首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Both plant and animal cells contain high molecular weight immunophilins that bind via tetratricopeptide repeat (TPR) domains to a TPR acceptor site on the ubiquitous and essential protein chaperone hsp90. These hsp90-binding immunophilins possess the signature peptidylprolyl isomerase (PPIase) domain, but no role for their PPIase activity in protein folding has been demonstrated. From the study of glucocorticoid receptor (GR).hsp90.immunophilin complexes in mammalian cells, there is considerable evidence that both hsp90 and the FK506-binding immunophilin FKBP52 play a role in receptor movement from the cytoplasm to the nucleus. The role of FKBP52 is to target the GR.hsp90 complex to the nucleus by binding via its PPIase domain to cytoplasmic dynein, the motor protein responsible for retrograde movement along microtubules. Here, we use rabbit cytoplasmic dynein as a surrogate for the plant homologue to show that two hsp90-binding immunophilins of wheat, wFKBP73 and wFKBP77, bind to dynein. Binding to dynein is blocked by competition with a purified FKBP52 fragment comprising its PPIase domain but is not affected by the immunosuppressant drug FK506, suggesting that the PPIase domain but not PPIase activity is involved in dynein binding. The hsp90/hsp70-based chaperone system of wheat germ lysate assembles complexes between mouse GR and wheat hsp90. These receptor heterocomplexes contain wheat FKBPs, and they bind rabbit cytoplasmic dynein in a PPIase domain-specific manner. Retention by plants of the entire heterocomplex assembly machinery for linking the GR to dynein implies a fundamental role for this process in the biology of the eukaryotic cell.  相似文献   

4.
5.
Hsp90 and p50(cdc37) provide a poorly understood biochemical function essential to certain protein kinases, and recent models describe p50(cdc37) as an exclusive hsp90 cohort which links hsp90 machinery to client kinases. We describe here the recovery of p50(cdc37) in immunoadsorptions directed against the hsp90 cohorts FKBP52, cyp40, p60HOP, hsp70, and p23. Additionally, monoclonal antibodies against FKBP52 coadsorb maturation intermediates of the hsp90-dependent kinases p56(lck) and HRI, and the presence of these maturation intermediates significantly increases the representation of p50(cdc37) and hsp90 on FKPB52 machinery. Although the native heterocomplex between hsp90 and p50(cdc37) is salt-labile, their dynamic interactions with kinase substrates produce kinase-chaperone heterocomplexes which are highly salt-resistant. The hsp90 inhibitor geldanamycin does not directly disrupt the native association of hsp90 with p50(cdc37) per se, but does result in the formation of salt-labile hsp90-kinase heterocomplexes which lack the p50(cdc37) cohort. We conclude that p50(cdc37) does not simply serve as a passive structural bridge between hsp90 and its kinase substrates; instead, p50(cdc37) is a nonexclusive hsp90 cohort which responds to hsp90's nucleotide-regulated conformational switching during the generation of high-affinity interactions within the hsp90-kinase-p50(cdc37) heterocomplex.  相似文献   

6.
Heat shock protein 90 (hsp90) is a chaperone required for the proper folding and trafficking of many proteins involved in signal transduction. We tested whether hsp90 plays a role as a chaperone for GC-A, the membrane guanylate cyclase that acts as a receptor for atrial natriuretic peptide (ANP). When cultured cells expressing recombinant GC-A were treated with geldanamycin, an inhibitor of hsp90 function, the ANP-stimulated production of cyclic GMP was inhibited. This suggested that hsp90 was required for GC-A processing and/or stability. A physical association between hsp90 and GC-A was demonstrated in coimmunoprecipitation experiments. Treatment with geldanamycin disrupted this association and led to the accumulation of complexes containing GC-A and heat shock protein 70 (hsp70). Protein folding pathways involving hsp70 and hsp90 include several pathway-specific co-chaperones. Complexes between GC-A and hsp90 contained the co-chaperone p50(cdc37), typically found associated with protein kinase.hsp90 heterocomplexes. GC-A immunoprecipitates did not contain detectable amounts of Hop, FKBP51, FKBP52, PP5, or p23, all co-chaperones found in hsp90 complexes with other signaling proteins. The association of hsp90 and p50(cdc37) with GC-A was dependent on the kinase homology domain of this receptor but not on its ANP-binding, transmembrane, or guanylate cyclase domains. The data suggest that GC-A is regulated by hsp90 complexes similar to those involved in the maturation of protein kinases.  相似文献   

7.
8.
Although cyclophilin A (CyP-A) is a relatively abundant small immunophilin present in the cytoplasm of all mammalian cells, its general function(s) in the absence of the immunosuppressant drug cyclosporin A is not known. In contrast, the high molecular weight hsp90-binding immunophilins appear to play a role in protein trafficking in that they have been shown to link glucocorticoid receptor-hsp90 and p53.hsp90 complexes to the dynein motor protein for retrograde movement along microtubules. These immunophilins link to cytoplasmic dynein indirectly through the association of the immunophilin peptidylprolyl isomerase (PPIase) domain with dynamitin, a component of the dynein-associated dynactin complex (Galigniana, M. D., Harrell, J. M., O'Hagen, H. M., Ljungman, M., and Pratt, W. B. (2004) J. Biol. Chem. 279, 22483-22489). Here, we show that CyP-A exists in native heterocomplexes containing cytoplasmic dynein that can be formed in cell-free systems. Prolyl isomerase activity is not required for forming the dynein complex, but the PPIase domain fragment of FKBP52 blocks complex formation and CyP-A binds to dynamitin in a PPIase domain-dependent manner. CyP-A heterocomplexes containing tubulin and dynein can be formed in cytosol prepared under microtubule-stabilizing conditions, and CyP-A colocalizes in mouse fibroblasts with microtubules. Colocalization with microtubules is disrupted by overexpression of the PPIase domain fragment. Thus, we conclude that CyP-A associates in vitro and in vivo with the dynein/dynactin motor protein complex and we suggest that CyP-A may perform a general function related to the binding of cargo for retrograde movement along microtubules.  相似文献   

9.
Studies of cytoplasmic-nuclear trafficking of the glucocorticoid receptor in mammalian cells suggest that the hsp90/hsp70-based chaperone system and the hsp90-binding immunophilin FKBP52 are involved in targeted movement of the receptor along microtubule tracts. Over the past few years, plant cells have been found to possess a similar multiprotein chaperone machinery. Plant cells also contain high molecular weight FKBPs that bind to plant hsp90 via a conserved protein interaction involving tetratricopeptide repeat domains. The hsp90/hsp70-based machinery and the plant FKBPs might be used to target the trafficking of signalling proteins in plants.  相似文献   

10.
Recruitment of protein kinase clients to the Hsp90 chaperone involves the cochaperone p50(cdc37) acting as a scaffold, binding protein kinases via its N-terminal domain and Hsp90 via its C-terminal region. p50(cdc37) also has a regulatory activity, arresting Hsp90's ATPase cycle during client-protein loading. We have localized the binding site for p50(cdc37) to the N-terminal nucleotide binding domain of Hsp90 and determined the crystal structure of the Hsp90-p50(cdc37) core complex. Dimeric p50(cdc37) binds to surfaces of the Hsp90 N-domain implicated in ATP-dependent N-terminal dimerization and association with the middle segment of the chaperone. This interaction fixes the lid segment in an open conformation, inserts an arginine side chain into the ATP binding pocket to disable catalysis, and prevents trans-activating interaction of the N domains.  相似文献   

11.
The C-terminal domain of Hsp90 displays independent chaperone activity, mediates dimerization, and contains the MEEVD motif essential for interaction with tetratricopeptide repeat-containing immunophilin cochaperones assembled in mature steroid receptor complexes. An alpha-helical region, upstream of the MEEVD peptide, helps form the dimerization interface and includes a hydrophobic microdomain that contributes to the Hsp90 interaction with the immunophilin cochaperones and corresponds to the binding site for novobiocin, a coumarin-related Hsp90 inhibitor. Mutation of selected residues within the hydrophobic microdomain significantly impacted the chaperone function of a recombinant C-terminal Hsp90 fragment and novobiocin inhibited wild-type chaperone activity. Prior incubation of the Hsp90 fragment with novobiocin led to a direct blockade of immunophilin cochaperone binding. However, the drug had little influence on the pre-formed Hsp90-immunophilin complex, suggesting that bound cochaperones mask the novobiocin-binding site. We observed a differential effect of the drug on Hsp90-immunophilin interaction, suggesting that the immunophilins make distinct contacts within the C-terminal domain to specifically modulate Hsp90 function. Novobiocin also precluded the interaction of full-length Hsp90 with the p50(cdc37) cochaperone, which targets the N-terminal nucleotide-binding domain, and is prevalent in Hsp90 complexes with protein kinase substrates. Novobiocin therefore acts locally and allosterically to induce conformational changes within multiple regions of the Hsp90 protein. We provide evidence that coumermycin A1, a coumarin structurally related to novobiocin, interferes with dimerization of the Hsp90 C-terminal domain. Coumarin-based inhibitors then may antagonize Hsp90 function by inducing a conformation favoring separation of the C-terminal domains and release of substrate.  相似文献   

12.
13.
14.
15.
Although little is known about the precise mechanisms by which the molecular chaperone Hsp90 recognizes its client proteins, Cdc37 has been shown to play a critical role in the targeting of Hsp90 to client protein kinases. Described here is the identification and characterization of a novel 35-kDa human protein that is 31% identical to Cdc37. We have named this novel protein Harc (Hsp90-associating relative of Cdc37). Northern blot analysis revealed the presence of Harc mRNA in several human tissues, including liver, skeletal muscle, and kidney. Biochemical fractionation and immunofluorescent localization of epitope-tagged Harc (i.e. FLAG-Harc) indicated that it is present in the cytoplasm of cells. FLAG-Harc binds Hsp90 but unlike Cdc37 does not bind Src family kinases or Raf-1. Mapping experiments indicate that the central 120 amino acids of both Harc and Cdc37 constitute a Hsp90-binding domain not described previously. FLAG-Harc is basally serine-phosphorylated and hyperphosphorylated when co-expressed with an activated mutant of the Src family kinase Hck. Notably, FLAG-Harc forms complexes with Hsp90, Hsp70, p60Hop, immunophilins, and an unidentified p22 protein but not with the Hsp90 co-chaperone p23. Thus Harc likely represents a novel participant in Hsp90-mediated protein folding, potentially targeting Hsp90 to Hsp70-client protein heterocomplexes.  相似文献   

16.
FKBP52 is a high molecular mass immunophilin possessing peptidylprolyl isomerase (PPIase) activity that is inhibited by the immunosuppressant drug FK506. FKBP52 is a component of steroid receptor.hsp90 heterocomplexes, and it binds to hsp90 via a region containing three tetratricopeptide repeats (TPRs). Here we demonstrate by cross-linking of the purified proteins that there is one binding site for FKBP52/dimer of hsp90. This accounts for the common heterotetrameric structure of native receptor heterocomplexes being 1 molecule of receptor, 2 molecules of hsp90, and 1 molecule of a TPR domain protein. Immunoadsorption of FKBP52 from reticulocyte lysate also yields co-immunoadsorption of cytoplasmic dynein, and we show that co-immunoadsorption of dynein is competed by a fragment of FKBP52 containing its PPIase domain, but not by a TPR domain fragment that blocks FKBP52 binding to hsp90. Using purified proteins, we also show that FKBP52 binds directly to the hsp90-free glucocorticoid receptor. Because neither the PPIase fragment nor the TPR fragment affects the binding of FKBP52 to the glucocorticoid receptor under conditions in which they block FKBP52 binding to dynein or hsp90, respectively, different regions of FKBP52 must determine its association with these three proteins.  相似文献   

17.
Shao J  Hartson SD  Matts RL 《Biochemistry》2002,41(21):6770-6779
The maturation and activation of newly synthesized molecules of the heme-regulated inhibitor of protein synthesis (HRI) in reticulocytes require their functional interaction with Hsp90. In this report, we demonstrate that protein phosphatase 5 (PP5), a previously documented component of the Hsp90 chaperone machine, is physically associated with HRI maturation intermediates. The interaction of PP5 with HRI is mediated through Hsp90, as mutants of PP5 that do not bind Hsp90 do not interact with HRI. PP5 was also present in Hsp90 heterocomplexes with another Hsp90 cohort, p50(cdc37), and expression of newly synthesized HRI enhanced the amount of p50(cdc37) associated with Hsp90/PP5-HRI heterocomplexes. The functional significance of the interaction of PP5 with Hsp90-HRI heterocomplexes was examined by characterizing the effects of compounds that impact PP5 activity in vitro. The protein phosphatase inhibitors okadaic acid and nodularin enhanced the kinase activity of HRI when applied during HRI maturation/activation, while the PP5 activators arachidonic and linoleic acid repressed HRI activity when applied during HRI maturation/activation. However, application of these compounds after HRI's "transformation" to an Hsp90-independent form did not similarly impact HRI's kinase activity. Furthermore, the Hsp90 inhibitor geldanamycin negated the effects of phosphatase inhibitors on HRI maturation/activation. The finding that PP5 downregulates an Hsp90-dependent process supports models for regulated Hsp90 function and describes a novel potential substrate for PP5 function in vivo.  相似文献   

18.
A variety of signaling proteins form heterocomplexes with and are regulated by the heat shock protein chaperone hsp90. These complexes are formed by a multiprotein machinery, including hsp90 and hsp70 as essential and abundant components and Hop, hsp40, and p23 as non-essential cochaperones that are present in much lower abundance in cells. Overexpression of signaling proteins can overwhelm the capacity of this machinery to properly assemble heterocomplexes with hsp90. Here, we show that the limiting component of this assembly machinery in vitro in reticulocyte lysate and in vivo in Sf9 cells is p23. Only a fraction of glucocorticoid receptors (GR) overexpressed in Sf9 cells are in heterocomplex with hsp90 and have steroid binding activity, with the majority of the receptors present as both insoluble and cytosolic GR aggregates. Coexpression of p23 with the GR increases the proportion of cytosolic receptors that are in stable GR.hsp90 heterocomplexes with steroid binding activity, a strictly hsp90-dependent activity for the GR. Coexpression of p23 eliminates the insoluble GR aggregates and shifts the cytosolic receptor from very large aggregates without steroid binding activity to approximately 600-kDa heterocomplexes with steroid binding activity. These data lead us to conclude that p23 acts in vivo to stabilize hsp90 binding to client protein.  相似文献   

19.
FKBP52 is a steroid receptor-associated immunophilin that binds via a tetratricopeptide repeat (TPR) domain to hsp90. FKBP52 has also been shown to interact either directly or indirectly via its peptidylprolyl isomerase (PPIase) domain with cytoplasmic dynein, a motor protein involved in retrograde transport of vesicles toward the nucleus. The functional role for the PPIase domain in receptor movement was demonstrated by showing that expression of the PPIase domain fragment of FKBP52 in 3T3 cells inhibits dexamethasone-dependent nuclear translocation of a green fluorescent protein-glucocorticoid receptor chimera. Here, we show that cytoplasmic dynein is co-immunoadsorbed with two other TPR domain proteins that bind hsp90 (the cyclophilin CyP-40 and the protein phosphatase PP5). Both proteins possess PPIase homology domains, and co-immunoadsorption of cytoplasmic dynein with each is blocked by the PPIase domain fragment of FKBP52. Using purified proteins, we show that FKBP52, PP5, and the PPIase domain fragment bind directly to the intermediate chain of cytoplasmic dynein. PP5 colocalizes with both cytoplasmic dynein and microtubules, and expression of the PPIase domain fragment of FKBP52 in 3T3 cells disrupts its cytoskeletal localization. We conclude that the PPIase domains of the hsp90-binding immunophilins interact directly with cytoplasmic dynein and that this interaction with the motor protein is responsible for the microtubular localization of PP5 in vivo.  相似文献   

20.
Rapid, ligand-dependent movement of glucocorticoid receptors (GR) from cytoplasm to the nucleus is hsp90-dependent, and much of the movement system has been defined. GR.hsp90 heterocomplexes isolated from cells contain one of several hsp90-binding immunophilins that link the complex to cytoplasmic dynein, a molecular motor that processes along microtubular tracks to the nucleus. The immunophilins link to dynein indirectly via the dynamitin component of the dynein-associated dynactin complex (Galigniana, M. D., Harrell, J. M., O'Hagen, H. M., Ljungman, M., and Pratt, W. B. (2004) J. Biol. Chem. 279, 22483-22489). Although it is known that rapid, hsp90-dependent GR movement requires intact microtubules, it has not been shown that the movement is dynein-dependent. Here, we show that overexpression of dynamitin, which blocks movement by dissociating the dynein motor from its cargo, inhibits ligand-dependent movement of the GR to the nucleus. We show that native GR.hsp90.immnunophilin complexes contain dynamitin as well as dynein and that GR heterocomplexes isolated from cytosol containing paclitaxel and GTP to stabilize microtubules also contain tubulin. The complete movement system, including the dynein motor complex and tubulin, can be assembled under cell-free conditions by incubating GR immune pellets with paclitaxel/GTP-stabilized cytosol prepared from GR(-) L cells. This is the first evidence that the movement of a steroid receptor is dynein-dependent, and it is the first isolation of a steroid receptor bound to the entire system that determines its retrograde movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号