首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diabetic nephropathy is a leading cause of end-stage renal disease. A better understanding of the molecular mechanism involved in the early changes of the diabetic kidney may permit the development of new strategies to prevent diabetic nephropathy. This review focuses on the proximal tubule in the early diabetic kidney, particularly on its exposure and response to high glucose levels, albuminuria, and other factors in the diabetic glomerular filtrate, the hyperreabsorption of glucose, the unique molecular signature of the tubular growth phenotype, including aspects of senescence, and the resulting cellular and functional consequences. The latter includes the local release of proinflammatory chemokines and changes in proximal tubular salt and fluid reabsorption, which form the basis for the strong tubular control of glomerular filtration in the early diabetic kidney, including glomerular hyperfiltration and odd responses like the salt paradox. Importantly, these early proximal tubular changes can set the stage for oxidative stress, inflammation, hypoxia, and tubulointerstitial fibrosis, and thereby for the progression of diabetic renal disease.  相似文献   

2.
One of the first structural changes in diabetic nephropathy (DN) is the renal enlargement. These changes resulted in renal hypertrophy in both glomerular and tubular cells. Shrink in the kidney size, which described as kidney atrophy resulted from the loss of nephrons or abnormal nephron function and lead to loss of the kidney function. On the other hand, increase in kidney size, which described as hypertrophy resulted from increase in proximal tubular epithelial and glomerular cells size. However overtime, tubular atrophy and tubulointerstitial fibrosis occurs as subsequent changes in tubular cell hypertrophy, which is associated with the infiltration of fibroblast cells into the tubulointerstitial space. The rate of deterioration of kidney function shows a strong correlation with the degree of tubulointerstitial fibrosis. A consequence of long-standing diabetes/hyperglycemia may lead to major changes in renal structure that occur but not specific only to nephropathy. Identifying type of cells that involves in renal atrophy and hypertrophy may help to find a therapeutic target to treat diabetic nephropathy. In summary, the early changes in diabetic kidney are mainly includes the increase in tubular basement membrane thickening which lead to renal hypertrophy. On the other hand, only renal tubule is subjected to apoptosis, which is one of the characteristic morphologic changes in diabetic kidney to form tubular atrophy at the late stage of diabetes.  相似文献   

3.
Summary Taurine is an abundant free amino acid in the plasma and cytosol. The kidney plays a pivotal role in maintaining taurine balance. Immunohistochemical studies reveal a unique localization pattern of the amino acid along the nephron. Taurine acts as an antioxidant in a variety ofin vitro andin vivo systems. It prevents lipid peroxidation of glomerular mesangial cells and renal tubular epithelial cells exposed to high glucose or hypoxic culture conditions. Dietary taurine supplementation ameliorates experimental renal disease including models of refractory nephrotic syndrome and diabetic nephropathy. The beneficial effects of taurine are mediated by its antioxidant action. It does not attenuate ischemic or nephrotoxic acute renal failure or chronic renal failure due to sub-total ablation of kidney mass. Additional work is required to fully explain the scope and mechanism of action of taurine as a renoprotective agent in experimental kidney disease. Clinical trials are warranted to determine the usefulness of this amino acid as an adjunctive treatment of progressive glomerular disease and diabetic nephropathy.  相似文献   

4.
Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid into epoxyeicosatrienoic acids (EETs), which play important and diverse roles in the cardiovascular system. The anti-inflammatory, anti-apoptotic, pro-angiogenic, and anti-hypertensive properties of EETs in the cardiovascular system suggest a beneficial role for EETs in diabetic nephropathy. This study investigated the effects of endothelial specific overexpression of CYP2J2 epoxygenase on diabetic nephropathy in streptozotocin-induced diabetic mice. Endothelial CYP2J2 overexpression attenuated renal damage as measured by urinary microalbumin and glomerulosclerosis. These effects were associated with inhibition of TGF-β/Smad signaling in the kidney. Indeed, overexpression of CYP2J2 prevented TGF-β1-induced renal tubular epithelial-mesenchymal transition in vitro. These findings highlight the beneficial roles of the CYP epoxygenase-EET system in the pathogenesis of diabetic nephropathy.  相似文献   

5.
Endoplasmic reticulum stress has been suggested to play a crucial role in the pathogenesis of diabetic complications. However, whether it is involved in the renal injury of diabetic nephropathy is still not known. We investigated the involvement of ER-associated apoptosis in kidney disease of streptozocin (STZ)-induced diabetic rats. We used albuminuria examination, hematoxylin & eosin (H&E) staining and TUNEL analysis to identify the existence of diabetic nephropathy and enhanced apoptosis. We performed immunohistochemistry, Western blot, and real-time PCR to analyze indicators of ER molecule chaperone and ER-associated apoptosis. GRP78, the ER chaperone, was up-regulated significantly in diabetic kidney compared to control. Furthermore, three hallmarks of ER-associated apoptosis, C/EBP homologous protein (CHOP), c-JUN NH2-terminal kinase (JNK) and caspase-12, were found to have activated in the diabetic kidney. Taken together, those results suggested that apoptosis induced by ER stress occurred in diabetic kidney, which may contribute to the development of diabetic nephropathy.  相似文献   

6.
Although diabetic nephropathy (DN) is a major cause of end-stage renal disease, the mechanism of dysfunction has not yet been clarified. We previously reported that in diabetes proinsulin-producing bone marrow-derived cells (BMDCs) fuse with hepatocytes and neurons. Fusion cells are polyploidy and produce tumor necrosis factor (TNF)-α, ultimately causing diabetic complications. In this study, we assessed whether the same mechanism is involved in DN. We performed bone marrow transplantation from male GFP-Tg mice to female C57BL/6J mice and produced diabetes by streptozotocin (STZ) or a high-fat diet. In diabetic kidneys, massive infiltration of BMDCs and tubulointerstitial injury were prominent. BMDCs and damaged tubular epithelial cells were positively stained with proinsulin and TNF-α. Cell fusion between BMDCs and renal tubules was confirmed by the presence of Y chromosome. Of tubular epithelial cells, 15.4% contain Y chromosomes in STZ-diabetic mice, 8.6% in HFD-diabetic mice, but only 1.5% in nondiabetic mice. Fusion cells primarily expressed TNF-α and caspase-3 in diabetic kidney. These in vivo findings were confirmed by in vitro coculture experiments between isolated renal tubular cells and BMDCs. It was concluded that cell fusion between BMDCs and renal tubular epithelial cells plays a crucial role in DN.  相似文献   

7.
This article examines the actions of taurine on models of renal dysfunction, the potential mechanisms of taurine action and the possible clinical significance of these findings. Our laboratory has written previously on the role of taurine in renal function and we have focused upon the normal physiology of the kidney and on the mechanisms and regulation of the renal transport of taurine. This review is a distinct change of emphasis in that we describe a number of studies which have evaluated various aspects of renal dysfunction, including hypertension and proteinuria, specific glomerular and tubular disorders, acute and chronic renal conditions, urinary tract conditions including infection and nephrolithiasis, and diabetic nephropathy. The subject of chronic kidney disease and renal transplantation will also be examined relative to β amino acid. The studies evaluated will be mainly recent ones, recognizing that older reviews of the role of this taurine in the kidney are available.  相似文献   

8.
TGF-beta in diabetic kidney disease: role of novel signaling pathways   总被引:7,自引:0,他引:7  
Diabetic nephropathy is the leading cause of end-stage renal disease in the United States and is a major contributing cause of morbidity and mortality in patients with diabetes. Despite conventional therapy to improve glycemic and blood pressure control the incidence of diabetic nephropathy is reaching epidemic proportions worldwide. As the major pathologic feature of diabetic nephropathy is diffuse mesangial matrix expansion, the pro-sclerotic cytokine transforming growth factor-beta, TGF-beta, is a leading candidate to mediate the progression of the disease. Numerous studies have now demonstrated that TGF-beta is a key factor in experimental models of diabetic kidney disease as well as in patients with diabetic nephropathy. Recent studies have begun to explore the mechanisms by which TGF-beta is stimulated by high glucose and how TGF-beta exerts its matrix-stimulating effects on renal cells. TGF-beta may also be involved in mediating the vascular dysfunction of diabetic kidney disease via its effects on the key intracellular calcium channel, the inositol trisphosphate receptor (IP(3)R). As there is substantial evidence for a cause and effect relationship between upregulation of TGF-beta and the progression of diabetic kidney disease, future studies will seek to establish specific targets along these pathways at which to intervene.  相似文献   

9.
Diabetes is the major cause of end stage renal disease, and tubular alterations are now considered to participate in the development and progression of diabetic nephropathy (DN). Here, we report for the first time that expression of the insulin receptor (IR) in human kidney is altered during diabetes. We detected a strong expression in proximal and distal tubules from human renal cortex, and a significant reduction in type 2 diabetic patients. Moreover, isolated proximal tubules from type 1 diabetic rat kidney showed a similar response, supporting its use as an excellent model for in vitro study of human DN. IR protein down‐regulation was paralleled in proximal and distal tubules from diabetic rats, but prominent in proximal tubules from diabetic patients. A target of renal insulin signaling, the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK), showed increased expression and activity, and localization in compartments near the apical membrane of proximal tubules, which was correlated with activation of the GSK3β kinase in this specific renal structure in the diabetic condition. Thus, expression of IR protein in proximal tubules from type 1 and type 2 diabetic kidney indicates that this is a common regulatory mechanism which is altered in DN, triggering enhanced gluconeogenesis regardless the etiology of the disease. J. Cell. Biochem. 114: 639–649, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Evidence of apoptosis in human diabetic kidney   总被引:20,自引:0,他引:20  
Diabetic nephropathy is characterized by an early period of renal growth with glomerular and tubular cell hypertrophy, but this is followed by progressive glomerulosclerosis and tubulointerstitial fibrosis, associated with loss of renal tissue. We studied whether apoptotic cell death occurs in human diabetic nephropathy. Percutaneous renal biopsy samples were obtained from five patients with diabetic nephropathy who were receiving insulin and/or angiotensin-converting enzyme inhibitor therapy. Apoptosis was determined by the presence of DNA fragmentation, detected by in situ TUNEL staining, and by characteristic features on electron microscopy, such as chromatin condensation. Apoptosis was present in all five biopsy specimens, either in epithelial cells of the proximal or distal tubules, or in endothelial cells or interstitial cells. No apoptosis was detected in cells of the glomeruli. The present study provides evidence for apoptosis in human diabetic kidney, and suggests a role for apoptosis in the gradual loss of renal mass.  相似文献   

11.
A growing number of patients are recognized worldwide to have chronic kidney disease. Glomerular and interstitial fibrosis are hallmarks of renal progression. However, fibrosis of the kidney remains an unresolved challenge, and its molecular mechanisms are still not fully understood. Gremlin is an embryogenic gene that has been shown to play a key role in nephrogenesis, and its expression is generally low in the normal adult kidney. However, gremlin expression is elevated in many human renal diseases, including diabetic nephropathy, pauci-immune glomerulonephritis and chronic allograft nephropathy. Several studies have proposed that gremlin may be involved in renal damage by acting as a downstream mediator of TGF-β. To examine the in vivo role of gremlin in kidney pathophysiology, we generated seven viable transgenic mouse lines expressing human gremlin (GREM1) specifically in renal proximal tubular epithelial cells under the control of an androgen-regulated promoter. These lines demonstrated 1.2- to 200-fold increased GREM1 expression. GREM1 transgenic mice presented a normal phenotype and were without proteinuria and renal function involvement. In response to the acute renal damage cause by folic acid nephrotoxicity, tubule-specific GREM1 transgenic mice developed increased proteinuria after 7 and 14 days compared with wild-type treated mice. At 14 days tubular lesions, such as dilatation, epithelium flattening and hyaline casts, with interstitial cell infiltration and mild fibrosis were significantly more prominent in transgenic mice than wild-type mice. Tubular GREM1 overexpression was correlated with the renal upregulation of profibrotic factors, such as TGF-β and αSMA, and with increased numbers of monocytes/macrophages and lymphocytes compared to wild-type mice. Taken together, our results suggest that GREM1-overexpressing mice have an increased susceptibility to renal damage, supporting the involvement of gremlin in renal damage progression. This transgenic mouse model could be used as a new tool for enhancing the knowledge of renal disease progression.  相似文献   

12.
Cardiovascular disease in patients with diabetic nephropathy   总被引:1,自引:0,他引:1  
Diabetic nephropathy, which represents a major form of chronic kidney disease (CKD), is a leading cause of end-stage renal disease worldwide, and is also a risk factor for cardiovascular disease (CVD). Patients with diabetes and CKD have poorer outcomes after myocardial infarction. The underlying pathogenic mechanism that links diabetic nephropathy to a high risk of CVD remains unclear. In addition to traditional risk factors, including hypertension, hyperglycemia, and dyslipidemia, identification of novel modifiable risk factors is important in preventing CVD in people with diabetes. Inflammation/oxidative stress are known to be associated with an increased risk for CVD in patients with diabetic nephropathy. Moreover, homocysteine, advanced glycation end products, asymmetric dimethylarginine, and anemia may play a role in the development and progression of atherosclerosis in patients with diabetic nephropathy. This review summarizes the epidemiologic evidence, molecular mechanisms responsible for the increased risk for CVD in patients with diabetic nephropathy, and therapeutic intervention for diabetic nephropathy as evidenced by large-scale clinical trials.  相似文献   

13.
Diabetic nephropathy is a major long‐term complication of diabetes mellitus and one of the most common causes of end‐stage renal disease. Thickening of the glomerular basement membrane, glomerular cell hypertrophy and podocyte loss are among the main pathological changes that occur during diabetic nephropathy, resulting in proteinuria. Injury to podocytes, which are a crucial component of the glomerular filtration barrier, seems to play a key role in the development of diabetic nephropathy. Recent studies have suggested that dysregulation of AMP‐activated kinase protein, which is an essential cellular energy sensor, may play a fundamental role in this process. The purpose of this review is to highlight the molecular mechanisms associated with AMP‐activated protein kinase (AMPK) in podocytes that are involved in the pathogenesis of diabetic nephropathy.  相似文献   

14.
Transforming growth factor-beta(1) (TGFbeta(1)) is recognized as both a fibrogenic and inflammatory cytokine and plays a critical role in the kidney pathophysiology. The dysregulation of TGFbeta(1) has been linked with the development of diabetic nephropathy. Connective tissue growth factor (CTGF) is a fibrogenic cytokine and is recognized as a downstream mediator of TGFbeta(1) in kidney fibrosis. TGFbeta(1) is involved in immunomodulation and fibrosis in the kidney. However, CTGF plays a more specific role in the fibrogenic pathways in the kidney proximal tubule cells. Moreover, CTGF facilitates TGFbeta(1) signaling and promotes renal fibrosis. This suggests CTGF could be a potential target for kidney fibrosis. Long-term inhibition and targeting TGFbeta(1) directly is problematic, therefore, a more fruitful direction targeting diabetic nephropathy may involve the development of therapeutic strategies specifically targeting CTGF.  相似文献   

15.
肾脏疾病发展为慢性肾衰竭是个不可逆的过程,脂质代谢的异常,对肾病患者具有重要的影响。多项实验已经证实,即使在肾病的早期阶段,也会出现不同程度的脂质及脂类代谢的异常,高密度脂蛋白(HDL)、低密度脂蛋白(LDL)、脂联素、瘦素等脂类代谢相关物质发生改变,不仅对血浆脂代谢产生影响,对于肾小球及肾小管的结构及功能也会有一定的损伤作用。肾病患者,如肾病综合征、慢性肾衰竭等疾病,多数有肾小球及肾小管间质的损伤,肾脏的脂毒性加重肾单位的破坏。随着人们对于慢性肾脏病认识的逐渐深入,降脂治疗的普遍应用,人们普遍认为改善血浆中脂类的水平,对于肾病的治疗,尤其对于慢性肾衰竭的预防具有重要作用。  相似文献   

16.
整合素相关激酶在糖尿病肾病的表达及其意义   总被引:6,自引:0,他引:6  
目的探讨整合素相关激酶(Integrin-Linked Kinase,ILK)在糖尿病肾病患者肾组织中的表达及其意义.方法对3例正常肾组织,14例糖尿病肾病患者肾穿刺活检标本,应用免疫组织化学方法检测ILK和FN在肾组织的阳性表达强度,并作图像分析处理.结果在正常肾组织,ILK主要表达于肾小球脏层上皮细胞,系膜细胞和小管上皮细胞呈弱表达.在糖尿病肾病,ILK表达于肾小球脏层上皮细胞和系膜细胞,在萎缩变性的肾小管上皮细胞表达增强.在肾小球结节硬化时,ILK表达明显减少.此外,ILK和FN的表达量在糖尿病肾病早、中期成正相关(P<0.001),在糖尿病肾病晚期成负相关(P<0.05).结论 ILK在糖尿病肾病肾组织中表达量显著增加,并与FN的表达有一定的相关性,说明其可能通过促进细胞外基质FN等的积聚,在糖尿病肾小球硬化过程中发挥重要作用.  相似文献   

17.
Animal models of spontaneous diabetic kidney disease   总被引:10,自引:0,他引:10  
Kidney disease, characterized by proteinuria and glomerular lesions, is a common complication of spontaneous diabetes mellitus in many animal species. It occurs in animals with hypoinsulinemia, hyperinsulinemia, or impaired glucose tolerance. The renal functional and structural abnormalities in spontaneously diabetic animals resemble human diabetic nephropathy in many respects. Mesangial expansion and glomerular basement membrane thickening, two structural hallmarks of diabetic glomerulopathy in humans, are the most frequently encountered lesions in animals. In addition, a nodular form of mesangial expansion that resembles but is not identical with human nodular glomerulosclerosis or the Kimmelstiel-Wilson lesion has been observed in some animal models. Other abnormalities, such as exudative hyaline lesions and arteriolar hyalinosis, have also been noted occasionally in other models. Although diabetic animals may develop kidney disease that resembles human diabetic nephropathy, no single animal model develops renal changes identical to those seen in humans. Nonetheless, animal models with spontaneous diabetic kidney disease may be useful for investigating the mechanisms of development of diabetic nephropathy and the effects of various treatment modalities on the progression of renal disease.  相似文献   

18.
Diabetic nephropathy, inflammation, hyaluronan and interstitial fibrosis   总被引:1,自引:0,他引:1  
Hyaluronan (HA) is a ubiquitous connective tissue glycosaminoglycan component of most extracellular matrices and alterations in its synthesis have been suggested to be involved in the glomerular changes of diabetic nephropathy. Similarly it has been suggested that macrophages are involved in the initiation of diabetic glomerular injury. Much less is known regarding the role of the prognostic value of changes in interstitial HA and interstitial inflammatory infiltrate. The aim of this study was to examine the potential association of inflammatory infiltrate, deposition of the matrix component hyaluronan and inter-alpha inhibitor (which is involved in HA assembly) and clinical outcome in diabetic nephropathy. Histological specimens of 40 patients with biopsy proven diabetic nephropathy were examined. Based on the rate of change in estimated GFR (eGFR, abbreviated MDRD formula), patients were defined as late presenters, progressors or non-progressors. The degree of interstitial fibrosis was associated with progression of disease and late presentation. There was a significant greater number of CD68-positive cells in the interstitium of patients who subsequently developed progressive renal disease, or those who presented with advanced disease compared to non-progressors. In contrast, there was significant staining for interstitial HA in all the patient groups. Furthermore there was no correlation between the accumulation of HA and CD68-positive macrophages. In addition all patients with biopsy-proven diabetic nephropathy had significantly greater interstitial IalphaI compared to the normal controls and there was a significant correlation between interstitial HA and IalphaI. Increased HA is seen at all stages of diabetic change in the kidney but is not predictive of progression. Macrophage influx, however, is directly related to the progression of diabetic nephropathy and is not associated with HA accumulation.  相似文献   

19.
糖尿病肾病发病分子机制   总被引:4,自引:0,他引:4       下载免费PDF全文
糖尿病肾病(DN)是高血糖所导致的一种主要的微血管并发症。在全世界糖尿病病人中,糖尿病肾病都有着非常高的发病率和致死率。并且在中国,糖尿病肾病已经成为一种常见的导致末期肾衰竭的因素。由于糖尿病肾病患者不断增多,传统的单纯通过控制血糖来控制糖尿病肾病并没有取得理想的效果,因此临床上迫切需要一些新的治疗方法来控制糖尿病肾病的发生和发展。最近的研究表明肾素-血管紧张素-醛固酮系统(RAAS)、蛋白激酶-C(PKC)、还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶、转化生长因子-β(TGF-β)等都单独的或共同的参与了DN的发生和发展过程。这些通路彼此交叉,十分复杂,因此需要对糖尿病肾病发病分子机制进行全面的综合的理解。这篇文章旨在讨论已发现的与糖尿病肾病密切相关的分子机制以及下调通路。  相似文献   

20.
Diabetic nephropathy is one of the main causes of end-stage renal disease, in which the development of tubular damage depends on factors such as high glucose levels, albuminuria and advanced glycation end-product. In this study, we analyzed the involvement of heparanase, a heparan sulfate glycosidase, in the homeostasis of proximal tubular epithelial cells in the diabetic milieu. In vitro studies were performed on a wild-type and stably heparanase-silenced adult tubular line (HK2) and HEK293. Gene and protein expression analyses were performed in the presence and absence of diabetic mediators. Albumin and advanced glycation end-product, but not high glucose levels, increased heparanase expression in adult tubular cells via the AKT/PI3K signaling pathway. This over-expression of heparanase is then responsible for heparan sulfate reduction via its endoglycosidase activity and its capacity to regulate the heparan sulfate-proteoglycans core protein. In fact, heparanase regulates the gene expression of syndecan-1, the most abundant heparan sulfate-proteoglycans in tubular cells. We showed that heparanase is a target gene of the diabetic nephropathy mediators albumin and advanced glycation end-product, so it may be relevant to the progression of diabetic nephropathy. It could take part in several processes, e.g. extracellular-matrix remodeling and cell-cell crosstalk, via its heparan sulfate endoglycosidase activity and capacity to regulate the expression of the heparan sulfate-proteoglycan syndecan-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号