首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies provide further support for the hypothesis that spatial representations of limb position, target locations, and potential motor actions are expressed in the neuronal activity in parietal cortex. In contrast, precentral cortical activity more strongly expresses processes involved in the selection and execution of motor actions. As a general conceptual framework, these processes may be interpreted in terms of such formalisms as sensorimotor transformation and ‘internal models’.  相似文献   

2.
Recent studies of visually guided reaching in monkeys support the hypothesis that the visuomotor transformations underlying arm movements to spatial targets involve a parallel mechanism that simultaneously engages functionally related frontal and parietal areas linked by reciprocal cortico-cortical connections. The neurons in these areas possess similar combinations of response properties. The multimodal combinatorial properties of these neurons and the gradient architecture of the parieto-frontal network emerge as a potential substrate to link the different sensory and motor signals that arise during reaching behavior into common hybrid reference frames. This convergent combinatorial process is evident at early stages of visual information processing in the occipito-parietal cortex, suggesting the existence of re-entrant motor influences on cortical areas once believed to have only visual functions.  相似文献   

3.
The supplementary motor area, although traditionally defined as a single motor area, is not viewed as including at least three different areas that can be distinguished anatomically and physiologically. The differential use of these three areas for various motor behaviors has been the subject of recent studies that are beginning to provide novel concepts of the functional differentiation of each area.  相似文献   

4.
For many years, it has been postulated that interactions between motor commands and somatic perception in the sensorimotor cortices exist, but they have been difficult to demonstrate. Recent studies have made demonstration of this interaction easier and suggest that cortical activity related to somatic sensation and perception is modified by movement-generating mechanism. Corollary discharge and efference copy may also play a role in motor behavior.  相似文献   

5.
Recent experiments have extended our understanding of how sensory information in premotor networks controlling motor output is processed during locomotion, and at what level the efficacy of specific sensory—motor pathways is determined. Phasic presynaptic inhibition of sensory transmission combined with postsynaptic alterations of excitatory and inhibitory synaptic transmission from interneurons of the premotor networks contribute to the modulation of reflex pathways and to the generation of reflex reversal. These mechanisms play an important role in adapting the operation of central networks to external demands and thus help optimize sensory—motor integration.  相似文献   

6.
Adaptive mutations appear in response to selection. In the best-studied system, the two most controversial issues were resolved this year. The mutations are neither Lamarckian nor a peculiarity of bacterial sex, as had been suggested. They occur genome-wide in a hypermutable subpopulation of stressed cells. Genomic ‘hot’ and ‘cold’ regions may explain previous failures to detect similar mutations in other systems and at other sites. Stationary phase specific limitation of mismatch repair has also been discovered.  相似文献   

7.
Central processing of inertial sensory information about head attitude and motion in space is crucial for motor control. Vestibular signals are coded relative to a non-inertial system, the head, that is virtually continuously in motion. Evidence for transformation of vestibular signals from head-fixed sensory coordinates to gravity-centered coordinates have been provided by studies of the vestibulo-ocular reflex. The underlying central processing depends on otolith afferent information that needs to be resolved in terms of head translation related inertial forces and head attitude dependent pull of gravity. Theoretical solutions have been suggested, but experimental evidence is still scarce. It appears, along these lines, that gaze control systems are intimately linked to motor control of head attitude and posture.  相似文献   

8.
Brain-machine interfaces are being developed to assist paralyzed patients by enabling them to operate machines with recordings of their own neural activity. Recent studies show that motor parameters, such as hand trajectory, and cognitive parameters, such as the goal and predicted value of an action, can be decoded from the recorded activity to provide control signals. Neural prosthetics that use simultaneously a variety of cognitive and motor signals can maximize the ability of patients to communicate and interact with the outside world. Although most studies have recorded electroencephalograms or spike activity, recent research shows that local field potentials (LFPs) offer a promising additional signal. The decode performances of LFPs and spike signals are comparable and, because LFP recordings are more long lasting, they might help to increase the lifetime of the prosthetics.  相似文献   

9.
Comparative chromosome painting has shown that synteny has been conserved for large segments of the genome in various placental mammals. Advances such as spectral karyotyping and multicolour ‘bar coding’ lend speed and precision to comparative molecular cytogenetics. Reciprocal chromosome painting and hybridisations with probes such as yeast artificial chromosomes, cosmids, and fibre fluorescence in situ hybridisation allow subchromosomal assignments of chromosome regions and can identify breakpoints of rearranged chromosomes. Advances in molecular cytogenetics can now be used to test the hypothesis that chromosome rearrangement breakpoints in human pathology and in evolution are correlated.  相似文献   

10.
Use of model systems to explore the forces that control β sheet formation was stymied for many years by the perception that small increments of β sheet necessarily aggregate. Recently, however, a number of short peptides (9–16 residues in length) that fold into two-stranded antiparallel β sheets (‘β hairpins’) have been reported; several short peptides (20–24 residues in length) that fold into three-stranded antiparallel β sheets have also been described. These model systems are beginning to provide fundamental insights into the origins of β sheet conformational stability.  相似文献   

11.
Accepting, rejecting or modifying the many different theories of the cerebellum's role in the control of movement requires an understanding of the signals encoded in the discharge of cerebellar neurons and how those signals are transformed by the cerebellar circuitry. Particularly challenging is understanding the sensory and motor signals carried by the two types of action potentials generated by cerebellar Purkinje cells, the simple spikes and complex spikes. Advances have been made in understanding this signal processing in the context of voluntary arm movements. Recent evidence suggests that mossy fiber afferents to the cerebellar cortex are a source of kinematic signals, providing information about movement direction and speed. In turn, the simple spike discharge of Purkinje cells integrates this mossy fiber information to generate a movement velocity signal. Complex spikes may signal errors in movement velocity. It is proposed that the cerebellum uses the signals carried by the simple and complex spike discharges to control movement velocity for both step and tracking arm movements.  相似文献   

12.
The expression of plateau potentials in spinal motor neurons is regulated by neuromodulatory substances. Recent experiments have shed new light on this regulation at the cellular level. It is now possible to evaluate the existence of plateau potentials in intact organisms, including humans, and to address the functional role of plateau potentials in motor control, as well as in information transfer in the brain.  相似文献   

13.
Over the next decade, the impact of library synthesis will play a major role in shortening the lead optimization phase of drug discovery. The prognosis for combinatorial chemistry to discover fundamentally different new classes of therapeutically active small molecules against some of the more difficult biological targets is less certain. Expectations are high because the technology potentially allows us to sample available drug space by synthesizing all possible small molecule ligands (variously estimated to be between 1030–1050 compounds). Some caution is advised, however, since, despite recent increases in high-throughput screening of substantially greater numbers of synthetic compounds and natural products, we are not routinely finding a plethora of new structures. The outcome may be that combinatorial chemistry offers us the ability to work faster on finding ligands for well-established tractable targets, such as G-protein-coupled receptors, ion channels or proteases, rather than, say, the more complex protein—protein interactions which from the majority of targets in signal transduction pathways.  相似文献   

14.
Although individual neurons can be intrinsically oscillatory and can be network pacemakers, motor patterns are often generated in a more distributed manner. Synaptic connections with other neurons are important because they either modify the rhythm of the pacemaker cell or are essential for pattern generation in the first place. Computational studies of half-center oscillators have made much progress in describing how neurons make transitions between active and inactive phases in these simple networks. In addition to characterizing phase transitions, recent studies have described the synaptic mechanisms that are important for the initiation and maintenance of activity in half-center oscillators.  相似文献   

15.
Databases for biologists are becoming increasingly important. Some of these can be regarded as ‘core’ resources, such as the bibliographic databases, whereas others are of greater interest to specialists. As comparative genomics develops, however, even databases limited in their scope (e.g. to a single organism) are of great interest to a wider community.  相似文献   

16.
Recent work has demonstrated that the neural circuits mediating escape reactions in lower vertebrates and mammals have a common framework, with only two excitatory central synapses in the reflex arc. This relatively direct linkage from sense organs to muscles and the fact that segments of the network also transmit other motor commands help guarantee that escape always has priority over ongoing behaviors. Yet, modulation and plasticity contribute some variability to the expression of escape and, therefore, to the adequacy of its survival function.  相似文献   

17.
Mutations in the X-linked gene FMR1 cause fragile X syndrome, the leading cause of inherited mental retardation. Two autosomal paralogs of FMR1 have been identified, and are known as FXR1 and FXR2. Here we describe and compare the genomic structures of the mouse and human genes FMR1, FXR1, and FXR2. All three genes are very well conserved from mouse to human, with identical exon sizes for all but two FXR2 exons. In addition, the three genes share a conserved gene structure, suggesting they are derived from a common ancestral gene. As a first step towards exploring this hypothesis, we reexamined the Drosophila melanogaster gene Fmr1, and found it to have several of the same intron/exon junctions as the mammalian FXRs. Finally, we noted several regions of mouse/human homology in the noncoding portions of FMR1 and FXR1. Knowledge of the genomic structure and sequence of the FXR family of genes will facilitate further studies into the function of these proteins.  相似文献   

18.
Members of the Pax gene family are expressed in various tissues during ontogenesis. Evidence for their crucial role in morphogenesis, organogenesis, cell differentiation and oncogenesis is provided by rodent mutants and human diseases. Additionally, recent experimental in vivo and in vitro approaches have led to the identification of molecules that interact with Pax proteins.  相似文献   

19.
20.
Recent studies have provided new insights into the visuomotor functions of the dorsal and ventral regions of the lateral pre-motor cortex. Anatomical and physiological investigations in non-human primates have demonstrated that these regions have differing patterns of cortical connectivity and distinctive neuronal responses. Brain-imaging techniques and lesion studies have begun to probe the functions of homologous regions in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号