binding of HP‐β‐CD to intermediates of protein unfolding in comparison with the original native state. The conclusion regarding the ability of the native Phb for binding of HP‐β‐CD was substantiated by the data on the enzyme inhibition by HP‐β‐CD. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 986–993, 2010.  相似文献   

13.
It has been recently discovered that the connection of secondary structure elements (ββ‐unit, βα‐ and αβ‐units) in proteins follows quite stringent principles regarding the chirality and the orientation of the structural units (Koga et al., Nature 2012;491:222–227). By exploiting these rules, a number of protein scaffolds endowed with a remarkable thermal stability have been designed (Koga et al., Nature 2012;491:222–227). By using structural databases of proteins isolated from either mesophilic or thermophilic organisms, we here investigate the influence of supersecondary associations on the thermal stability of natural proteins. Our results suggest that β‐hairpins of proteins from thermophilic organisms are very frequently characterized by shortenings of the loops. Interestingly, this shortening leads to states that display a very strong preference for the most common connectivity of the strands observed in native protein hairpins. The abundance of selective states in these proteins suggests that they may achieve a high stability by adopting a strategy aimed to reduce the possible conformations of the unfolded ensemble. In this scenario, our data indicate that the shortening is effective if it increases the adherence to these rules. We also show that this mechanism may operate in the stabilization of well‐known protein folds (thioredoxin and RNase A). These findings suggest that future investigations aimed at defining mechanism of protein stabilization should also consider these effects.  相似文献   

14.
Several de novo designed ionic peptides that are able to undergo conformational change under the influence of temperature and pH were studied. These peptides have two distinct surfaces with regular repeats of alternating hydrophilic and hydrophobic side chains. This permits extensive ionic and hydrophobic interactions resulting in the formation of stable beta-sheet assemblies. The other defining characteristic of this type of peptide is a cluster of negatively charged aspartic or glutamic acid residues located toward the N-terminus and positively charged arginine or lysine residues located toward the C-terminus. This arrangement of charge balances the alpha-helical dipole moment (C --> N), resulting in a strong tendency to form stable alpha-helices as well. Therefore, these peptides can form both stable alpha-helices and beta-sheets. They are also able to undergo abrupt structural transformations between these structures induced by temperature and pH changes. The amino acid sequence of these peptides permits both stable beta-sheet and alpha-helix formation, resulting in a balance between these two forms as governed by the environment. Some segments in proteins may also undergo conformational changes in response to environmental changes. Analyzing the plasticity and dynamics of this type of peptide may provide insight into amyloid formation. Since these peptides have dynamic secondary structure, they will serve to refine our general understanding of protein structure.  相似文献   

15.
A disulfide bond between cysteine 66 and cysteine 160 of equine beta-lactoglobulin was removed by substituting cysteine residues with alanine. This disulfide bond is conserved across the lipocalin family. The conformation and stability of the disulfide-deleted mutant protein was investigated by circular dichroism. The mutant protein assumes a native-like structure under physiological conditions and assumes a helix-rich molten globule structure at acid pH or at moderate concentrations of urea as the wild-type protein does. The urea-induced unfolding experiment shows that the stability of the native conformation was reduced but that of the molten globule intermediate is not significantly changed at pH 4 by removal of the disulfide bond. On the other hand, the molten globule at acid pH was destabilized by removal of the disulfide bond. This difference in the stabilizing effect of the disulfide bond was interpreted by the effect of the disulfide in keeping the molecule compact against the electrostatic repulsion at acid pH. In contrast to the wild-type protein, the circular dichroism spectrum in the molten globule state at acid pH depends on anion concentration, suggesting that the expansion of the molecule through electrostatic repulsion induces alpha-helices as observed in the cold denatured state of the wild-type protein.  相似文献   

16.
FTIR spectroscopy in combination with ATR sampling technique is the most accessible analytical technique to study secondary structure of proteins both in solid and aqueous solution. Although several studies have demonstrated the applications of ATR‐FTIR to study conformational changes of solid dried proteins due to dehydration, there are no reports that demonstrate the application of ATR‐FTIR in the study of thermally induced changes of secondary structure of biomolecules directly on the solid state. In this study, four biomolecules of pharmaceutical interest, lysozyme, myoglobine, chymotripsin and human growth hormone (hGH), were studied on the solid state before and after different thermal treatments in order to relate changes of secondary structure to partial or total thermal denaturation processes. The results obtained provide experimental evidence that protein thermal denaturation in the solid state can be detected by displacement of carbonyl bands which correspond to conformational transformations between α–helix to β‐sheet or intermolecular β‐sheet; the molecules studied undergo this transformation when exposed to a temperature close to their denaturation temperature which may become irreversible depending on the extent of the heating treatment. These findings demonstrate that ATR‐FTIR is an effective and time efficient technique that allows the monitoring of the protein thermal denaturation process of solid samples without further reconstitution or prior sample preparation. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 574–584, 2015.  相似文献   

17.
Kar K  Kishore N 《Biopolymers》2007,87(5-6):339-351
A combination of spectroscopic, calorimetric, and microscopic studies to understand the effect of hydroxyproline on the thermal stability, conformation, biological activity, and aggregation of proteins has been investigated. Significantly increased protein stability and suppression of aggregation is achieved in the presence of hydroxyproline. For example, exceptional increase in the thermal stability of lysozyme up to 26.4 degrees C and myoglobin up to 31.8 degrees C is obtained in the presence of hydroxyproline. The increased thermal stability of the proteins is observed to be accompanied with significant rise of the catalytic activity. Hydroxyproline is observed to prevent lysozyme fibril formation in vitro. Fluorescence and circular dichroism studies indicate induction of tertiary structures of the studied proteins in the presence of hydroxyproline. Preferential hydration of the native state is found to be crucial for the mechanism of protein stabilization by hydroxyproline. We compared the effect of hydroxyproline to that of proline and observed similar increase in the activity and suppression of protein aggregation. The results demonstrate the use of hydroxyproline as a protein stabilizer and in the prevention of protein aggregation and fibril formation.  相似文献   

18.
Protein stability can be fine‐tuned by modifying different structural features such as hydrogen‐bond networks, salt bridges, hydrophobic cores, or disulfide bridges. Among these, stabilization by salt bridges is a major challenge in protein design and engineering since their stabilizing effects show a high dependence on the structural environment in the protein, and therefore are difficult to predict and model. In this work, we explore the effects on structure and stability of an introduced salt bridge cluster in the context of three different de novo TIM barrels. The salt bridge variants exhibit similar thermostability in comparison with their parental designs but important differences in the conformational stability at 25°C can be observed such as a highly stabilizing effect for two of the proteins but a destabilizing effect to the third. Analysis of the formed geometries of the salt bridge cluster in the crystal structures show either highly ordered salt bridge clusters or only single salt bridges. Rosetta modeling of the salt bridge clusters results in a good prediction of the tendency on stability changes but not the geometries observed in the three‐dimensional structures. The results show that despite the similarities in protein fold, the salt bridge clusters differently influence the structural and stability properties of the de novo TIM barrel variants depending on the structural background where they are introduced.  相似文献   

19.
20.
The increasing development of the biotechnology industry demands the design of enzymes suitable to be used in conditions that often require broad resistance against adverse conditions. β-glucosidase A from Bacillus polymyxa is an interesting model for studies of protein engineering. This is a well-characterized enzyme, belonging to glycosyl hydrolase family 1. Its natural substrate is cellobiose, but is also active against various artificial substrates. In its native state has an octameric structure. Its subunit conserves the general (α/β)8 barrel topology of its family, with the active site being in a cavity defined along the axis of the barrel. Using random-mutagenesis, we have identified several mutations enhancing its stability and it was found that one them, the E96K substitution, involved structural changes. The crystal structure of this mutant has been determined by X-ray diffraction and compared with the native structure. The only difference founded between both structures is a new ion pair linking Lys96 introduced at the N-terminus of helix α2, to Asp28, located in one of the loops surrounding the active-site cavity. The new ion pair binds two segments of the chain that are distant in sequence and, therefore, this favorable interaction must exert a determinant influence in stabilizing the tertiary structure. Furthermore, analysis of the crystallographic isotropic temperature factors reveals that, as a direct consequence of the introduced ion pair, an unexpected decreased mobility of secondary structure units of the barrel which are proximal to the site of mutation is observed. However, this effect is observed only in the surrounding of one of the partners forming the salt bridge and not around the other. These results show that far-reaching effects can be achieved by a single amino acid replacement within the protein structure. Consequently, the identification and combination of a few single substitutions affecting stability may be sufficient to obtain a highly resistant enzyme, suitable to be used under extreme conditions. Proteins 33:567–576, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号