首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of the assembly and function of G-protein heterotrimers (Gα·GDP/Gβγ) is a complex process involving the participation of many accessory proteins. One of these regulators, GPSM3, is a member of a family of proteins containing one or more copies of a small regulatory motif known as the GoLoco (or GPR) motif. Although GPSM3 is known to bind Gα(i)·GDP subunits via its GoLoco motifs, here we report that GPSM3 also interacts with the Gβ subunits Gβ1 to Gβ4, independent of Gγ or Gα·GDP subunit interactions. Bimolecular fluorescence complementation studies suggest that the Gβ-GPSM3 complex is formed at, and transits through, the Golgi apparatus and also exists as a soluble complex in the cytoplasm. GPSM3 and Gβ co-localize endogenously in THP-1 cells at the plasma membrane and in a juxtanuclear compartment. We provide evidence that GPSM3 increases Gβ stability until formation of the Gβγ dimer, including association of the Gβ-GPSM3 complex with phosducin-like protein PhLP and T-complex protein 1 subunit eta (CCT7), two known chaperones of neosynthesized Gβ subunits. The Gβ interaction site within GPSM3 was mapped to a leucine-rich region proximal to the N-terminal side of its first GoLoco motif. Both Gβ and Gα(i)·GDP binding events are required for GPSM3 activity in inhibiting phospholipase-Cβ activation. GPSM3 is also shown in THP-1 cells to be important for Akt activation, a known Gβγ-dependent pathway. Discovery of a Gβ/GPSM3 interaction, independent of Gα·GDP and Gγ involvement, adds to the combinatorial complexity of the role of GPSM3 in heterotrimeric G-protein regulation.  相似文献   

2.
RGS14 is a 60 kDa protein that contains a regulator of G protein signaling (RGS) domain near its N‐terminus, a central region containing a pair of tandem Ras‐binding domains (RBD), and a GPSM (G protein signaling modulator) domain (a.k.a. Gi/o‐Loco binding [GoLoco] motif) near its C‐terminus. The RGS domain of RGS14 exhibits GTPase accelerating protein (GAP) activity toward Gαi/o proteins, while its GPSM domain acts as a guanine nucleotide dissociation inhibitor (GDI) on Gαi1 and Gαi3. In the current study, we investigate the contribution of different domains of RGS14 to its biochemical functions. Here we show that the full‐length protein has a greater GTPase activating activity but a weaker inhibition of nucleotide dissociation relative to its isolated RGS and GPSM regions, respectively. Our data suggest that these differences may be attributable to an inter‐domain interaction within RGS14 that promotes the activity of the RGS domain, but simultaneously inhibits the activity of the GPSM domain. The RBD region seems to play an essential role in this regulatory activity. Moreover, this region of RGS14 is also able to bind to members of the B/R4 subfamily of RGS proteins and enhance their effects on GPCR‐activated Gi/o proteins. Overall, our results suggest a mechanism wherein the RBD region associates with the RGS domain region, producing an intramolecular interaction within RGS14 that enhances the GTPase activating function of its RGS domain while disfavoring the negative effect of its GPSM domain on nucleotide dissociation. J. Cell. Biochem. 114: 1414–1423, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
GoLoco motif proteins bind to the inhibitory G(i) subclass of G-protein α subunits and slow the release of bound GDP; this interaction is considered critical to asymmetric cell division and neuro-epithelium and epithelial progenitor differentiation. To provide protein tools for interrogating the precise cellular role(s) of GoLoco motif/Gα(i) complexes, we have employed structure-based protein design strategies to predict gain-of-function mutations that increase GoLoco motif binding affinity. Here, we describe fluorescence polarization and isothermal titration calorimetry measurements showing three predicted Gα(i1) point mutations, E116L, Q147L, and E245L; each increases affinity for multiple GoLoco motifs. A component of this affinity enhancement results from a decreased rate of dissociation between the Gα mutants and GoLoco motifs. For Gα(i1)(Q147L), affinity enhancement was seen to be driven by favorable changes in binding enthalpy, despite reduced contributions from binding entropy. The crystal structure of Gα(i1)(Q147L) bound to the RGS14 GoLoco motif revealed disorder among three peptide residues surrounding a well defined Leu-147 side chain. Monte Carlo simulations of the peptide in this region showed a sampling of multiple backbone conformations in contrast to the wild-type complex. We conclude that mutation of Glu-147 to leucine creates a hydrophobic surface favorably buried upon GoLoco peptide binding, yet the hydrophobic Leu-147 also promotes flexibility among residues 511-513 of the RGS14 GoLoco peptide.  相似文献   

4.
GPSM2 (G-protein signalling modulator 2; also known as LGN or mammalian Pins) is a protein that regulates mitotic spindle organization and cell division. GPSM2 contains seven tetratricopeptide repeats (TPR) and four Galpha(i/o)-Loco (GoLoco) motifs. GPSM2 has guanine nucleotide dissociation inhibitor (GDI) activity towards both Galpha(o)- and Galpha(i)-subunits; however, a systematic analysis of its individual GoLoco motifs has not been described. We analyzed each of the four individual GoLoco motifs from GPSM2, assessing their relative binding affinities and GDI potencies for Galpha(i1), Galpha(i2), and Galpha(i3) and Galpha(o). Each of the four GPSM2 GoLoco motifs (36-43 amino acids in length) was expressed in bacteria as a GST-fusion protein and purified to homogeneity. The binding of each of the four GST-GoLoco motifs to Galpha(i1)-, Galpha(o)-, and Galpha(s)-subunits was assessed by surface plasmon resonance; all of the motifs bound Galpha(i1), but exhibited low affinity towards Galpha(o). GDI activity was assessed by a fluorescence-based nucleotide-binding assay, revealing that all four GoLoco motifs are functional as GDIs for Galpha(i1), Galpha(i2), and Galpha(i3). Consistent with our binding studies, the GDI activity of GPSM2 GoLoco motifs on Galpha(o) was significantly lower than that toward Galpha(i1), suggesting that the in vivo targets of GPSM2 are most likely to be Galpha(i)-subunits.  相似文献   

5.
The regulators of G-protein signaling (RGS) proteins accelerate the intrinsic guanosine triphosphatase activity of heterotrimeric G-protein alpha subunits and are thus recognized as key modulators of G-protein-coupled receptor signaling. RGS12 and RGS14 contain not only the hallmark RGS box responsible for GTPase-accelerating activity but also a single G alpha(i/o)-Loco (GoLoco) motif predicted to represent a second G alpha interaction site. Here, we describe functional characterization of the GoLoco motif regions of RGS12 and RGS14. Both regions interact exclusively with G alpha(i1), G alpha(i2), and G alpha(i3) in their GDP-bound forms. In GTP gamma S binding assays, both regions exhibit guanine nucleotide dissociation inhibitor (GDI) activity, inhibiting the rate of exchange of GDP for GTP by G alpha(i1). Both regions also stabilize G alpha(i1) in its GDP-bound form, inhibiting the increase in intrinsic tryptophan fluorescence stimulated by AlF(4)(-). Our results indicate that both RGS12 and RGS14 harbor two distinctly different G alpha interaction sites: a previously recognized N-terminal RGS box possessing G alpha(i/o) GAP activity and a C-terminal GoLoco region exhibiting G alpha(i) GDI activity. The presence of two, independent G alpha interaction sites suggests that RGS12 and RGS14 participate in a complex coordination of G-protein signaling beyond simple G alpha GAP activity.  相似文献   

6.
The GoLoco motif is a short polypeptide sequence found in G-protein signaling regulators such as regulator of G-protein signaling proteins type 12 and 14 and activator of G-protein signaling protein type 3. A unique property of the GoLoco motifs from these three proteins is their preferential interaction with guanosine diphosphate (GDP)-bound Galpha(i1), Galpha(i3) and, sometimes, Galpha(i2) subunits over Galpha(o) subunits. This interaction prevents both spontaneous guanine nucleotide release and reassociation of Galpha(i)-GDP with Gbetagamma. We utilized this property of the GoLoco motif to examine dopamine (D2 and D3) and somatostatin receptor coupling to G-protein-regulated inwardly rectifying potassium (GIRK) channels in mouse AtT20 cells. GoLoco motif peptides had no effect on either basal channel activity or the initial responses to agonists, suggesting that the GoLoco motif cannot disrupt pre-formed G-protein heterotrimers. GoLoco motif peptides did, however, interfere with human D2((short)) receptor coupling to GIRK channels as demonstrated by the progressively diminished responses after repeated agonist application. This behavior is consistent with some form of compartmentalization of D2 receptors and GIRK channels such that Gbetagamma subunits, freed by local receptor activation and prevented from reforming a heterotrimeric complex, are not functionally constrained within the receptor-channel complex and thus are unable to exert a persistent activating effect. In contrast, GoLoco motif peptides had no effect on either D3 or somatostatin coupling to GIRK channels. Our results suggest that GoLoco motif-based peptides will be useful tools in examining the specificity of G-protein-coupled receptor-effector coupling.  相似文献   

7.
Heterotrimeric G-protein Galpha subunits and GoLoco motif proteins are key members of a conserved set of regulatory proteins that influence invertebrate asymmetric cell division and vertebrate neuroepithelium and epithelial progenitor differentiation. GoLoco motif proteins bind selectively to the inhibitory subclass (Galphai) of Galpha subunits, and thus it is assumed that a Galphai.GoLoco motif protein complex plays a direct functional role in microtubule dynamics underlying spindle orientation and metaphase chromosomal segregation during cell division. To address this hypothesis directly, we rationally identified a point mutation to Galphai subunits that renders a selective loss-of-function for GoLoco motif binding, namely an asparagine-to-isoleucine substitution in the alphaD-alphaE loop of the Galpha helical domain. This GoLoco-insensitivity ("GLi") mutation prevented Galphai1 association with all human GoLoco motif proteins and abrogated interaction between the Caenorhabditis elegans Galpha subunit GOA-1 and the GPR-1 GoLoco motif. In contrast, the GLi mutation did not perturb any other biochemical or signaling properties of Galphai subunits, including nucleotide binding, intrinsic and RGS protein-accelerated GTP hydrolysis, and interactions with Gbetagamma dimers, adenylyl cyclase, and seven transmembrane-domain receptors. GoLoco insensitivity rendered Galphai subunits unable to recruit GoLoco motif proteins such as GPSM2/LGN and GPSM3 to the plasma membrane, and abrogated the exaggerated mitotic spindle rocking normally seen upon ectopic expression of wild type Galphai subunits in kidney epithelial cells. This GLi mutation should prove valuable in establishing the physiological roles of Galphai.GoLoco motif protein complexes in microtubule dynamics and spindle function during cell division as well as to delineate potential roles for GoLoco motifs in receptor-mediated signal transduction.  相似文献   

8.
RGS14 is a brain scaffolding protein that integrates G protein and MAP kinase signaling pathways. Like other RGS proteins, RGS14 is a GTPase activating protein (GAP) that terminates Gαi/o signaling. Unlike other RGS proteins, RGS14 also contains a G protein regulatory (also known as GoLoco) domain that binds Gαi1/3-GDP in cells and in vitro. Here we report that Ric-8A, a nonreceptor guanine nucleotide exchange factor (GEF), functionally interacts with the RGS14-Gαi1-GDP signaling complex to regulate its activation state. RGS14 and Ric-8A are recruited from the cytosol to the plasma membrane in the presence of coexpressed Gαi1 in cells, suggesting formation of a functional protein complex with Gαi1. Consistent with this idea, Ric-8A stimulates dissociation of the RGS14-Gαi1-GDP complex in cells and in vitro using purified proteins. Purified Ric-8A stimulates dissociation of the RGS14-Gαi1-GDP complex to form a stable Ric-8A-Gαi complex in the absence of GTP. In the presence of an activating nucleotide, Ric-8A interacts with the RGS14-Gαi1-GDP complex to stimulate both the steady-state GTPase activity of Gαi1 and binding of GTP to Gαi1. However, sufficiently high concentrations of RGS14 competitively reverse these stimulatory effects of Ric-8A on Gαi1 nucleotide binding and GTPase activity. This observation correlates with findings that show RGS14 and Ric-8A share an overlapping binding region within the last 11 amino acids of Gαi1. As further evidence that these proteins are functionally linked, native RGS14 and Ric-8A coexist within the same hippocampal neurons. These findings demonstrate that RGS14 is a newly appreciated integrator of unconventional Ric-8A and Gαi1 signaling.  相似文献   

9.
Regulator of G protein Signaling 14 (RGS14) is a multifunctional scaffolding protein that integrates both conventional and unconventional G protein signaling pathways. Like other RGS (regulator of G protein signaling) proteins, RGS14 acts as a GTPase accelerating protein to terminate conventional Gα(i/o) signaling. However, unlike other RGS proteins, RGS14 also contains a G protein regulatory/GoLoco motif that specifically binds Gα(i1/3)-GDP in cells and in vitro. The non-receptor guanine nucleotide exchange factor Ric-8A can bind and act on the RGS14·Gα(i1)-GDP complex to play a role in unconventional G protein signaling independent of G protein-coupled receptors (GPCRs). Here we demonstrate that RGS14 forms a Gα(i/o)-dependent complex with a G(i)-linked GPCR and that this complex is regulated by receptor agonist and Ric-8A (resistance to inhibitors of cholinesterase-8A). Using live cell bioluminescence resonance energy transfer, we show that RGS14 functionally associates with the α(2A)-adrenergic receptor (α(2A)-AR) in a Gα(i/o)-dependent manner. This interaction is markedly disrupted after receptor stimulation by the specific agonist UK14304, suggesting complex dissociation or rearrangement. Agonist-mediated dissociation of the RGS14·α(2A)-AR complex occurs in the presence of Gα(i/o) but not Gα(s) or Gα(q). Unexpectedly, RGS14 does not dissociate from Gα(i1) in the presence of stimulated α(2A)-AR, suggesting preservation of RGS14·Gα(i1) complexes after receptor activation. However, Ric-8A facilitates dissociation of both the RGS14·Gα(i1) complex and the Gα(i1)-dependent RGS14·α(2A)-AR complex after receptor activation. Together, these findings indicate that RGS14 can form complexes with GPCRs in cells that are dependent on Gα(i/o) and that these RGS14·Gα(i1)·GPCR complexes may be substrates for other signaling partners such as Ric-8A.  相似文献   

10.
The protein G18 (also known as AGS4 or GPSM3) contains three conserved GoLoco/GPR domains in its central and C-terminal regions that bind to inactive Gαi, whereas the N-terminal region has not been previously characterized. We investigated whether this domain might itself regulate G protein activity by assessing the abilities of G18 and mutants thereof to modulate the nucleotide binding and hydrolytic properties of Gαi1 and Gαo. Surprisingly, in the presence of fluoroaluminate (AlF4) both G proteins bound strongly to full-length G18 (G18wt) and to its isolated N-terminal domain (G18ΔC) but not to its GoLoco region (ΔNG18). Thus, it appears that its N-terminal domain promotes G18 binding to fluoroaluminate-activated Gαi/o. Neither G18wt nor any G18 mutant affected the GTPase activity of Gαi1 or Gαo. In contrast, complex effects were noted with respect to nucleotide binding. As inferred by the binding of [35S]GTPγS (guanosine 5′-O-[γ-thio]triphosphate) to Gαi1, the isolated GoLoco region as expected acted as a guanine nucleotide dissociation inhibitor, whereas the N-terminal region exhibited a previously unknown guanine nucleotide exchange factor effect on this G protein. On the other hand, the N terminus inhibited [35S]GTPγS binding to Gαo, albeit to a lesser extent than the effect of the GoLoco region on Gαi1. Taken together, our results identify the N-terminal region of G18 as a novel G protein-interacting domain that may have distinct regulatory effects within the Gi/o subfamily, and thus, it could potentially play a role in differentiating signals between these related G proteins.  相似文献   

11.
Wnt signaling regulates embryo development and tissue homeostasis, and its deregulation leads to an array of diseases, including cancer. Dapper1 has been shown to be a key negative regulator of Wnt signaling. However, its function and regulation remain poorly understood. In this study, we report that 14-3-3β interacts with human Dapper1 (hDpr1). The interaction is dependent on protein kinase A (PKA)-mediated phosphorylation of hDpr1 at Ser-237 and Ser-827. 14-3-3β binding attenuates the ability of hDpr1 to promote Dishevelled (Dvl) degradation, thus enhancing Wnt signaling. We further provide evidence that PKA-mediated Dpr1 phosphorylation may contribute to growth and tumor formation of colon cancer Caco2 cells. Finally, we show that cyclooxygenase-2 expression and PKA activation are positively correlated with Dvl protein levels in colon cancer samples. Together, our findings establish a novel layer of regulation of Wnt signaling by PKA via the 14-3-3-Dpr1-Dvl axis.  相似文献   

12.
Cellular signaling pathways exhibit complex response profiles with features such as thresholds and steep activation (i.e., ultrasensitivity). In a reconstituted mitotic spindle orientation pathway, activation of Drosophila Pins (LGN in mammals) by Gαi is ultrasensitive (apparent Hill coefficient of 3.1), such that Pins recruitment of the microtubule binding protein Mud (NuMA) occurs over a very narrow Gαi concentration range. Ultrasensitivity is required for Pins function in neuroblasts as a nonultrasensitive Pins mutant fails to robustly couple spindle position to cell polarity. Pins contains three Gαi binding GoLoco domains (GLs); Gαi binding to GL3 activates Pins, whereas GLs 1 and 2 shape the response profile. Although cooperative binding is one mechanism for generating ultrasensitivity, we find GLs 1 and 2 act as "decoys" that compete against activation at GL3. Many signaling proteins contain multiple protein interaction domains, and the decoy mechanism may be a common method for generating ultrasensitivity in regulatory pathways.  相似文献   

13.
G protein-gated inwardly rectifying potassium channel (GIRK) plays a crucial role in regulating heart rate and neuronal excitability. The gating of GIRK is regulated by the association and dissociation of G protein βγ subunits (Gβγ), which are released from pertussis toxin-sensitive G protein α subunit (Gα(i/o)) upon GPCR activation in vivo. Several lines of evidence indicate that Gα(i/o) also interacts directly with GIRK, playing functional roles in the signaling efficiency and the modulation of the channel activity. However, the underlying mechanism for GIRK regulation by Gα(i/o) remains to be elucidated. Here, we performed NMR analyses of the interaction between the cytoplasmic region of GIRK1 and Gα(i3) in the GTP-bound state. The NMR spectral changes of Gα upon the addition of GIRK as well as the transferred cross-saturation (TCS) results indicated their direct binding mode, where the K(d) value was estimated as ~1 mm. The TCS experiments identified the direct binding sites on Gα and GIRK as the α2/α3 helices on the GTPase domain of Gα and the αA helix of GIRK. In addition, the TCS and paramagnetic relaxation enhancement results suggested that the helical domain of Gα transiently interacts with the αA helix of GIRK. Based on these results, we built a docking model of Gα and GIRK, suggesting the molecular basis for efficient GIRK deactivation by Gα(i/o).  相似文献   

14.
GoLoco motif proteins act as guanine nucleotide dissociation inhibitors (GDIs) for G-protein alpha subunits of the adenylyl cyclase-inhibitory (Galpha(i/o)) class. Rap1GAP2 is a newly identified GoLoco motif- and RapGAP domain-containing protein, and thus is considered a potential integrator of heterotrimeric and monomeric GTPase signaling. Primary sequence analysis indicated that the Rap1GAP2 GoLoco motif contains a lysine (Lys-75), rather than an arginine, at the crucial residue responsible for binding the alpha and beta phosphates of GDP and exerting GDI activity. To determine the functional outcome of this sequence variation we conducted a biophysical analysis of the human Rap1GAP2b/c GoLoco motif. We found that human Rap1GAP2b/c was deficient in GDI activity and Galpha interaction capability. Mutation of lysine-75 to arginine could not regain functional activity of the Rap1GAP2b/c GoLoco motif. Thus, the Rap1GAP2b/c GoLoco motif can be classed as inactive towards Galpha subunits. We also found that the Rap1GAP1a GoLoco motif, which lacks seven N-terminal amino acid residues present in canonical GoLoco motifs, does not interact with Galpha(i1). In contrast, the GoLoco motif of Rap1GAP1b, which is canonical in primary sequence, was found to interact with Galpha(i1).GDP.  相似文献   

15.
The interaction of cellular proteins with the gap junction protein Connexin43 (Cx43) is thought to form a dynamic scaffolding complex that functions as a platform for the assembly of signaling, structural, and cytoskeletal proteins. A high stringency Scansite search of rat Cx43 identified the motif containing Ser373 (S373) as a 14-3-3 binding site. The S373 motif and the second best mode-1 motif, containing Ser244 (S244), are conserved in rat, mouse, human, chicken, and bovine, but not in Xenopus or zebrafish Cx43. Docking studies of a mouse/rat 14-3-3 homology model with the modeled phosphorylated S373 or S244 peptide ligands or their serine-to-alanine mutants, S373A or S244A, revealed that the pS373 motif facilitated a greater number of intermolecular contacts than the pS244 motif, thus supporting a stronger 14-3-3 binding interaction with the pS373 motif. The alanine substitution also reduced more than half the number of intermolecular contacts between 14-3-3 and the S373 motif, emphasizing the phosphorylation dependence of this interaction. Furthermore, the ability of the wild-type or the S244A GST-Cx43 C-terminal fusion protein, but not the S373A fusion protein, to interact with either 14-3-3 or 14-3-3zeta in GST pull-down experiments clearly demonstrated that the S373 motif mediates the direct interaction between Cx43 and 14-3-3 proteins. Blocking growth factor-induced Akt activation and presumably any Akt-mediated phosphorylation of the S373 motif in ROSE 199 cells did not prevent the down-regulation of Cx43-mediated cell-cell communication, suggesting that an Akt-mediated interaction with 14-3-3 was not involved in the disruption of Cx43 function.  相似文献   

16.
Activator of G protein signaling 3 (AGS3) is a guanine nucleotide dissociation inhibitor (GDI) that contains four G protein regulatory (GPR) or GoLoco motifs in its C-terminal domain. The entire C-terminal domain (AGS3-C) as well as certain peptides corresponding to individual GPR motifs of AGS3 bound to G alpha i1 and inhibited the binding of GTP by stabilizing the GDP-bound conformation of G alpha i1. The stoichiometry, free energy, enthalpy, and dissociation constant for binding of AGS3-C to G alpha i1 were determined using isothermal titration calorimetry. AGS3-C possesses two apparent high affinity (Kd approximately 20 nm) and two apparent low affinity (Kd approximately 300 nm) binding sites for G alpha i1. Upon deletion of the C-terminal GPR motif from AGS3-C, the remaining sites were approximately equivalent with respect to their affinity (Kd approximately 400 nm) for G alpha i1. Peptides corresponding to each of the four GPR motifs of AGS3 (referred to as GPR1, GPR2, GPR3, and GPR4, respectively, going from N to C terminus) bound to G alpha i1 with Kd values in the range of 1-8 microm. Although GPR1, GPR2, and GPR4 inhibited the binding of the fluorescent GTP analog BODIPY-FL-guanosine 5'-3-O-(thio)triphosphate to G alpha i1, GPR3 did not. However, addition of N- and C-terminal flanking residues to the GPR3 GoLoco core increased its affinity for G alpha i1 and conferred GDI activity similar to that of AGS3-C itself. Similar increases were observed for extended GPR2 and extended GPR1 peptides. Thus, while the tertiary structure of AGS3 may affect the affinity and activity of the GPR motifs contained within its sequence, residues outside of the GPR motifs strongly potentiate their binding and GDI activity toward G alpha i1 even though the amino acid sequences of these residues are not conserved among the GPR repeats.  相似文献   

17.
Lysophosphatidic acid (LPA) is a bioactive lipid that serves as an extracellular signaling molecule acting through cognate G protein-coupled receptors designated LPA(1-6) that mediate a wide range of both normal and pathological effects. Previously, LPA(1), a G(αi)-coupled receptor (which also couples to other G(α) proteins) to reduce cAMP, was shown to be essential for the initiation of neuropathic pain in the partial sciatic nerve ligation (PSNL) mouse model. Subsequent gene expression studies identified LPA(5), a G(α12/13)- and G(q)-coupled receptor that increases cAMP, in a subset of dorsal root ganglion neurons and also within neurons of the spinal cord dorsal horn in a pattern complementing, yet distinct from LPA(1), suggesting its possible involvement in neuropathic pain. We therefore generated an Lpar5 null mutant by targeted deletion followed by PSNL challenge. Homozygous null mutants did not show obvious base-line phenotypic defects. However, following PSNL, LPA(5)-deficient mice were protected from developing neuropathic pain. They also showed reduced phosphorylated cAMP response element-binding protein expression within neurons of the dorsal horn despite continued up-regulation of the characteristic pain-related markers Caα(2)δ(1) and glial fibrillary acidic protein, results that were distinct from those previously observed for LPA(1) deletion. These data expand the influences of LPA signaling in neuropathic pain through a second LPA receptor subtype, LPA(5), involving a mechanistically distinct downstream signaling pathway compared with LPA(1).  相似文献   

18.
The calcium-calmodulin–dependent protein kinase kinase-2 (CaMKK2) is a key regulator of cellular and whole-body energy metabolism. It is known to be activated by increases in intracellular Ca2+, but the mechanisms by which it is inactivated are less clear. CaMKK2 inhibition protects against prostate cancer, hepatocellular carcinoma, and metabolic derangements induced by a high-fat diet; therefore, elucidating the intracellular mechanisms that inactivate CaMKK2 has important therapeutic implications. Here we show that stimulation of cAMP-dependent protein kinase A (PKA) signaling in cells inactivates CaMKK2 by phosphorylation of three conserved serine residues. PKA-dependent phosphorylation of Ser495 directly impairs calcium-calmodulin activation, whereas phosphorylation of Ser100 and Ser511 mediate recruitment of 14-3-3 adaptor proteins that hold CaMKK2 in the inactivated state by preventing dephosphorylation of phospho-Ser495. We also report the crystal structure of 14-3-3ζ bound to a synthetic diphosphorylated peptide that reveals how the canonical (Ser511) and noncanonical (Ser100) 14-3-3 consensus sites on CaMKK2 cooperate to bind 14-3-3 proteins. Our findings provide detailed molecular insights into how cAMP-PKA signaling inactivates CaMKK2 and reveals a pathway to inhibit CaMKK2 with potential for treating human diseases.  相似文献   

19.
RGS14 is a multifunctional protein that contains an RGS domain, which binds active Gi/o alpha-GTP, a GoLoco/GPR domain, which binds inactive Gi alpha-GDP, and a tandem Rap1/2 binding domain (RBD). Studies were initiated to determine the roles of these domains and their interactions with Gi alpha on RGS14 subcellular localization. We report that RGS14 dynamic subcellular localization in HeLa cells depends on distinct domains and selective interactions with preferred Gi alpha isoforms. RGS14 shuttles rapidly between the nucleus and cytoplasm, and associates with centrosomes during interphase and mitosis. RGS14 localization to the nucleus depends on the RGS and RBD domains, its translocation out of the nucleus depends on the GoLoco/GPR domain, and its localization to centrosomes depends on the RBD domain. Gi alpha subunits (Gi alpha1, 2 and 3) localize predominantly at the plasma membrane. RGS14 binds directly to inactive and active forms of Gi alpha1 and Gi alpha3, but not Gi alpha2, both as a purified protein and when recovered from cells. RGS14 localizes predominantly at the plasma membrane in cells with inactive Gi alpha1 and Gi alpha3, but not Gi alpha2, whereas less RGS14 associates with active Gi alpha1/3 at the plasma membrane. RGS14 binding to inactive, but not active Gi alpha1/3 also prevents association with centrosomes or nuclear localization. Removal or functional inactivation of the GoLoco/GPR domain causes RGS14 to accumulate at centrosomes and in the nucleus, but renders it insensitive to recruitment to the plasma membrane by Gi alpha1/3. These findings highlight the importance of the GoLoco/GPR domain and its interactions with Gi alpha1/3 in determining RGS14 subcellular localization and linked functions.  相似文献   

20.
The malaria parasite invades the terminally differentiated erythrocytes, where it grows and multiplies surrounded by a parasitophorous vacuole. Plasmodium blood stages translocate newly synthesized proteins outside the parasitophorous vacuole and direct them to various erythrocyte compartments, including the cytoskeleton and the plasma membrane. Here, we show that the remodeling of the host cell directed by the parasite also includes the recruitment of dematin, an actin-binding protein of the erythrocyte membrane skeleton and its repositioning to the parasite. Internalized dematin was found associated with Plasmodium 14-3-3, which belongs to a family of conserved multitask molecules. We also show that, in vitro, the dematin-14-3-3 interaction is strictly dependent on phosphorylation of dematin at Ser(124) and Ser(333), belonging to two 14-3-3 putative binding motifs. This study is the first report showing that a component of the erythrocyte spectrin-based membrane skeleton is recruited by the malaria parasite following erythrocyte infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号