首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular and Cellular Biochemistry - The critical role of the intrarenal renin-angiotensin system (RAS) in the development of kidney disease has been well demonstrated in animal and cell-culture...  相似文献   

2.
G protein-coupled receptors (GPCRs) transduce extracellular signals into intracellular events. The waning responsiveness of GPCRs in the face of persistent agonist stimulation, or desensitization, is a necessary event that ensures physiological homeostasis. GPCR kinases (GRKs) are important regulators of GPCR desensitization. GRK5, one member of the GRK family, desensitizes central M(2) muscarinic receptors in mice. We questioned whether GRK5 might also be an important regulator of peripheral muscarinic receptor responsiveness in the cardiopulmonary system. Specifically, we wanted to determine the role of GRK5 in regulating muscarinic receptor-mediated control of airway smooth muscle tone or regulation of cholinergic-induced bradycardia. Tracheal pressure, heart rate, and tracheal smooth muscle tension were measured in mice having a targeted deletion of the GRK5 gene (GRK5(-/-)) and littermate wild-type (WT) control mice. Both in vivo and in vitro results showed that the airway contractile response to a muscarinic receptor agonist was not different between GRK5(-/-) and WT mice. However, the relaxation component of bilateral vagal stimulation and the airway smooth muscle relaxation resulting from beta(2)-adrenergic receptor activation were diminished in GRK5(-/-) mice. These data suggest that M(2) muscarinic receptor-mediated opposition of airway smooth muscle relaxation is regulated by GRK5 and is, therefore, excessive in GRK5(-/-) mice. In addition, this study shows that GRK5 regulates pulmonary responses in a tissue- and receptor-specific manner but does not regulate peripheral cardiac muscarinic receptors. GRK5 regulation of airway responses may have implications in obstructive airway diseases such as asthma or chronic obstructive pulmonary disease.  相似文献   

3.
G protein-coupled receptor kinase 5 (GRK5) is a member of a family of enzymes that phosphorylate activated G protein-coupled receptors (GPCR). To address the physiological importance of GRK5-mediated regulation of GPCRs, mice bearing targeted deletion of the GRK5 gene (GRK5-KO) were generated. GRK5-KO mice exhibited mild spontaneous hypothermia as well as pronounced behavioral supersensitivity upon challenge with the nonselective muscarinic agonist oxotremorine. Classical cholinergic responses such as hypothermia, hypoactivity, tremor, and salivation were enhanced in GRK5-KO animals. The antinociceptive effect of oxotremorine was also potentiated and prolonged. Muscarinic receptors in brains from GRK5-KO mice resisted oxotremorine-induced desensitization, as assessed by oxotremorine-stimulated [5S]GTPgammaS binding. These data demonstrate that elimination of GRK5 results in cholinergic supersensitivity and impaired muscarinic receptor desensitization and suggest that a deficit of GPCR desensitization may be an underlying cause of behavioral supersensitivity.  相似文献   

4.
G protein-coupled receptor kinases (GRKs) control the signaling and activation of G protein-coupled receptors through phosphorylation. In this study, consensus substrate motifs for GRK2 were identified from the sequences of GRK2 protein substrates, and 17 candidate peptides were synthesized to identify peptide substrates with high affinity for GRK2. GRK2 appears to require an acidic amino acid at the −2, −3, or −4 positions and its consensus phosphorylation site motifs were identified as (D/E)X1–3(S/T), (D/E)X1–3(S/T)(D/E), or (D/E)X0–2(D/E)(S/T). Among the 17 peptide substrates examined, a 13-amino-acid peptide fragment of β-tubulin (DEMEFTEAESNMN) showed the highest affinity for GRK2 (Km, 33.9 μM; Vmax, 0.35 pmol min−1 mg−1), but very low affinity for GRK5. This peptide may be a useful tool for investigating cellular signaling pathways regulated by GRK2.  相似文献   

5.
G protein-coupled receptor kinase 2 (GRK2) is a key modulator of G protein-coupled receptors (GPCR). Altered expression of GRK2 has been described to occur during pathological conditions characterized by impaired GPCR signaling. We have reported recently that GRK2 is rapidly degraded by the proteasome pathway and that beta-arrestin function and Src-mediated phosphorylation are involved in targeting GRK2 for proteolysis. In this report, we show that phosphorylation of GRK2 by MAPK also triggers GRK2 turnover by the proteasome pathway. Modulation of MAPK activation alters the degradation of transfected or endogenous GRK2, and a GRK2 mutant that mimics phosphorylation by MAPK shows an enhanced degradation rate, thus indicating a direct effect of MAPK on GRK2 turnover. Interestingly, MAPK-mediated modulation of wild-type GRK2 stability requires beta-arrestin function and is facilitated by previous phosphorylation of GRK2 on tyrosine residues by c-Src. Consistent with an important physiological role, interfering with this GRK2 degradation process results in altered GPCR responsiveness. Our data suggest that both c-Src and MAPK-mediated phosphorylation would contribute to modulate GRK2 degradation, and put forward the existence of new feedback mechanisms connecting MAPK cascades and GPCR signaling.  相似文献   

6.
7.
beta(1)-Adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. However, beta(1)AR can internalize as G protein-coupled receptor kinase 2 (GRK2) is fused to its carboxyl terminus. Internalization of the beta(1)AR and GRK2 fusion protein (beta(1)AR/GRK2) is dependent on dynamin but independent of beta-arrestin and phosphorylation. The beta(1)AR/GRK2 fusion protein internalizes via clathrin-coated pits and is found to co-localize with the endosome that contains transferrin. The fusion proteins consisting of beta(1)AR and various portions of GRK2 reveal that the residues 498-502 in the carboxyl-terminal domain of GRK2 are critical to promote internalization of the fusion proteins. This domain contains a consensus sequence of a clathrin-binding motif defined as a clathrin box. In vitro binding assays show that the residues 498-502 of GRK2 bind the amino-terminal domain of clathrin heavy chain to almost the same extent as beta-arrestin1. The mutation of the clathrin box in the carboxyl-terminal domain of GRK2 results in the loss of the ability to promote internalization of the fusion protein. GRK2 activity increases and then decreases as the concentration of clathrin heavy chain increases. Taken together, these results imply that GRK2 contains a functional clathrin box and directly interacts with clathrin to modulate its function.  相似文献   

8.
We previously reported that the beta(1)-adrenergic receptor (beta(1)AR) associates with PSD-95 through a PDZ domain-mediated interaction, by which PSD-95 modulates beta(1)AR function and facilitates the physical association of beta(1)AR with other synaptic proteins such as N-methyl-d-aspartate receptors. Here we demonstrate that beta(1)AR association with PSD-95 is regulated by G protein-coupled receptor kinase 5 (GRK5). When beta(1)AR and PSD-95 were coexpressed with either GRK2 or GRK5 in COS-7 cells, GRK5 alone dramatically decreased the association of beta(1)AR with PSD-95, although GRK2 and GRK5 both could be co-immunoprecipitated with beta(1)AR and both could enhance receptor phosphorylation in vivo. Increasing expression of GRK5 in the cells led to further decreased beta(1)AR association with PSD-95. Stimulation with the beta(1)AR agonist isoproterenol further decreased PSD-95 binding to beta(1)AR. In addition, GRK5 protein kinase activity was required for this regulatory effect since a kinase-inactive GRK5 mutant had no effect on PSD-95 binding to beta(1)AR. Moreover, the regulatory effect of GRK5 on beta(1)AR association with PSD-95 was observed only when GRK5 was expressed together with the receptor, but not when GRK5 was coexpressed with PSD-95. Thus, we propose that GRK5 regulates beta(1)AR association with PSD-95 through phosphorylation of beta(1)AR. Regulation of protein association through receptor phosphorylation may be a general mechanism used by G protein-coupled receptors that associate via PDZ domain-mediated protein/protein interactions.  相似文献   

9.
G protein-coupled receptor kinases (GRKs) phosphorylate agonist-occupied G protein-coupled receptors, leading to receptor desensitization. Seven GRKs, designated GRK1 through 7, have been characterized. GRK5 is negatively regulated by protein kinase C. We investigated whether human substance P receptor (hSPR) is a substrate of GRK5. We report that membrane-bound hSPR is phosphorylated by purified GRK5, and that both the rate and extent of phosphorylation increase dramatically in the presence of substance P. The phosphorylation has a high stoichiometry (20+/-4 mol phosphate/mol hSPR) and a low K(m) (1.7+/-0.1 nM). These data provide the first evidence that hSPR is a substrate of GRK5.  相似文献   

10.
A nuclear localization sequence (NLS) in the type II interferon (IFN) IFN gamma, which is responsible for the nuclear translocation of both the ligand and the alpha-subunit (IFNGR1) of the receptor complex, has previously been characterized and its role in signaling examined in detail. We have now identified an NLS in the type I IFN receptor (IFNAR) common subunit IFNAR1 from humans and show that the human IFNAR1 subunit can translocate to the nucleus following human IFN beta stimulation. An NLS in human IFNAR1 is located in the extracellular domain of IFNAR1 within the sequence (382)RKIIEKKT (numbered for the precursor form). Nuclear import by the NLS functions in a conventional fashion requiring cytosolic import factors, is energy-dependent and inhibited by the prototypical NLS of the SV40 large T-antigen. These studies provide a mechanism for nuclear import of IFNAR1, as well as for type I IFN ligands, and a starting point for studying an alternate role for IFNAR1 in nuclear signaling within the type I IFN system.  相似文献   

11.
G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors, leading to their desensitization and endocytosis. GRKs have also been implicated in phosphorylating other classes of proteins and can localize in a variety of cellular compartments, including the nucleus. Here, we attempted to identify potential nuclear substrates for GRK5. Our studies reveal that GRK5 is able to interact with and phosphorylate nucleophosmin (NPM1) both in vitro and in intact cells. NPM1 is a nuclear protein that regulates a variety of cell functions including centrosomal duplication, cell cycle control, and apoptosis. GRK5 interaction with NPM1 is mediated by the N-terminal domain of each protein, and GRK5 primarily phosphorylates NPM1 at Ser-4, a site shared with polo-like kinase 1 (PLK1). NPM1 phosphorylation by GRK5 and PLK1 correlates with the sensitivity of cells to undergo apoptosis with cells having higher GRK5 levels being less sensitive and cells with lower GRK5 being more sensitive to PLK1 inhibitor-induced apoptosis. Taken together, our results demonstrate that GRK5 phosphorylates Ser-4 in nucleophosmin and regulates the sensitivity of cells to PLK1 inhibition.  相似文献   

12.
The G protein-coupled receptor kinase 2 (GRK2) phosphorylates and shuts down signaling from 7-transmembrane receptors (7TMs). Although, receptor activity controls GRK2 expression levels, the underlying molecular mechanisms are poorly understood. We have previously shown that extracellular signal-regulated kinase (ERK1/2) activation increases GRK2 expression [J. Theilade, J. Lerche Hansen, S. Haunso, S.P. Sheikh, Extracellular signal-regulated kinases control expression of G protein-coupled receptor kinase 2 (GRK2), FEBS Lett. 518 (2002) 195-199]. In the present study, we found that ERK1/2 regulates GRK2 degradation rather than synthesis. ERK1/2 blockade using PD98059 decreased GRK2 cellular levels to 0.25-fold of control in Cos7 cells. This effect was due to enhanced degradation of the GRK2 protein, since proteasome blockade prevented down-regulation of GRK2 protein levels in the presence of PD98059. Further, ERK blockade had no effect on GRK2 synthesis as probed using a reporter construct carrying the GRK2 promoter upstream of the luciferase gene. We predict ERK1/2 mediated GRK2 protection could be a general phenomenon as proteasome inhibition increased GRK2 expression in two other cell lines, HEK293 and NIH3T3.  相似文献   

13.
G protein-coupled receptor kinase 2 (GRK2) is a serine/threonine-specific protein kinase that mediates agonist-dependent phosphorylation of numerous G protein-coupled receptors. In an effort to identify proteins that regulate GRK2 function, we searched for interacting proteins by immunoprecipitation of endogenous GRK2 from HL60 cells. Subsequent analysis by gel electrophoresis and mass spectrometry revealed that GRK2 associates with heat shock protein 90 (Hsp90). GRK2 interaction with Hsp90 was confirmed by co-immunoprecipitation and was effectively disrupted by geldanamycin, an Hsp90-specific inhibitor. Interestingly, geldanamycin treatment of HL60 cells decreased the expression of endogenous GRK2 in a dose- and time-dependent manner, and metabolic labeling demonstrated that geldanamycin rapidly accelerated the degradation of newly synthesized GRK2. The use of various protease inhibitors suggested that GRK2 degradation induced by geldanamycin was predominantly through the proteasome pathway. To test whether Hsp90 plays a general role in regulating GRK maturation, additional GRKs were studied by transient expression in COS-1 cells and subsequent treatment with geldanamycin. These studies demonstrate that GRK3, GRK5, and GRK6 are also stabilized by interaction with Hsp90. Taken together, our work revealed that GRK interaction with heat shock proteins plays an important role in regulating GRK maturation.  相似文献   

14.
Chemical genetic engineering of G protein-coupled receptor kinase 2   总被引:2,自引:0,他引:2  
G protein-coupled receptor kinases (GRKs) play a pivotal role in receptor regulation. Efforts to study the acute effects of GRKs in intact cells have been limited by a lack of specific inhibitors. In the present study we have developed an engineered version of GRK2 that is specifically and reversibly inhibited by the substituted nucleotide analog 1-naphthyl-PP1 (1Na-PP1), and we explored GRK2 function in regulated internalization of the mu-opioid receptor (muOR). A previously described method that conferred analog sensitivity on various kinases, by introducing a space-creating mutation in the conserved active site, failed when applied to GRK2 because the corresponding mutation (L271G) rendered the mutant kinase (GRK2-as1) catalytically inactive. A sequence homology-based approach was used to design second-site suppressor mutations. A C221V second-site mutation produced a mutant kinase (GRK2-as5) with full functional activity and analog sensitivity as compared with wild-type GRK2 in vitro and in intact cells. The role of GRK2-as5 activity in the membrane trafficking of the muOR was also characterized. Morphine-induced internalization was completely blocked when GRK2-as5 activity was inhibited before morphine application. However, inhibition of GRK2-as5 during recycling and reinternalization of the muOR did not attenuate these processes. These results suggest there is a difference in the GRK requirement for initial ligand-induced internalization of a G protein-coupled receptor compared with subsequent rounds of reinternalization.  相似文献   

15.
Several recent studies have suggested that resumption of oocyte meiosis, indicated by germinal vesicle breakdown or GVBD, involves inhibition of endogenous heterotrimeric G proteins in both frogs and mice. These studies imply that a heterotrimeric G protein(s), and hence its upstream activator (a G protein-coupled receptor or GpCR), is activated in prophase oocytes and is responsible for maintaining meiosis arrest. To test the existence and function of this putative GpCR, we utilized a mammalian G-protein-coupled receptor kinase (GRK3) and beta-arrestin-2, which together are known to cause GpCR desensitization. Injection of mRNA for rat GRK3 caused hormone-independent GVBD. The kinase activity of GRK3 was essential for GVBD induction as its kinase-dead mutant (GRK3-K220R) was completely ineffective. Another GRK3 mutant (GRK3-DeltaC), which lacked the C-terminal G(betagamma)-binding domain and which was not associated with oocyte membranes, also failed to induce GVBD. Furthermore, injection of rat beta-arrestin-2 mRNA also induced hormone-independent GVBD. Several inhibitors of clathrin-mediated receptor endocytosis (the clathrin-binding domain of beta-arrestin-2, concanavalin A, and monodansyl cadaverine) significantly reduced the abilities of GRK3/beta-arrestin-2 to induce GVBD. These results support the central role of a yet-unidentified GpCR in maintaining prophase arrest in frog oocytes and provide a potential means for its molecular identification.  相似文献   

16.
The protein kinase D (PKD) family consists of three serine/threonine kinases: PKC micro/PKD, PKD2, and PKCnu/PKD3. Whereas PKD has been the focus of most studies, virtually nothing is known about the effect of G protein-coupled receptor agonists (GPCR) on the regulatory properties and intracellular distribution of PKD3. Consequently, we examined the mechanism that mediates its activation and intracellular distribution. GPCR agonists induced a rapid activation of PKD3 by a protein kinase C (PKC)-dependent pathway that leads to the phosphorylation of the activation loop of PKD3. Comparison of the steady-state distribution of endogenous or tagged PKD3 versus PKD and PKD2 in unstimulated cells indicated that whereas PKD and PKD2 are predominantly cytoplasmic, PKD3 is present both in the nucleus and cytoplasm. This distribution of PKD3 results from its continuous shuttling between both compartments by a mechanism that requires a nuclear import receptor and a competent CRM1-nuclear export pathway. Cell stimulation with the GPCR agonist neurotensin induced a rapid and reversible plasma membrane translocation of PKD3 that is PKC-dependent. Interestingly, the nuclear accumulation of PKD3 can be dramatically enhanced in response to its activation. Thus, this study demonstrates that the intracellular distribution of PKD isoenzymes are distinct, and suggests that their signaling properties are regulated by differential localization.  相似文献   

17.
The N -methyl-D-aspartate receptor (NMDAR) is a multimeric transmembrane protein composed of at least two subunits. One subunit, NR1, is derived from a single gene and can be subdivided into three regions: the N-terminal extracellular domain, the transmembrane regions, and the C-terminal intracellular domain. The N-terminal domain is responsible for Mg2+ metal ion binding and channel activity, while the transmembrane domains are important for ion channel formation. The intracellular C-terminal domain is involved in regulating receptor activity and subcellular localization. Our recent experiments indicated that the intracellular C-terminal domain, when expressed independently, localizes almost exclusively in the nucleus. An examination of the amino acid sequence reveals the presence of a putative nuclear localization sequence (NLS) in the C1 cassette of the NR1 intracellular C-terminus. Using an expression vector designed to test whether a putative NLS sequence is a valid, functional NLS, we have demonstrated that a bi-partite NLS does in fact exist within the NR1-1 C-terminus. Computer algorithms identified a putative helix-loop-helix motif that spanned the C0C1 cassettes of the C-terminus. These data suggest that the NR1 subunit may represent another member of a family of transmembrane proteins that undergo intramembrane proteolysis, releasing a cytosolic peptide that is actively translocated to the nucleus leading to alterations in gene regulation.  相似文献   

18.
Barker BL  Benovic JL 《Biochemistry》2011,50(32):6933-6941
Regulation of the magnitude, duration, and localization of G protein-coupled receptor (GPCR) signaling responses is controlled by desensitization, internalization, and downregulation of the activated receptor. Desensitization is initiated by the phosphorylation of the activated receptor by GPCR kinases (GRKs) and the binding of the adaptor protein arrestin. In addition to phosphorylating activated GPCRs, GRKs have been shown to phosphorylate a variety of additional substrates. An in vitro screen for novel GRK substrates revealed Hsp70 interacting protein (Hip) as a substrate. GRK5, but not GRK2, bound to and stoichiometrically phosphorylated Hip in vitro. The primary binding domain of GRK5 was mapped to residues 303-319 on Hip, while the major site of phosphorylation was identified to be Ser-346. GRK5 also bound to and phosphorylated Hip on Ser-346 in cells. While Hip was previously implicated in chemokine receptor trafficking, we found that the phosphorylation of Ser-346 was required for proper agonist-induced internalization of the chemokine receptor CXCR4. Taken together, Hip has been identified as a novel substrate of GRK5 in vitro and in cells, and phosphorylation of Hip by GRK5 plays a role in modulating CXCR4 internalization.  相似文献   

19.
G protein-coupled receptor (GPCR) kinases (GRKs) specifically phosphorylate agonist-occupied GPCRs at the inner surface of the plasma membrane (PM), leading to receptor desensitization. Here we show that the C-terminal 30 amino acids of GRK6A contain multiple elements that either promote or inhibit PM localization. Disruption of palmitoylation by individual mutation of cysteine 561, 562, or 565 or treatment of cells with 2-bromopalmitate shifts GRK6A from the PM to both the cytoplasm and nucleus. Likewise, disruption of the hydrophobic nature of a predicted amphipathic helix by mutation of two leucines to alanines at positions 551 and 552 causes a loss of PM localization. Moreover, acidic amino acids in the C-terminus appear to negatively regulate PM localization; mutational replacement of several acidic residues with neutral or basic residues rescues PM localization of a palmitoylation-defective GRK6A. Last, we characterize the novel nuclear localization, showing that nuclear export of nonpalmitoylated GRK6A is sensitive to leptomycin B and that GRK6A contains a potential nuclear localization signal. Our results suggest that the C-terminus of GRK6A contains a novel electrostatic palmitoyl switch in which acidic residues weaken the membrane-binding strength of the amphipathic helix, thus allowing changes in palmitoylation to regulate PM versus cytoplasmic/nuclear localization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号