首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In 1926, the famous American pediatric cardiologist, Dr. Helen B. Taussig, observed that in situs inversus totalis (SIT) main gross anatomical structures and the deep muscle bundles of the ventricles were a mirror image of the normal structure, while the direction of the superficial muscle bundles remained unchanged (H. B. Taussig, Bull Johns Hopkins Hosp 39: 199-202, 1926). She and we wondered about the implication of this observation for left ventricular (LV) deformation in SIT. We used magnetic resonance tagging to obtain information on LV deformation, rotation, and torsion from a series of tagged images in five evenly distributed, parallel, short-axis sections of the heart of nine controls and eight persons with SIT without other structural (cardiac) defect. In the controls, during ejection, the apex rotated counterclockwise with respect to the base, when looking from the apex. Furthermore, the base-to-apex gradient in rotation (torsion) was negative and similar at all longitudinal levels of the LV. In SIT hearts, torsion was positive near the base, indicating mirrored myofiber orientations compared with the normal LV. Contrary to expectations, torsion in the apical regions of SIT LVs was as in normal ones, reflecting a normal internal myocardial architecture. The transition zone with zero torsion, found between the apex and base, suggests that the heart structure in SIT is essentially different from that in the normal heart. This provides a unique possibility to study regulatory mechanisms for myocardial fiber orientation and mechanical load, which has been dealt with in the companion paper by Kroon et al.  相似文献   

2.
Recent computational models of optimized left ventricular (LV) myofiber geometry that minimize the spatial variance in sarcomere length, stress, and ATP consumption have predicted that a midwall myofiber angle of 20 degrees and transmural myofiber angle gradient of 140 degrees from epicardium to endocardium is a functionally optimal LV myofiber geometry. In order to test the extent to which actual fiber angle distributions conform to this prediction, we measured local myofiber angles at an average of nine transmural depths in each of 32 sites (4 short-axis levels, 8 circumferentially distributed blocks in each level) in five normal ovine LVs. We found: (1) a mean midwall myofiber angle of -7 degrees (SD 9), but with spatial heterogeneity (averaging 0 degrees in the posterolateral and anterolateral wall near the papillary muscles, and -9 degrees in all other regions); and (2) an average transmural gradient of 93 degrees (SD 21), but with spatial heterogeneity (averaging a low of 51 degrees in the basal posterior sector and a high of 130 degrees in the mid-equatorial anterolateral sector). We conclude that midwall myofiber angles and transmural myofiber angle gradients in the ovine heart are regionally non-uniform and differ significantly from the predictions of present-day computationally optimized LV myofiber models. Myofiber geometry in the ovine heart may differ from other species, but model assumptions also underlie the discrepancy between experimental and computational results. To test the predictive capability of the current computational model would we propose using an ovine specific LV geometry and comparing the computed myofiber orientations to those we report herein.  相似文献   

3.
Mathematical models provide a suitable platform to test hypotheses on the relation between local mechanical stimuli and responses to cardiac structure and geometry. In the present model study, we tested hypothesized mechanical stimuli and responses in cardiac adaptation to mechanical load on their ability to estimate a realistic myocardial structure of the normal and situs inversus totalis (SIT) left ventricle (LV). In a cylindrical model of the LV, 1) mass was adapted in response to myofiber strain at the beginning of ejection and to global contractility (average systolic pressure), 2) cavity volume was adapted in response to fiber strain during ejection, and 3) myofiber orientations were adapted in response to myofiber strain during ejection and local misalignment between neighboring tissue parts. The model was able to generate a realistic normal LV geometry and structure. In addition, the model was also able to simulate the instigating situation in the rare SIT LV with opposite torsion and transmural courses in myofiber direction between the apex and base [Delhaas et al. (6)]. These results substantiate the importance of mechanical load in the formation and maintenance of cardiac structure and geometry. Furthermore, in the model, adapted myocardial architecture was found to be insensitive to fiber misalignment in the transmural direction, i.e., myofiber strain during ejection was sufficient to generate a realistic transmural variation in myofiber orientation. In addition, the model estimates that, despite differences in structure, global pump work and the mass of the normal and SIT LV are similar.  相似文献   

4.
Occasionally, individuals have a complete, mirror-image reversal of their internal organ position, called situs inversus totalis (SIT). Whereas gross anatomy is mirror-imaged in SIT, this might not be the case for the internal architecture of organs, e.g. the myofiber pattern in the left cardiac ventricle. We performed a Magnetic Resonance Tagging study in nine controls and in eight subjects with SIT to assess the deformation pattern in the apical half of the LV wall. It appeared that both groups had the same LV apical deformation pattern. This implies that not only the superficial LV apical layers in SIT follow a normal, not inverted pattern, but the deeper layers as well. Apparently, the embryonic L/R controlling genetic pathway does determine situs-specific gross anatomy morphogenesis but it is not the only factor regulating fiber architecture within the apical part of the LV wall. We propose that mechanical forces generated in the not-inverted molecular structure of the basic right-handed helical contractile components of the sarcomere play a role in shaping the LV apex.  相似文献   

5.

In patient-specific mathematical models of cardiac electromechanics, usually a patient-specific geometry and a generic myofiber orientation field are used as input, upon which myocardial tissue properties are tuned to clinical data. It remains unclear to what extent deviations in myofiber orientation and geometry between model and patient influence model predictions on cardiac function. Therefore, we evaluated the sensitivity of cardiac function for geometry and myofiber orientation in a biventricular (BiV) finite element model of cardiac mechanics. Starting out from a reference geometry in which myofiber orientation had no transmural component, two new geometries were defined with either a 27 % decrease in LV short- to long-axis ratio, or a 16 % decrease of RV length, but identical LV and RV cavity and wall volumes. These variations in geometry caused differences in both local myofiber and global pump work below 6 %. Variation of fiber orientation was induced through adaptive myofiber reorientation that caused an average change in fiber orientation of \({\sim }8^\circ \) predominantly through the formation of a component in transmural direction. Reorientation caused a considerable increase in local myofiber work \(({\sim }18\,\%)\) and in global pump work \(({\sim }17\,\%)\) in all three geometries, while differences between geometries were below 5 %. The findings suggest that implementing a realistic myofiber orientation is at least as important as defining a patient-specific geometry. The model for remodeling of myofiber orientation seems a useful approach to estimate myofiber orientation in the absence of accurate patient-specific information.

  相似文献   

6.
7.
With aging, structural and functional changes occur in the myocardium without obvious impairment of systolic left ventricular (LV) function. Transmural differences in myocardial vulnerability for these changes may result in increase of transmural inhomogeneity in contractile myofiber function. Subendocardial fibrosis and impairment of subendocardial perfusion due to hypertension might change the transmural distribution of contractile myofiber function. The ratio of LV torsion to endocardial circumferential shortening (torsion-to-shortening ratio; TSR) during systole reflects the transmural distribution of contractile myofiber function. We investigated whether the transmural distribution of systolic contractile myofiber function changes with age. Magnetic resonance tissue tagging was performed to derive LV torsion and endocardial circumferential shortening. TSR was quantified in asymptomatic young [age 23.2 (SD 2.6) yr, n = 15] and aged volunteers [age 68.8 (SD 4.4) yr, n = 16]. TSR and its standard deviation were significantly elevated in the aged group [0.47 (SD 0.12) aged vs. 0.34 (SD 0.05) young; P = 0.0004]. In the aged group, blood pressure and the ratio of LV wall mass to end-diastolic volume were mildly elevated but could not be correlated to the increase in TSR. There were no significant differences in other indexes of systolic LV function such as end-systolic volume and ejection fraction. The elevated systolic TSR in the asymptomatic aged subjects suggests that aging is associated with local loss of contractile myofiber function in the subendocardium relative to the subepicardium potentially caused by subclinical pathological incidents.  相似文献   

8.
Cardiac myofiber orientation is a crucial determinant of the distribution of myocardial wall stress. Myofiber orientation is commonly quantified by helix and transverse angles. Accuracy of reported helix angles is limited. Reported transverse angle data are incomplete. We measured cardiac myofiber orientation postmortem in five healthy goat hearts using magnetic resonance-diffusion tensor imaging. A novel local wall-bound coordinate system was derived from the characteristics of the fiber field. The transmural course of the helix angle corresponded to data reported in literature. The mean midwall transverse angle ranged from -12 +/- 4 degrees near the apex to +9.0 +/- 4 degrees near the base of the left ventricle, which is in agreement with the course predicted by Rijcken et al. (18) using a uniform load hypothesis. The divergence of the myofiber field was computed, which is a measure for the extent to which wall stress is transmitted through the myofiber alone. It appeared to be <0.07 mm(-1) throughout the myocardial walls except for the fusion sites between the left and right ventricles and the insertion sites of the papillary muscles.  相似文献   

9.
Changes in muscle fiber orientation across the wall of the left ventricle (LV) cause the apex of the heart to turn 10-15 deg in opposition to its base during systole and are believed to increase stroke volume and lower wall stress in healthy hearts. Studies show that cardiac torsion is sensitive to various disease states, which suggests that it may be an important aspect of cardiac function. Modern imaging techniques have sparked renewed interest in cardiac torsion dynamics, but no work has been done to determine whether mechanically augmented apical torsion can be used to restore function to failing hearts. In this report, we discuss the potential advantages of this approach and present evidence that turning the cardiac apex by mechanical means can displace a clinically significant volume of blood from failing hearts. Computational models of normal and reduced-function LVs were created to predict the effects of applied apical torsion on ventricular stroke work and wall stress. These same conditions were reproduced in anesthetized pigs with drug-induced heart failure using a custom apical torsion device programmed to rotate over various angles during cardiac systole. Simulations of applied 90 deg torsion in a prolate spheroidal computational model of a reduced-function pig heart produced significant increases in stroke work (25%) and stroke volume with reduced fiber stress in the epicardial region. These calculations were in substantial agreement with corresponding in vivo measurements. Specifically, the computer model predicted torsion-induced stroke volume increases from 13.1 to 14.4 mL (9.9%) while actual stroke volume in a pig heart of similar size and degree of dysfunction increased from 11.1 to 13.0 mL (17.1%). Likewise, peak LV pressures in the computer model rose from 85 to 95 mm Hg (11.7%) with torsion while maximum ventricular pressures in vivo increased in similar proportion, from 55 to 61 mm Hg (10.9%). These data suggest that: (a) the computer model of apical torsion developed for this work is a fair and accurate predictor of experimental outcomes, and (b) supra-physiologic apical torsion may be a viable means to boost cardiac output while avoiding blood contact that occurs with other assist methods.  相似文献   

10.
11.

The helix angle configuration of the myocardium is understood to contribute to the heart function, as finite element (FE) modeling of postnatal hearts showed that altered configurations affected cardiac function and biomechanics. However, similar investigations have not been done on the fetal heart. To address this, we performed image-based FE simulations of fetal left ventricles (LV) over a range of helix angle configurations, assuming a linear variation of helix angles from epicardium to endocardium. Results showed that helix angles have substantial influence on peak myofiber stress, cardiac stroke work, myocardial deformational burden, and spatial variability of myocardial strain. A good match between LV myocardial strains from FE simulations to those measured from 4D fetal echo images could only be obtained if the transmural variation of helix angle was generally between 110 and 130°, suggesting that this was the physiological range. Experimentally discovered helix angle configurations from the literature were found to produce high peak myofiber stress, high cardiac stroke work, and a low myocardial deformational burden, but did not coincide with configurations that would optimize these characteristics. This may suggest that the fetal development of myocyte orientations depends concurrently on several factors rather than a single factor. We further found that the shape, rather than the size of the LV, determined the manner at which helix angles influenced these characteristics, as this influence changed significantly when the LV shape was varied, but not when a heart was scaled from fetal to adult size while retaining the same shape. This may suggest that biomechanical optimality would be affected during diseases that altered the geometric shape of the LV.

  相似文献   

12.
Previous studies of transmural left ventricular (LV) strains suggested that the myocardium overlying the papillary muscle displays decreased deformation relative to the anterior LV free wall or significant regional heterogeneity. These comparisons, however, were made using different hearts. We sought to extend these studies by examining three equatorial LV regions in the same heart during the same heartbeat. Therefore, deformation was analyzed from transmural beadsets placed in the equatorial LV myocardium overlying the anterolateral papillary muscle (PAP), as well as adjacent equatorial LV regions located more anteriorly (ANT) and laterally (LAT). We found that the magnitudes of LAT normal longitudinal and radial strains, as well as major principal strains, were less than ANT, while those of PAP were intermediate. Subepicardial and midwall myofiber angles of LAT, PAP, and ANT were not significantly different, but PAP subendocardial myofiber angles were significantly higher (more longitudinal as opposed to circumferential orientation). Subepicardial and midwall myofiber strains of ANT, PAP, and LAT were not significantly different, but PAP subendocardial myofiber strains were less. Transmural gradients in circumferential and radial normal strains, and major principal strains, were observed in each region. The two main findings of this study were as follows: 1) PAP strains are largely consistent with adjacent LV equatorial free wall regions, and 2) there is a gradient of strains across the anterolateral equatorial left ventricle despite similarities in myofiber angles and strains. These findings point to graduated equatorial LV heterogeneity and suggest that regional differences in myofiber coupling may constitute the basis for such heterogeneity.  相似文献   

13.
The vertebrate embryonic ventricle transforms from a smooth-walled single tube to trabeculated right ventricular (RV) and left ventricular (LV) chambers during cardiovascular morphogenesis. We hypothesized that ventricular contraction patterns change from globally isotropic to chamber-specific anisotropic patterns during normal morphogenesis and that these deformation patterns are influenced by experimentally altered mechanical load produced by chronic left atrial ligation (LAL). We measured epicardial RV and LV wall strains during normal development and left heart hypoplasia produced by LAL in Hamburger-Hamilton stage 21, 24, 27, and 31 chick embryos. Normal RV contracted isotropically until stage 24 and then contracted preferentially in the circumferential direction. Normal LV contracted isotropically at stage 21, preferentially in the longitudinal direction at stages 24 and 27, and then in the circumferential direction at stage 31. LAL altered both RV and LV strain patterns, accelerated the onset of preferential RV circumferential strain patterns, and abolished preferential LV longitudinal strain (P < 0.05 vs. normal). Mature patterns of anisotropic RV and LV deformation develop coincidentally with morphogenesis, and changes in these deformation patterns reflect altered cardiovascular function and/or morphogenesis.  相似文献   

14.
Complex congenital heart disease (CHD) is often seen in conjunction with heterotaxy, the randomization of left-right visceral organ situs. However, the link between cardiovascular morphogenesis and left-right patterning is not well understood. To elucidate the role of left-right patterning in cardiovascular development, we examined situs anomalies and CHD in mice with a loss of function allele of Dnaic1, a dynein protein required for motile cilia function and left-right patterning. Dnaic1 mutants were found to have nodal cilia required for left-right patterning, but they were immotile. Half the mutants had concordant organ situs comprising situs solitus or mirror symmetric situs inversus. The remaining half had randomized organ situs or heterotaxy. Looping of the heart tube, the first anatomical lateralization, showed abnormal L-loop bias rather than the expected D-loop orientation in heterotaxy and nonheterotaxy mutants. Situs solitus/inversus mutants were viable with mild or no defects consisting of azygos continuation and/or ventricular septal defects, whereas all heterotaxy mutants had complex CHD. In heterotaxy mutants, but not situs solitus/inversus mutants, the morphological left ventricle was thin and often associated with a hypoplastic transverse aortic arch. Thus, in conclusion, Dnaic1 mutants can achieve situs solitus or inversus even with immotile nodal cilia. However, the finding of abnormal L-loop bias in heterotaxy and nonheterotaxy mutants would suggest motile cilia are required for normal heart looping. Based on these findings, we propose motile nodal cilia patterns heart looping but heart and visceral organ lateralization is driven by signaling not requiring nodal cilia motility.  相似文献   

15.
It is well known that systolic wall thickening in the inner half of the left ventricular (LV) wall is of greater magnitude than predicted by myofiber contraction alone. Previous studies have related the deformation of the LV wall to the orientation of the laminar architecture. Using this method, wall thickening can be interpreted as the sum of contributions due to extension, thickening, and shearing of the laminar sheets. We hypothesized that the thickening mechanics of the ventricular wall are determined by the structural organization of the underlying tissue, and may not be influenced by factors such as loading and activation sequence. To test this hypothesis, we calculated finite strains from biplane cineradiography of transmural markers implanted in apical (n = 22) and basal (n = 12) regions of the canine anterior LV free wall. Strains were referred to three-dimensional laminar microstructural axes measured by histology. The results indicate that sheet angle is of opposite sign in the apical and basal regions, but absolute value differs only in the subepicardium. During systole, shearing and extension of the laminae contribute the most to wall thickening, accounting for >90% (transmural average) at both apex and base. These two types of deformation are also most prominent during diastolic inflation. Increasing afterload has no effect on the pattern of systolic wall thickening, nor does reversing transmural activation sequence. The pattern of wall thickening appears to be a function of the orientation of the laminar sheets, which vary regionally and transmurally. Thus, acute interventions do not appear to alter the contributions of the laminae to wall thickening, providing further evidence that the structural architecture of the ventricular wall is the dominant factor for its regional mechanical function.  相似文献   

16.
Saccharomyces cerevisiae strains containing temperature-sensitive mutations in the SIT4 protein phosphatase arrest in late G1 at the nonpermissive temperature. Order-of-function analysis shows that SIT4 is required in late G1 for progression into S phase. While the levels of SIT4 do not change in the cell cycle, SIT4 associates with two high-molecular-weight phosphoproteins in a cell-cycle-dependent fashion. In addition, we have identified a polymorphic gene, SSD1, that in some versions can suppress the lethality due to a deletion of SIT4 and can also partially suppress the phenotypic defects due to a null mutation in BCY1. The SSD1 protein is implicated in G1 control and has a region of similarity to the dis3 protein of Schizosaccharomyces pombe. We have also identified a gene, PPH2alpha, that in high copy number can partially suppress the growth defect of sit4 strains. The PPH2 alpha gene encodes a predicted protein that is 80% identical to the catalytic domain of mammalian type 2A protein phosphatases but also has an acidic amino-terminal extension not present in other phosphatases.  相似文献   

17.
Rats and genetically manipulated mouse models have played an important role in the exploration of molecular causes of cardiovascular diseases. However, it has not been fully investigated whether mice or rats and humans manifest similar patterns of ventricular wall motion. Although similarities in anatomy and myofiber architecture suggest that fundamental patterns of ventricular wall motion may be similar, the considerable differences in heart size, heart rate, and sarcomeric protein isoforms may yield quantitative differences in ventricular wall mechanics. To further our understanding of the basic mechanisms of myofiber contractile performance, we quantified regional and global indexes of ventricular wall motion in mice, rats, and men using magnetic resonance (MR) imaging. Both regular cine and tagged MR images at apical, midventricular, and basal levels were acquired from six male volunteers, six Fischer 344 rats, and seven C57BL/6 mice. Morphological parameters and ejection fraction were computed directly from cine images. Myocardial twist (rotation angle), torsion (net twist per unit length), circumferential strain, and normalized radial shortening were calculated by homogeneous strain analysis from tagged images. Our data show that ventricular twist was conserved among the three species, leading to a significantly smaller torsion, measured as net twist per unit length, in men. However, both circumferential strain and normalized radial shortening were the largest in male subjects. Although other parameters, such as circumferential-longitudinal shear strain, need to be evaluated, and the causes of these differences in contractile mechanics remain to be elucidated, the preservation of twist appears fundamental to cardiac function and should be considered in studies that extrapolate data from animals to humans.  相似文献   

18.
19.

Background

The aim of this study was to observe the rotation patterns at the papillary muscle plane in the Left Ventricle(LV) with normal subjects using two-dimensional speckle tracking imaging(2D-STI).

Methods

We acquired standard of the basal, the papillary muscle and the apical short-axis images of the LV in 64 subjects to estimate the LV rotation motion by 2D-STI. The rotational degrees at the papillary muscle short-axis plane were measured at 15 different time points in the analysis of two heart cycles.

Results

There were counterclockwise rotation, clockwise rotation, and counterclockwise to clockwise rotation at the papillary muscle plane in the LV with normal subjects, respectively. The ROC analysis of the rotational degrees was performed at the papillary muscle short-axis plane at the peak LV torsion for predicting whether the turnaround point of twist to untwist motion pattern was located at the papillary muscle level. Sensitivity and specificity were 97% and 67%, respectively, with a cut-off value of 0.34°, and an area under the ROC curve of 0.8. At the peak LV torsion, there was no correlation between the rotational degrees at the papillary muscle short-axis plane and the LVEF in the normal subjects(r = 0.000, p = 0.998).

Conclusions

In the study, we conclude that there were three rotation patterns at the papillary muscle short-axis levels, and the transition from basal clockwise rotation to apical counterclockwise rotation is located at the papillary muscle level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号