首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
十字花科植物自交不亲和性(SI)受墨位点(S-locus)编码的sRK和sCR控制,它们分别是柱头和花粉中的sI特异识别因子。野生型拟南芥不具有sI,而近来通过转基因手段将外源艘K—scR基因转入野生型拟南芥可以使其表现sI,由此建立了一个可用于十字花科sI研究的新型模式植物。本文综述了利用这种转基因拟南芥在SI机制及进化方面取得的进展,包括sI新基因的挖掘、候选基因功能分析和拟南芥生殖模式的转变等。  相似文献   

2.
A recent investigation found evidence that the transition of Arabidopsis thaliana from ancestral self-incompatibility (SI) to full self-compatibility occurred very recently and suggested that this occurred through a selective fixation of a nonfunctional allele (PsiSCR1) at the SCR gene, which determines pollen specificity in the incompatibility response. The main evidence is the lack of polymorphism at the SCR locus in A. thaliana. However, the nearby SRK gene, which determines stigma specificity in self-incompatible Brassicaceae species, has extremely high sequence diversity, with 3 very divergent SRK haplotypes, 2 of them present in multiple strains. Such high diversity is extremely unusual in this species, and it suggests the possibility that multiple, different SRK haplotypes may have been preserved from A. thaliana's self-incompatible ancestor. To study the evolution of S-haplotypes in the A. thaliana lineage, we searched the 2 most closely related Arabidopsis species Arabidopsis lyrata and Arabidopsis halleri, in which most populations have retained SI, and found SRK sequences corresponding to all 3 A. thaliana haplogroup sequences. Our molecular evolutionary analyses of these 3 S-haplotypes provide an independent estimate of the timing of the breakdown of SI and again exclude an ancient transition to selfing in A. thaliana. Comparing sequences of each of the 3 haplogroups between species, we find that 2 of the 3 SRK sequences (haplogroups A and B) are similar throughout their length, suggesting that little or no recombination with other SRK alleles has occurred since these species diverged. The diversity difference between the SCR and SRK loci in A. thaliana, however, suggests crossing-over, either within SRK or between the SCR and SRK loci. If the loss of SI involved fixation of the PsiSCR1 sequence, the exchange must have occurred during its fixation. Divergence between the species is much lower at the S-locus, compared with reference loci, and we discuss two contributory possibilities. Introgression may have occurred between A. lyrata and A. halleri and between their ancestral lineage and A. thaliana, at least for some period after their split. In addition, the coalescence times of sequences of individual S-haplogroups are expected to be less than those of alleles at non-S-loci.  相似文献   

3.
Flowering plants possess self-incompatibility (SI) mechanisms that promote outbreeding and thereby increase their genetic diversity. In the self-incompatible Brassicaceae, recognition and rejection of self-pollen is based on a receptor-ligand interaction between male and female SI determinants. A transmembrane receptor kinase (S locus Receptor Kinase, SRK) determines the SI specificity in stigmatic cells, whereas a pollen coat-localized ligand (S locus Cysteine-Rich, SCR) determines the SI specificity in pollen. During recent years, major advances have been made in the understanding of the molecular basis of self-pollen recognition by stigmatic cells. In this review, we will focus on evolutionary aspects of the SI system in Brassicaceae. We will describe how the study of the molecular aspect of SI, not only in the historical Brassica model but also in Arabidopsis species, has contributed to highlight certain aspects of evolution of SI in the Brassicaceae.  相似文献   

4.
Just how complex is the Brassica S-receptor complex?   总被引:3,自引:0,他引:3  
Of the plant self-incompatibility (SI) systems investigated to date, that possessed by members of the Brassicaceae is currently the best understood. Whilst the recent demonstrations of interactions between the male determinant (S-locus cysteine rich protein, SCR) and the female determinant (S-locus receptor kinase, SRK) indicate the minimal requirement for SI in Brassica, no consensus exists as to the nature of these molecules in vivo and the potential involvement of accessory molecules in establishing the active S-receptor complex. Variation between S haplotypes appears to be present in the molecular composition of the receptor complex, the regulation of downstream signalling and the requirement for accessory molecules. This review discusses what constitutes an active receptor complex and highlights potential differences between haplotypes. The role of accessory molecules, in particular SLG (S-locus glycoprotein) and low molecular weight pollen coat proteins (PCPs), in pollination are discussed, as is the link between SI and unilateral incompatibility (UI).  相似文献   

5.
Self-incompatibility (SI) has been well studied in the genera Brassica and Arabidopsis, which have become models for investigation into the SI system. To understand the evolution of the SI system in the Brassicaceae, comparative analyses of the S-locus in genera other than Brassica and Arabidopsis are necessary. We report the identification of six putative S-locus receptor kinase genes (SRK) in natural populations of Capsella grandiflora, an SI species from a genus which is closely related to Arabidopsis. These S-alleles display striking similarities to the Arabidopsis lyrata SRK alleles in sequence and structure. Our phylogenetic analysis supports the scenario of differing SI evolution along the two lineages (The Brassica lineage and Arabidopsis/Capsella lineage). Our results also argue that the ancestral S-locus lacked the SLG gene (S-locus glycoprotein) and that the diversification of S-alleles predates the separation of Arabidopsis and Capsella.  相似文献   

6.
Many flowering plants have evolved self-incompatibility (SI) systems to prevent inbreeding. In the Brassicaceae, SI is genetically controlled by a single polymorphic locus, termed the S-locus. Pollen rejection occurs when stigma and pollen share the same S-haplotype. Recognition of S-haplotype specificity has recently been shown to involve at least two S-locus genes, S-receptor kinase (SRK) and S-locus protein 11 or S-locus Cys-rich (SP11/SCR). SRK encodes a polymorphic membrane-spanning protein kinase, which is the sole female determinant of the S-haplotype specificity. SP11/SCR encodes a highly polymorphic Cys-rich small basic protein specifically expressed in the anther tapetum and in pollen. In cauliflower (B. oleracea), the gain-of-function approach has demonstrated that an allele of SP11/SCR encodes the male determinant of S-specificity. Here we examined the function of two alleles of SP11/SCR of B. rapa by the same approach and further established that SP11/SCR is the sole male determinant of SI in the genus Brassica sp. Our results also suggested that the 522-bp 5'-upstream region of the S9-SP11 gene used to drive the transgene contained all the regulatory elements required for the unique sporophytic/gametophytic expression observed for the native SP11 gene. Promoter deletion analyses suggested that the highly conserved 192-bp upstream region was sufficient for driving this unique expression. Furthermore, immunohistochemical analyses revealed that the protein product of the SP11 transgene was present in the tapetum and pollen, and that in pollen of late developmental stages, the SP11 protein was mainly localized in the pollen coat, a finding consistent with its expected biological role.  相似文献   

7.
Self-pollen rejection is an important reproductive regulator in flowering plants, and several different intercellular signaling systems have evolved to elicit this response. In the Brassicaceae, the self-incompatibility system is mediated by the pollen S-locus Cys-Rich/S-locus Protein11 (SCR/SP11) ligand and the pistil S Receptor Kinase (SRK). While the SCR/SP11-SRK recognition system has been identified in several species across the Brassicaceae, less is known about the conservation of the SRK-activated cellular responses in the stigma, following self-pollen contact. The ARM Repeat Containing1 (ARC1) E3 ubiquitin ligase functions downstream of SRK for the self-incompatibility response in Brassica, but it has been suggested that ARC1 is not required in Arabidopsis species. Here, we surveyed the presence of ARC1 orthologs in several recently sequenced genomes from Brassicaceae species that had diversified ∼20 to 40 million years ago. Surprisingly, the ARC1 gene was deleted in several species that had lost the self-incompatibility trait, suggesting that ARC1 may lose functionality in the transition to self-mating. To test the requirement of ARC1 in a self-incompatible Arabidopsis species, transgenic ARC1 RNA interference Arabidopsis lyrata plants were generated, and they exhibited reduced self-incompatibility responses resulting in successful fertilization. Thus, this study demonstrates a conserved role for ARC1 in the self-pollen rejection response within the Brassicaceae.  相似文献   

8.
In most self-incompatible plant species, recognition of self-pollen is controlled by a single locus, termed the S-locus. In Brassica, genetic dissection of the S-locus has revealed the presence of three highly-polymorphic genes: S-receptor kinase (SRK), S-locus protein 11 (SP11) (also known as S-locus cysteine-rich protein; SCR) and S-locus glycoprotein (SLG). SRK encodes a membrane-spanning serine/threonine kinase that determines the S-haplotype specificity of the stigma. SP11 encodes a small cysteine-rich protein that determines the S-haplotype specificity of pollen. SLG encodes a secreted form of stigma protein similar to the extracellular domain of SRK. Recent biochemical studies have revealed that SP11 functions as the sole ligand for its cognate SRK receptor complex. Their interaction induces the autophosphorylation of SRK, which is expected to trigger the signalling cascade that results in the rejection of self-pollen. This so-called ligand-receptor complex interaction and receptor activation occur in an S-haplotype-specific manner, and this specificity is almost certainly the basis for self-pollen recognition.  相似文献   

9.
Mating systems in plants are known to be highly labile traits, with frequent transitions from outcrossing to selfing. The genetic basis for breakdown in self-incompatibility (SI) systems has been studied, but data on variation in selfing rates in species for which the molecular basis of SI is known are rare. This study surveyed such variation in Arabidopsis lyrata (Brassicaceae), which is often considered an obligately outcrossing species, to examine the causes and genetic consequences of changes in its breeding system. Based on controlled self-pollinations in the greenhouse, three populations from the Great Lakes region of North America included a minority of self-compatible (SC) individuals, while two showed larger proportions of SC individuals and all populations contained some individuals capable of setting selfed seeds. Loss of SI was not associated with particular haplotypes at the S-locus (as estimated by alleles amplified at the SRK locus, the gene controlling female specificity) and all populations contained similar numbers of SRK alleles, suggesting that some other genetic factor is responsible for modifying the SI reaction. The loss of SI has resulted in an effective shift in the mating system, as the two populations with a high frequency of SC individuals showed significantly lower microsatellite-based multilocus outcrossing rates and higher inbreeding coefficients than the other populations. Based on microsatellites, observed heterozygosities and genetic diversity were also significantly depressed in these populations. These findings provide the unique opportunity to examine in detail the consequences of mating system changes within a species with a well-characterized SI system.  相似文献   

10.
Guo YL  Zhao X  Lanz C  Weigel D 《Plant physiology》2011,157(2):937-946
The S locus, a single polymorphic locus, is responsible for self-incompatibility (SI) in the Brassicaceae family and many related plant families. Despite its importance, our knowledge of S-locus evolution is largely restricted to the causal genes encoding the S-locus receptor kinase (SRK) receptor and S-locus cysteine-rich protein (SCR) ligand of the SI system. Here, we present high-quality sequences of the genomic region of six S-locus haplotypes: Arabidopsis (Arabidopsis thaliana; one haplotype), Arabidopsis lyrata (four haplotypes), and Capsella rubella (one haplotype). We compared these with reference S-locus haplotypes of the self-compatible Arabidopsis and its SI congener A. lyrata. We subsequently reconstructed the likely genomic organization of the S locus in the most recent common ancestor of Arabidopsis and Capsella. As previously reported, the two SI-determining genes, SCR and SRK, showed a pattern of coevolution. In addition, consistent with previous studies, we found that duplication, gene conversion, and positive selection have been important factors in the evolution of these two genes and appear to contribute to the generation of new recognition specificities. Intriguingly, the inactive pseudo-S-locus haplotype in the self-compatible species C. rubella is likely to be an old S-locus haplotype that only very recently became fixed when C. rubella split off from its SI ancestor, Capsella grandiflora.  相似文献   

11.
12.
Background and Aims The S-locus receptor kinase (SRK), which is expressed in stigma epidermal cells, is responsible for the recognition and inhibition of ‘self’ pollen in the self-incompatibility (SI) response of the Brassicaceae. The allele-specific interaction of SRK with its cognate pollen coat-localized ligand, the S-locus cysteine-rich (SCR) protein, is thought to trigger a signalling cascade within the stigma epidermal cell that leads to the arrest of ‘self’ pollen at the stigma surface. In addition to the full-length signalling SRK receptor, stigma epidermal cells express two other SRK protein species that lack the kinase domain and whose role in the SI response is not understood: a soluble version of the SRK ectodomain designated eSRK and a membrane-tethered form designated tSRK. The goal of this study was to describe the sub-cellular distribution of the various SRK protein species in stigma epidermal cells as a prelude to visualizing receptor dynamics in response to SCR binding.Methods The Arabidopsis lyrata SRKb variant was tagged with the Citrine variant of yellow fluorescent protein (cYFP) and expressed in A. thaliana plants of the C24 accession, which had been shown to exhibit a robust SI response upon transformation with the SRKb–SCRb gene pair. The transgenes used in this study were designed for differential production and visualization of the three SRK protein species in stigma epidermal cells. Transgenic stigmas were analysed by pollination assays and confocal microscopy.Key Results and Conclusions Pollination assays demonstrated that the cYFP-tagged SRK proteins are functional and that the eSRK is not required for SI. Confocal microscopic analysis of cYFP-tagged SRK proteins in live stigma epidermal cells revealed the differential sub-cellular localization of the three SRK protein species but showed no evidence for redistribution of these proteins subsequent to incompatible pollination.  相似文献   

13.
14.
Characterization of Brassica S-haplotypes lacking S-locus glycoprotein   总被引:4,自引:0,他引:4  
Self-incompatibility (SI) in Brassica is regulated by a single multi-allelic locus, S, which contains highly polymorphic stigma-expressed genes, SLG and SRK. While SRK is shown to be the determinant of female SI specificity, SLG is thought to assist the function of SRK. Here we report that the SLG genes of self-incompatible S(18) and S(60) homozygotes of Brassica oleracea have an in-frame stop codon and a 23 bp deletion resulting in a frame-shift, respectively. The finding that these SLG genes do not encode functional SLG proteins suggests that SLG is not essential for SI. The possible role of SLG in SI was discussed.  相似文献   

15.
Self-incompatibility (SI) is the primary determinant of the outbreeding mode of sexual reproduction in the Brassicaceae. All Arabidopsis thaliana accessions analyzed to date carry mutations that disrupt SI functions by inactivating the SI specificity-determining S locus or SI modifier loci. S-locus genes isolated from self-incompatible close relatives of A. thaliana restore robust SI in several accessions that harbor only S-locus mutations and confer transient SI in accessions that additionally harbor mutations at modifier loci. Self-incompatible transgenic A. thaliana plants have proved to be valuable for analysis of the recognition and signaling events that underlie SI in the Brassicaceae. Here, we review results demonstrating that S-locus genes are necessary and sufficient for SI signaling and for restoration of a strong and developmentally stable SI phenotype in several accessions of A. thaliana. The data indicate that introduction of a functional E3 ligase-encoding ARC1 gene, which is deleted in all accessions that have been analyzed to date, is not required for SI signaling leading to inhibition of self pollen or for reversion of A. thaliana to its fully self-incompatible ancestral state.It is well established that specific pollen recognition in the self-incompatibility (SI) response of the Brassicaceae is determined by allele-specific interactions that occur at the stigma surface between two highly polymorphic proteins encoded in the S locus: the S-locus receptor kinase SRK and its ligand, the S-locus cysteine-rich protein SCR. Arabidopsis thaliana lacks a functional SI system and harbors nonfunctional S-locus variants that contain defective alleles of the SRK and/or SCR genes (Kusaba et al., 2001; Sherman-Broyles et al., 2007; Tang et al., 2007; Shimizu et al., 2008; Boggs et al., 2009a; Tsuchimatsu et al., 2010; Dwyer et al., 2013). Despite being highly self-fertile, A. thaliana can be made to express SI upon transformation with functional SRK-SCR gene pairs isolated from its self-incompatible close relatives (Nasrallah et al., 2002, 2004; Boggs et al., 2009a, 2009b). The first transfer of the SI trait into A. thaliana was achieved using the SRKb-SCRb gene pair isolated from the Sb locus of Arabidopsis lyrata (Kusaba et al., 2001; Nasrallah et al., 2002, 2004). Many of the subsequent studies that have been performed in the transgenic A. thaliana SRK-SCR system have used plants transformed with p548, a plasmid that we constructed by inserting the A. lyrata SRKb and SCRb genes with their 5′ and 3′ regulatory sequences into the pBIN+ binary vector (Nasrallah et al., 2004).Indriolo et al. (2014) recently used the p548 plasmid to generate SRKb-SCRb transformants and test the role of the ARM Repeat Containing1 (ARC1) gene in SI. ARC1 was originally identified as a Brassica napus protein that interacts with the SRK kinase domain in yeast (Gu et al., 1998), and it was subsequently inferred to be required for SI because downregulation of the ARC1 gene in B. napus (Stone et al., 1999) and A. lyrata (Indriolo et al., 2012), as well as overexpression of ARC1’s target, Exo70A1, in B. napus (Samuel et al., 2009), caused partial breakdown of the SI response. However, the involvement of the proposed SRK-ARC1-Exo70A1 pathway in SI has been questioned because the ARC1 gene was found to be deleted in all A. thaliana accessions analyzed to date (Kitashiba et al., 2011; Indriolo et al., 2012), including those in which the SRKb-SCRb transgenes confer a strong SI phenotype (Kitashiba et al., 2011). Additionally, overexpression of Exo70A1 did not cause weakening of the SI response in A. thaliana SRKb-SCRb plants (Kitashiba et al., 2011).Indriolo et al. (2014) reported on their characterization of the SI response in plants of the Sha and Columbia-0 (Col-0) accessions, which they either transformed with the p548 plasmid alone or cotransformed with p548 and a plasmid containing an ARC1 gene isolated from A. lyrata or B. napus. They concluded that, along with SRK and SCR, “ARC1 is the third component that is required to return A. thaliana to its ancestral self-incompatibility state.” However, this conclusion is inconsistent with results of previous studies of SI in transgenic A. thaliana SRK-SCR transformants, which have shown that several A. thaliana accessions are rendered fully self-incompatible by transformation with the p548 plasmid without the addition of a functional ARC1 gene. Contrary to Indriolo et al.’s assertion that in previous studies of A. thaliana SRK-SCR transformants, “the self-pollen rejection response was incomplete,” we reported that among 11 A. thaliana accessions tested by transformation with the p548 plasmid, five accessions (C24, Cvi-0, Hodja, Kas-2, and Sha) were converted to full SI by expression of the SRKb and SCRb genes alone (Nasrallah et al., 2004; Boggs et al., 2009a). Importantly, the SI phenotype of these self-incompatible SRKb-SCRb transformants faithfully recapitulates the SI phenotype of naturally self-incompatible Brassicaceae with respect to the four defining features of SI in this family: (1) site of pollen inhibition at the stigma surface, (2) intensity of the response, (3) developmental regulation over the course of stigma maturation, and (4) heritability. These features suggest that the inhibition of self pollen in self-incompatible A. thaliana SRK-SCR transformants is achieved via the same signaling pathway as that utilized by other self-incompatible Brassicaceae species.  相似文献   

16.
Unilateral pollen-pistil incompatibility within the Brassicaceae has been re-examined in a series of interspecific and intergeneric crosses using 13 self-compatible (SC, Sc) species and 12 self-incompatible (SI) species from ten tribes. SC x SC crosses were usually compatible, SI x SC crosses showed unilateral incompatibility, while SI x SI crosses were often incompatible or unilaterally incompatible. Unilateral incompatibility (UI) is shown to be overcome by bud pollination or treating stigmas with cycloheximide — features in common with self-incompatibility. Treating stigmas with pronase prevents pollen tubes from penetrating the stigma in normally compatible intra-and interspecific pollinations. The results presented show that the presence of an incompatibility system is important in predicting the outcome of interspecific and intergeneric crosses and, combined with the physiological similarities between UI and SI, would suggest an involvement of the S-locus in UI.  相似文献   

17.
Mate selection and maintenance of genetic diversity is crucial to successful reproduction and species survival. Plants utilize self-incompatibility system as a genetic barrier to prevent self pollen from developing on the pistil, leading to hybrid vigor and diversity. In Brassica (canola, kale, and broccoli), an allele-specific interaction between the pollen SCR/SP11 (S-locus cysteine rich protein/S locus protein 11) and the pistil S Receptor Kinase, results in the activation of SRK which recruits the Arm Repeat Containing 1 (ARC1) E3 ligase to the proteasome. The targets of Arm Repeat Containing 1 are proposed to be compatibility factors, which when targeted for degradation by Arm Repeat Containing 1 results in pollen rejection. Despite the fact that protein degradation is predicted to be important for successful self-pollen rejection, the identity of the various proteins whose abundance is altered by the SI pathway has remained unknown. To identify potential candidate proteins regulated by the SI response, we have used the two-dimensional difference gel electrophoresis analysis, coupled with matrix-assisted laser desorption ionization/time of flight/MS. We identified 56 differential protein spots with 19 unique candidate proteins whose abundance is down-regulated following self-incompatible pollinations. The identified differentials are predicted to function in various pathways including biosynthetic pathways, signaling, cytoskeletal organization, and exocytosis. From the 19 unique proteins identified, we investigated the role of tubulin and the microtubule network during both self-incompatible and compatible pollen responses. Moderate changes in the microtubule network were observed with self-incompatible pollinations; however, a more distinct localized break-down of the microtubule network was observed during compatible pollinations, that is likely mediated by EXO70A1, leading to successful pollination.  相似文献   

18.
The S locus of flowering plants: when self-rejection is self-interest.   总被引:17,自引:0,他引:17  
In certain families of flowering plants, a self-incompatibility (SI) locus prevents self-fertilization, by a specific interaction between the S-gene product produced in the pistil and the S-gene products borne on or expressed by the male gametophyte, the pollen grain. The female S-locus gene products for two families showing different types of SI have been putatively identified as major pistil glycoproteins (the S-locus-specific glycoproteins of the Brassicaceae and the S-RNases of the Solanaceae). However, they are distinct in sequence and mode of action. The nature of the S-locus gene product borne by the pollen is still uncertain in both systems.  相似文献   

19.
The determinants of recognition specificity of self-incompatibility in Brassica are SRK in the stigma and SP11/SCR in the pollen, respectively. In the pair of S haplotypes BrS46 (S46 in B. rapa) and BoS7 (S7 in B. oleracea), which have highly similar SRK alleles, the SP11 alleles were found to be similar, with 96.1% identity in the deduced amino acid sequence. Two other pairs of S haplotypes, BrS47 and BoS12, and BrS8 and BoS32, having highly similar SRK and SP11 alleles between the two species were also found. The haplotypes in each pair are considered to have been derived from a single S haplotype in the ancestral species. The allotetraploid produced by interspecific hybridization between homozygotes of BrS46 and BoS15 showed incompatibility with a BoS7 homozygote and compatibility with other B. oleracea S haplotypes in reciprocal crossings. This result indicates that BrS46 and BoS7 have maintained the same recognition specificity after the divergence of the two species and that amino acid substitutions found in such cases in both SRK alleles and SP11 alleles do not alter the recognition specificity. DNA blot analysis of SRK, SP11, SLG and other S-locus genes showed different DNA fragment sizes between the interspecific pairs of S haplotypes. A much lower level of sequence similarity was observed outside the genes of SRK and SP11 between BrS46 and BoS7. These results suggest that the DNA sequences of the regions intervening between the S-locus genes were diversified after or at the time of speciation. This is the first report demonstrating the presence of common S haplotypes in different plant species and presenting definite evidence of the trans-specific evolution of self-incompatibility genes.  相似文献   

20.
Gametophytic self-incompatibility (SI) in plants is a widespread mechanism preventing self-fertilization and the ensuing inbreeding depression, but it often evolves to self-compatibility. We analyze genetic mechanisms for the breakdown of gametophytic SI, incorporating a dynamic model for the evolution of inbreeding depression allowing for partial purging of nearly recessive lethal mutations by selfing, and accounting for pollen limitation and sheltered load linked to the S-locus. We consider two mechanisms for the breakdown of gametophytic SI: a nonfunctional S-allele and an unlinked modifier locus that inactivates the S-locus. We show that, under a wide range of conditions, self-compatible alleles can invade a self-incompatible population. Conditions for invasion are always less stringent for a nonfunctional S-allele than for a modifier locus. The spread of self-compatible genotypes is favored by extremely high or low selfing rates, a small number of S-alleles, and pollen limitation. Observed parameter values suggest that the maintenance of gametophytic SI is caused by a combination of high inbreeding depression in self-incompatible populations coupled with intermediate selfing rates of the self-compatible genotypes and sheltered load linked to the S-locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号