首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently uncovered two new families of potent docosahexaenoic acid-derived mediators, termed D series resolvins (Rv; resolution phase interaction products) and protectins. Here, we assign the stereochemistry of the conjugated double bonds and chirality of alcohols present in resolvin D1 (RvD1) and its aspirin-triggered 17R epimer (AT-RvD1) with compounds prepared by total organic synthesis. In addition, docosahexaenoic acid was converted by a single lipoxygenase in a "one-pot" reaction to RvD1 in vitro. The synthetic compounds matched the physical and biological properties of those enzymatically generated. RvD1 proved to be 7S,8R,17S-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid, AT-RvD1 matched 7S,8R,17R-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid, and they both stopped transendothelial migration of human neutrophils (EC(50) approximately 30 nM). In murine peritonitis in vivo, RvD1 and AT-RvD1 proved equipotent (at nanogram dosages), limiting polymorphonuclear leukocyte infiltration in a dose-dependent fashion. RvD1 was converted by eicosanoid oxidoreductase to novel 8-oxo- and 17-oxo-RvD1 that gave dramatically reduced bioactivity, whereas enzymatic conversion of AT-RvD1 was sharply reduced. These results establish the complete stereochemistry and actions of RvD1 and AT-RvD1 as well as demonstrate the stereoselective basis for their enzymatic inactivation. RvD1 regulates human polymorphonuclear leukocyte transendothelial migration and is anti-inflammatory. When its carbon 17S alcohol is enzymatically converted to 17-oxo-RvD1, it is essentially inactive, whereas the 17R alcohol configuration in its aspirin-triggered form (AT-RvD1) resists rapid inactivation. These results may contribute to the beneficial actions of aspirin and omega-3 fish oils in humans.  相似文献   

2.
We recently demonstrated that ω-3-polyunsaturated fatty acids ameliorate obesity-induced adipose tissue inflammation and insulin resistance. In this study, we report novel mechanisms underlying ω-3-polyunsaturated fatty acid actions on adipose tissue, adipocytes, and stromal vascular cells (SVC). Inflamed adipose tissue from high-fat diet-induced obese mice showed increased F4/80 and CD11b double-positive macrophage staining and elevated IL-6 and MCP-1 levels. Docosahexaenoic acid (DHA; 4 μg/g) did not change the total number of macrophages but significantly reduced the percentage of high CD11b/high F4/80-expressing cells in parallel with the emergence of low-expressing CD11b/F4/80 macrophages in the adipose tissue. This effect was associated with downregulation of proinflammatory adipokines in parallel with increased expression of IL-10, CD206, arginase 1, resistin-like molecule α, and chitinase-3 like protein, indicating a phenotypic switch in macrophage polarization toward an M2-like phenotype. This shift was confined to the SVC fraction, in which secretion of Th1 cytokines (IL-6, MCP-1, and TNF-α) was blocked by DHA. Notably, resolvin D1, an anti-inflammatory and proresolving mediator biosynthesized from DHA, markedly attenuated IFN-γ/LPS-induced Th1 cytokines while upregulating arginase 1 expression in a concentration-dependent manner. Resolvin D1 also stimulated nonphlogistic phagocytosis in adipose SVC macrophages by increasing both the number of macrophages containing ingested particles and the number of phagocytosed particles and by reducing macrophage reactive oxygen species production. No changes in adipocyte area and the phosphorylation of hormone-sensitive lipase, a rate-limiting enzyme regulating adipocyte lipolysis, were observed. These findings illustrate novel mechanisms through which resolvin D1 and its precursor DHA confer anti-inflammatory and proresolving actions in inflamed adipose tissue.  相似文献   

3.
Kang JH  Kim CS  Han IS  Kawada T  Yu R 《FEBS letters》2007,581(23):4389-4396
Adipokines are involved in the obesity-induced chronic inflammatory response that plays a crucial role in the development of obesity-related pathologies such as type II diabetes and atherosclerosis. We here demonstrate that capsaicin, a naturally occurring phytochemical, can suppress obesity-induced inflammation by modulating adipokine release from and macrophage behavior in obese mice adipose tissues. Capsaicin inhibited the expressions of IL-6 and MCP-1 mRNAs and protein release from the adipose tissues and adipocytes of obese mice, whereas it enhanced the expression of the adiponectin gene and protein. The action of capsaicin is associated with NF-kappaB inactivation and/or PPARgamma activation. Moreover, capsaicin suppressed not only macrophage migration induced by the adipose tissue-conditioned medium, but also macrophage activation to release proinflammatory mediators. Capsaicin may be a useful phytochemical for attenuating obesity-induced inflammation and obesity-related complications.  相似文献   

4.
Central obesity is associated with low-grade inflammation that promotes type 2 diabetes and cardiovascular disease in obese individuals. The 12- and 5-lipoxygenase (12-LO and 5-LO) enzymes have been linked to inflammatory changes, leading to the development of atherosclerosis. 12-LO has also been linked recently to inflammation and insulin resistance in adipocytes. We analyzed the expression of LO and proinflammatory cytokines in adipose tissue and adipocytes in obese Zucker rats, a widely studied genetic model of obesity, insulin resistance, and the metabolic syndrome. mRNA expression of 12-LO, 5-LO, and 5-LO-activating protein (FLAP) was upregulated in adipocytes and adipose tissue from obese Zucker rats compared with those from lean rats. Concomitant with increased LO gene expression, the 12-LO product 12-HETE and the 5-LO products 5-HETE and leukotriene B4 (LTB4) were also increased in adipocytes. Furthermore, upregulation of key proinflammatory markers interleukin (IL)-6, TNFα, and monocyte chemoattractant protein-1 were observed in adipocytes isolated from obese Zucker rats. Immunohistochemistry indicated that the positive 12-LO staining in adipose tissue represents cells in addition to adipocytes. This was confirmed by Western blotting in stromal vascular fractions. These changes were in part reversed by the novel anti-inflammatory drug lisofylline (LSF). LSF also reduced p-STAT4 in visceral adipose tissue from obese Zucker rats and improved the metabolic profile, reducing fasting plasma glucose and increasing insulin sensitivity in obese Zucker rats. In 3T3-L1 adipocytes, LSF abrogated the inflammatory response induced by LO products. Thus, therapeutic agents reducing LO or STAT4 activation may provide novel tools to reduce obesity-induced inflammation.  相似文献   

5.
Asthma is a disease of airway inflammation that in most cases fails to resolve. The resolution of inflammation is an active process governed by specific chemical mediators, including D-series resolvins. In this study, we determined the impact of resolvin D1 (RvD1) and aspirin-triggered RvD1 (AT-RvD1) on the development of allergic airway responses and their resolution. Mice were allergen sensitized, and RvD1, AT-RvD1 (1, 10, or 100 ng), or vehicle was administered at select intervals before or after aerosol allergen challenge. RvD1 markedly decreased airway eosinophilia and mucus metaplasia, in part by decreasing IL-5 and IκBα degradation. For the resolution of established allergic airway responses, AT-RvD1 was even more efficacious than RvD1, leading to a marked decrease in the resolution interval for lung eosinophilia, decrements in select inflammatory peptide and lipid mediators, and more rapid resolution of airway hyperreactivity to methacholine. Relative to RvD1, AT-RvD1 resisted metabolic inactivation by macrophages, and AT-RvD1 significantly enhanced macrophage phagocytosis of IgG-OVA-coated beads in vitro and in vivo, a new proresolving mechanism for the clearance of allergen from the airways. In conclusion, RvD1 and AT-RvD1 can serve as important modulators of allergic airway responses by decreasing eosinophils and proinflammatory mediators and promoting macrophage clearance of allergen. Together, these findings identify D-series resolvins as potential proresolving therapeutic agents for allergic responses.  相似文献   

6.
Woo HM  Kang JH  Kawada T  Yoo H  Sung MK  Yu R 《Life sciences》2007,80(10):926-931
Inflammation plays a key role in obesity-related pathologies such as cardiovascular disease, type II diabetes, and several types of cancer. Obesity-induced inflammation entails the enhancement of the recruitment of macrophages into adipose tissue and the release of various proinflammatory proteins from fat tissue. Therefore, the modulation of inflammatory responses in obesity may be useful for preventing or ameliorating obesity-related pathologies. Some spice-derived components, which are naturally occurring phytochemicals, elicit antiobesity and antiinflammatory properties. In this study, we investigated whether active spice-derived components can be applied to the suppression of obesity-induced inflammatory responses. Mesenteric adipose tissue was isolated from obese mice fed a high-fat diet and cultured to prepare an adipose tissue-conditioned medium. Raw 264.7 macrophages were treated with the adipose tissue-conditioned medium with or without active spice-derived components (i.e., diallyl disulfide, allyl isothiocyanate, piperine, zingerone and curcumin). Chemotaxis assay was performed to measure the degree of macrophage migration. Macrophage activation was estimated by measuring tumor necrosis factor-alpha (TNF-alpha), nitric oxide, and monocyte chemoattractant protein-1 (MCP-1) concentrations. The active spice-derived components markedly suppressed the migration of macrophages induced by the mesenteric adipose tissue-conditioned medium in a dose-dependent manner. Among the active spice-derived components studied, allyl isothiocyanate, zingerone, and curcumin significantly inhibited the cellular production of proinflammatory mediators such as TNF-alpha and nitric oxide, and significantly inhibited the release of MCP-1 from 3T3-L1 adipocytes. Our findings suggest that the spice-derived components can suppress obesity-induced inflammatory responses by suppressing adipose tissue macrophage accumulation or activation and inhibiting MCP-1 release from adipocytes. These spice-derived components may have a potential to improve chronic inflammatory conditions in obesity.  相似文献   

7.
Toll-like receptors (TLRs) were recently shown to be involved in obesity-induced inflammation in adipose tissue, which contributes to the development of insulin resistance and type 2 diabetes. Thus, the appropriate regulation of TLR expression or activation is an important strategy for improving obesity-related diseases. In this report, we show that naringenin, a citrus flavonoid, inhibits TLR2 expression during adipocyte differentiation. This effect is mediated in part through peroxisome proliferator-activated receptor γ activation. In addition, naringenin suppresses TLR2 expression induced by the co-culture of differentiated adipocytes and macrophages and also inhibits tumor necrosis factor-α (TNF-α)-induced TLR2 expression by inhibiting the activation of nuclear factor-κB and c-Jun NH2-terminal kinase pathways in differentiated adipocytes. Furthermore, naringenin decreases TLR2 expression in adipose tissue of high-fat diet-fed mice. These results are correlated with the improvement of hyperglycemia and the suppression of inflammatory mediators, including TNF-α and monocyte chemotactic protein-1. Taken together, these data suggest that naringenin exhibits anti-inflammatory properties, presumably by inhibiting TLR2 expression in adipocytes. Our findings suggest a molecular mechanism by which naringenin exerts beneficial effects against obesity-related diseases.  相似文献   

8.
Macrophage infiltration into adipose tissue during obesity and their phenotypic conversion from anti-inflammatory M2 to proinflammatory M1 subtype significantly contributes to develop a link between inflammation and insulin resistance; signaling molecule(s) for these events, however, remains poorly understood. We demonstrate here that excess lipid in the adipose tissue environment may trigger one such signal. Adipose tissue from obese diabetic db/db mice, high fat diet-fed mice, and obese diabetic patients showed significantly elevated fetuin-A (FetA) levels in respect to their controls; partially hepatectomized high fat diet mice did not show noticeable alteration, indicating adipose tissue to be the source of this alteration. In adipocytes, fatty acid induces FetA gene and protein expressions, resulting in its copious release. We found that FetA could act as a chemoattractant for macrophages. To simulate lipid-induced inflammatory conditions when proinflammatory adipose tissue and macrophages create a niche of an altered microenvironment, we set up a transculture system of macrophages and adipocytes; the addition of fatty acid to adipocytes released FetA into the medium, which polarized M2 macrophages to M1. This was further confirmed by direct FetA addition to macrophages. Taken together, lipid-induced FetA from adipocytes is an efficient chemokine for macrophage migration and polarization. These findings open a new dimension for understanding obesity-induced inflammation.  相似文献   

9.
Monocyte chemotactic protein-1 and its role in insulin resistance   总被引:2,自引:0,他引:2  
PURPOSE OF REVIEW: In obesity, there is a strong link between increased adipose tissue mass and development of insulin resistance in tissues such as liver and muscle. Under these conditions, adipose tissue synthesizes various pro-inflammatory chemokines such as monocyte chemotactic protein-1. This review provides a summary of recent knowledge on the role of monocyte chemotactic protein-1 in adipose tissue inflammation and insulin resistance. RECENT FINDINGS: Monocyte chemotactic protein-1 is a proinflammatory adipokine that is believed to play a role in the pathogenesis of obesity and diabetes. New in-vitro data demonstrate that monocyte chemotactic protein-1 has the ability to induce insulin resistance in adipocytes and skeletal muscle cells. By using mice that either overexpress monocyte chemotactic protein-1 or are deficient in monocyte chemotactic protein-1 or its receptor, exciting new insights have been obtained into the role of monocyte chemotactic protein-1 in adipose tissue inflammation and insulin resistance. SUMMARY: Monocyte chemotactic protein-1 is an adipokine with insulin-resistance-inducing capacity that is related to increased adipose tissue mass in obesity and insulin resistance. It plays an important role in adipose tissue inflammation by recruiting macrophages into fat. Monocyte chemotactic protein-1 is thus a therapeutic target, and may represent an important factor linking adipose tissue inflammation, obesity and type 2 diabetes.  相似文献   

10.
Obesity is a major risk factor for the development of insulin resistance and type 2 diabetes. Adipose tissue secretes various bioactive molecules, referred to as adipokines, whose dysregulation can mediate changes in glucose homeostasis and inflammatory responses. Here, we identify C1qdc2/CTRP12 as an insulin-sensitizing adipokine that is abundantly expressed by fat tissues and designate this adipokine as adipolin (adipose-derived insulin-sensitizing factor). Adipolin expression in adipose tissue and plasma was reduced in rodent models of obesity. Adipolin expression was also decreased in cultured 3T3-L1 adipocytes by treatment with inducers of endoplasmic reticulum stress and inflammation. Systemic administration of adipolin ameliorated glucose intolerance and insulin resistance in diet-induced obese mice. Adipolin administration also reduced macrophage accumulation and proinflammatory gene expression in the adipose tissue of obese mice. Conditioned medium from adipolin-expressing cells diminished the expression of proinflammatory cytokines in response to stimulation with LPS or TNFα in cultured macrophages. These data suggest that adipolin functions as an anti-inflammatory adipokine that exerts beneficial actions on glucose metabolism. Therefore, adipolin represents a new target molecule for the treatment of insulin resistance and diabetes.  相似文献   

11.
It is known that obese adipose tissues are hypoxic and express hypoxia-inducible factor (HIF)-1α. Although some studies have shown that the expression of HIF-1α in adipocytes induces glucose intolerance, the mechanisms are still not clear. In this study, we examined its effects on the development of type 2 diabetes by using adipocyte-specific HIF-1α knockout (ahKO) mice. ahKO mice showed improved glucose tolerance compared with wild type (WT) mice. Macrophage infiltration and mRNA levels of monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor α (TNFα) were decreased in the epididymal adipose tissues of high fat diet induced obese ahKO mice. The results indicated that the obesity-induced adipose tissue inflammation was suppressed in ahKO mice. In addition, in the ahKO mice, serum insulin levels were increased under the free-feeding but not the fasting condition, indicating that postprandial insulin secretion was enhanced. Serum glucagon-like peptide-1 (GLP-1) levels were also increased in the ahKO mice. Interestingly, adiponectin, whose serum levels were increased in the obese ahKO mice compared with the obese WT mice, stimulated GLP-1 secretion from cultured intestinal L cells. Therefore, insulin secretion may have been enhanced through the adiponectin-GLP-1 pathway in the ahKO mice. Our results suggest that the deletion of HIF-1α in adipocytes improves glucose tolerance by enhancing insulin secretion through the GLP-1 pathway and by reducing macrophage infiltration and inflammation in adipose tissue.  相似文献   

12.
Hirai S  Kim YI  Goto T  Kang MS  Yoshimura M  Obata A  Yu R  Kawada T 《Life sciences》2007,81(16):1272-1279
Obese adipose tissue is characterized by an enhanced infiltration of macrophages. It is considered that the paracrine loop involving monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)-alpha between adipocytes and macrophages establishes a vicious cycle that augments the inflammatory changes and insulin resistance in obese adipose tissue. Polyphenols, which are widely distributed in fruit and vegetables, can act as antioxidants and some of them are also reported to have anti-inflammatory properties. Tomato is one of the most popular and extensively consumed vegetable crops worldwide, which also contains many flavonoids, mainly naringenin chalcone. We investigated the effect of flavonoids, including naringenin chalcone, on the production of proinflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophages and in the interaction between adipocytes and macrophages. Naringenin chalcone inhibited the production of TNF-alpha, MCP-1, and nitric oxide (NO) by LPS-stimulated RAW 264 macrophages in a dose-dependent manner. Coculture of 3T3-L1 adipocytes and RAW 264 macrophages markedly enhanced the production of TNF-alpha, MCP-1, and NO compared with the control cultures; however, treatment with naringenin chalcone dose-dependently inhibited the production of these proinflammatory mediators. These results indicate that naringenin chalcone exhibits anti-inflammatory properties by inhibiting the production of proinflammatory cytokines in the interaction between adipocytes and macrophages. Naringenin chalcone may be useful for ameliorating the inflammatory changes in obese adipose tissue.  相似文献   

13.
Oxidative stress and low-grade inflammation have been implicated in obesity and insulin resistance. As a selenium transporter, ubiquitously expressed selenoprotein P (SeP) is known to play a role in the regulation of antioxidant enzyme activity. However, SeP expression and regulation in adipose tissue in obesity and its role in inflammation and adipocyte biology remain unexplored. In this study, we examined Sepp1 gene expression and regulation in adipose tissue of obese rodents and characterized the role of Sepp1 in adipose inflammation and adipogenesis in 3T3-L1 adipocytes. We found that Sepp1 gene expression was significantly reduced in adipose tissue of ob/ob and high-fat diet-induced obese mice as well as in primary adipose cells isolated from Zucker obese rats. Rosiglitazone administration increased SeP protein expression in adipose tissue of obese mice. Treatment of either TNFα or H(2)O(2) significantly reduced Sepp1 gene expression in a time- and dose-dependent manner in 3T3-L1 adipocytes. Interestingly, Sepp1 gene silencing resulted in the reduction in glutathione peroxidase activity and the upregulation of inflammatory cytokines MCP-1 and IL-6 in preadipocytes, leading to the inhibition of adipogenesis and adipokine and lipogenic gene expression. Most strikingly, coculturing Sepp1 KD cells resulted in a marked inhibition of normal 3T3-L1 adipocyte differentiation. We conclude that SeP has an important role in adipocyte differentiation via modulating oxidative stress and inflammatory response.  相似文献   

14.
Innate immunity plays a pivotal role in obesity-induced low-grade inflammation originating from adipose tissue. Key receptors of the innate immune system including Toll-like receptors-2 and -4 (TLRs) are triggered by nutrient excess to promote inflammation. The role of other TLRs in this process is largely unknown. In addition to double-stranded viral mRNA, TLR-3 can also recognize mRNA from dying endogenous cells, a process that is frequently observed within obese adipose tissue. Here, we identified profound expression of TLR-3 in adipocytes and investigated its role during diet-induced obesity. Human adipose tissue biopsies (n=80) and an adipocyte cell-line were used to study TLR-3 expression and function. TLR-3-/- and WT animals were exposed to a high-fat diet (HFD) for 16 weeks to induce obesity. Expression of TLR-3 was significantly higher in human adipocytes compared to the non-adipocyte cells part of the adipose tissue. In vitro, TLR-3 expression was induced during differentiation of adipocytes and stimulation of the receptor led to elevated expression of pro-inflammatory cytokines. In vivo, TLR-3 deficiency did not significantly influence HFD-induced obesity, insulin sensitivity or inflammation. In humans, TLR-3 expression in adipose tissue did not correlate with BMI or insulin sensitivity (HOMA-IR). Together, our results demonstrate that TLR-3 is highly expressed in adipocytes and functionally active. However, TLR-3 appears to play a redundant role in obesity-induced inflammation and insulin resistance.  相似文献   

15.
16.
17.
Obesity is associated with inflammatory status and linked with metabolic syndrome. Interaction between adipocytes and macrophages aggravates inflammation and leads to insulin resistance in adipocytes. Resveratrol improved reportedly obesity-related inflammatory responses, but the effects of resveratrol on the production of inflammatory mediators and glucose metabolism in inflamed adipose tissue is not completely known. In this study, we investigated the effects of resveratrol on inflammatory change and insulin resistance in the coculture of hypertrophied 3T3-L1 adipocytes and RAW 264.7 macrophages. Resveratrol decreased nitric oxide production and the expression of interleukin (IL)-6, IL-1β, tumor necrosis factor-α, inducible nitric oxide synthesis, and cyclooxygenase-2 in the coculture. Resveratrol increased glucose uptake by stimulating the phosphorylation of IRS-1 and AKT in the coculture. These results support that resveratrol have beneficial effect on inflammation and insulin resistance in inflamed adipose tissue.  相似文献   

18.
Obesity is associated with a chronic inflammatory response. Interleukin (IL)-38 is a poorly characterized cytokine of the IL-1 family with anti-inflammatory activity. The role of IL-38 in obesity-induced inflammation and insulin resistance remains unknown. In this study, we investigated the effects of IL-38 expression by hydrodynamic-based gene delivery on high-fat diet-induced obesity in mice. Transfer of plasmid DNA encoding IL-38 reduced weight gain, liver fat content, adipose tissue weight, and obesity-induced insulin resistance compared with administration of a control plasmid. Moreover, IL-38 gene delivery inhibited the production of inflammatory mediators including IL-1β, IL-6, and monocyte chemotactic protein-1. These results suggest that IL-38 is a potential new target for the treatment of obesity.  相似文献   

19.
Adipose tissue-derived cytokines (adipokines) are associated with the development of inflammation and insulin resistance. However, which adipokine(s) mediate this linkage and the mechanisms involved during obesity is poorly understood. Through proteomics and microarray screening, we recently identified lipocalin 2 (LCN 2) as an adipokine that potentially connects obesity and its related adipose inflammation. Herein we show that the levels of LCN2 mRNA are dramatically increased in adipose tissue and liver of ob/ob mice and primary adipose cells isolated from Zucker obese rats, and thiazolidinedione administration reduces LCN2 expression. Interestingly, addition of LCN2 induces mRNA levels of peroxisome proliferator-activated receptor-gamma (PPARgamma) and adiponectin. Reducing LCN2 gene expression causes decreased expression of PPARgamma and adiponectin, slightly reducing insulin-stimulated Akt2 phosphorylation at Serine 473 in 3T3-L1 adipocytes. LCN2 administration to 3T3-L1 cells attenuated TNFalpha-effect on glucose uptake, expression of PPARgamma, insulin receptor substrate-1, and glucose transporter 4, and secretion of adiponectin and leptin. When added to macrophages, LCN2 suppressed lipopolysaccharide-induced cytokine production. Our data suggest that LCN2, as a novel autocrine and paracrine adipokine, acts as an antagonist to the effect of inflammatory molecules on inflammation and secretion of adipokines.  相似文献   

20.

Aims

Ephrin-B1 (EfnB1) was selected among genes of unknown function in adipocytes or adipose tissue and subjected to thorough analysis to understand its role in the development of obesity.

Methods and Results

EfnB1 mRNA and protein levels were significantly decreased in adipose tissues of obese mice and such reduction was mainly observed in mature adipocytes. Exposure of 3T3-L1 adipocytes to tumor necrosis factor-α (TNF-α) and their culture with RAW264.7 cells reduced EFNB1 levels. Knockdown of adipose EFNB1 increased monocyte chemoattractant protein-1 (Mcp-1) mRNA level and augmented the TNF-α-mediated THP-1 monocyte adhesion to adipocytes. Adenovirus-mediated adipose EFNB1-overexpression significantly reduced the increase in Mcp-1 mRNA level induced by coculture of 3T3-L1 adipocytes with RAW264.7 cells. Monocyte adherent assay showed that adipose EfnB1-overexpression significantly decreased the increase of monocyte adhesion by coculture with RAW264.7 cells. TNF-α-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) was reduced by EFNB1-overexpression.

Conclusions

EFNB1 contributes to the suppression of adipose inflammatory response. In obesity, reduction of adipose EFNB1 may accelerate the vicious cycle involved in adipose tissue inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号