首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A histidine-kinase cheA gene in Pseudomonas pseudoalcaligenes KF707 plays a central role in the regulation of metabolic responses as well as in chemotaxis. Non-chemotactic mutants harboring insertions into the cheA gene were screened for their ability to form biofilms in the Calgary biofilm device. Notably, ≥95% decrease in the number of cells attached to the polystyrene surface was observed in cheA mutants compared to the KF707 wild-type biofilm phenotype. The ability to form mature biofilms was restored to wild-type levels, providing functional copies of the KF707 cheA gene to the mutants. In addition, phenotype micro-arrays and proteomic analyses revealed that several basic metabolic activities and a few periplasmic binding proteins of cheA mutant cells differed compared to those of wild-type cells. These results are interpreted as evidence of a strong integration between chemotactic and metabolic pathways in the process of biofilm development by P. pseudoalcaligenes KF707.  相似文献   

2.
Abstract A 2,3-dihydroxybiphenyl-1,2-dioxygenase gene has been cloned from chromosomal DNA of Pseudomonas sp. DJ-12 which can grow on biphenyl or 4-chlorobiphenyl as the sole carbon and energy source. Enzymatic and immunochemical properties of the cloned 2,3-dihydroxybiphenyl-1,2-dioxygenase were characterized, and compared with those of P. pseudoalcaligenes KF707, Pseudomonas sp. KKS102, and P. putida OU83. The dioxygenase of Pseudomonas sp. DJ-12 was similar to those of P. pseudoalcaligenes KF707, and Pseudomonas sp. KKS102, but significantly different from that of P. putida OU83 in electrophoretic mobilities on native PAGE and SDS-PAGE. The dioxygenases of Pseudomonas sp. DJ-12 and P. putida OU83 exhibited the highest ring-fission activity to 3-methylcatechol, and those of P. pseudoalcaligenes KF707 and Pseudomonas sp. KKS102 to 2,3-dihydroxybiphenyl among 2,3-dihydroxybiphenyl, catechol, 3-methylcatechol, 4-methylcatechol, and 4-chlorocatechol as substrates. 2,3-dihydroxybiphenyl-1,2-dioxygenase of P. pseudoalcaligenes KF707 was immunochemically related to that of Pseudomonas sp. KKS102, but was different from those of Pseudomonas sp. DJ-12 and P. putida OU83.  相似文献   

3.
Engineering of hybrid gene clusters between the toluene metabolic tod operon and the biphenyl metabolic bph operon greatly enhanced the rate of biodegradation of trichloroethylene. Escherichia coli cells carrying a hybrid gene cluster composed of todC1 (the gene encoding the large subunit of toluene terminal dioxygenase in Pseudomonas putida F1), bphA2 (the gene encoding the small subunit of biphenyl terminal dioxygenase in Pseudomonas pseudoalcaligenes KF707), bphA3 (the gene encoding ferredoxin in KF707), and bphA4 (the gene encoding ferredoxin reductase in KF707) degraded trichloroethylene much faster than E. coli cells carrying the original toluene dioxygenase genes (todC1C2BA) or the original biphenyl dioxygenase genes (bphA1A2A3A4).  相似文献   

4.
5.
The biphenyl-degrading bacterium Pseudomonas pseudoalcaligenes KF707 can use 2- and 4-fluorobiphenyl as sole carbon and energy sources. Accumulation of fluorinated catabolites was determined by fluorine-19 nuclear magnetic spectroscopy (19F NMR) and revealed that growth on 4-fluorobiphenyl yielded 4-fluorobenzoate and 4-fluoro-1,2-dihydro-1,2-dihydroxybenzoate as major fluorometabolites; 2-fluorobenzoate and 2-fluoromuconic acid were observed in 2-fluorobiphenyl-grown cultures. Pseudomonas pseudoalcaligenes KF707 was not able to use either 2- or 4-fluorobenzoate as a growth substrate. Thus, fluorobiphenyl is probably degraded via the classical Bph pathway to fluorobenzoate, which is partially transformed via the enzymes of benzoate catabolism. This is the first report of investigations on the growth of bacteria on fluorinated biphenyls and demonstrates that as with chlorobiphenyl degradation, mineralization of the compounds depends upon the bacterium's ability to effectively catabolize the halobenzoate intermediate.  相似文献   

6.
Biphenyl dioxygenase (Bph Dox) catalyzes initial oxygenation in the bacterial biphenyl degradation pathway. Bph Dox in Pseudomonas pseudoalcaligenes KF707 is a Rieske type three-component enzyme in which a large subunit (encoded by the bphA1 gene) plays an important role in the substrate specificity of Bph Dox. Steady-state kinetic assays using purified enzyme components demonstrated that KF707 Bph Dox had a kcat/Km of 33.1 x 10(3) (M(-1) s(-1)) for biphenyl. Evolved 1072 Bph Dox generated by the process of DNA shuffling (Suenaga, H. et al., J. Bacteriol., 184, 3682-3688 (2002)) exhibited enhanced degradation activity not only for biphenyl (kcat/Km of 62.2 x 10(3) [M(-1) s(-1)]) but also for benzene and toluene, compounds that are rarely attacked by KF707 Bph Dox. These results suggest that evolved 1072 Bph Dox acquires higher affinities and catalytic efficiencies for various substrates than the original KF707 enzyme.  相似文献   

7.
Biphenyl dioxygenase from Pseudomonas pseudoalcaligenes strain KF707 expressed in Escherichia coli was found to exhibit monooxygenase activity toward four stereoisomers of isoflavan-4-ol. LC-MS and LC-NMR analyses of the metabolites revealed that the corresponding epoxides formed between C2' and C3' on the B-ring of each isoflavan-4-ol substrate were the sole products. The relative reactivity of the stereoisomers was found to be in the order: (3S,4S)-cis-isoflavan-4-ol > (3R,4S)-trans-isoflavan-4-ol > (3S,4R)-trans-isoflavan-4-ol > (3R,4R)-cis-isoflavan-4-ol and this likely depended upon the absolute configuration of the 4-OH group on the isoflavanols, as explained by an enzyme-substrate docking study. The epoxides produced from isoflavan-4-ols by P. pseudoalcaligenes strain KF707 were further abiotically transformed into pterocarpan, the molecular structure of which is commonly found as part of plant-protective phytoalexins, such as maackiain from Cicer arietinum and medicarpin from Medicago sativa.  相似文献   

8.
K Furukawa  S Hayashida  K Taira 《Gene》1991,98(1):21-28
A transposon, Tn5-B21, was gene-specifically inserted into the chromosomal biphenyl/polychlorinated biphenyl-catabolic operon (bph operon) of soil bacteria. The cloned bphA, bphB and bphC genes of Pseudomonas pseudoalcaligenes KF707, coding for conversion of biphenyl into a ring meta-cleavage product (2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid), carried random insertions of Tn5-B21. The mutagenized bphABC DNA, carried by a suicide plasmid, was introduced back into the parent strain KF707, resulting in the appearance of gene-specific transposon mutants by double crossover homologous recombination: the bphA::Tn5-B21 mutant did not attack 4-chlorobiphenyl, the bphB::Tn5-B21 mutant accumulated dihydrodiol, and the bphC::Tn5-B21 mutant produced dihydroxy compound. Gene-specific transposon mutants of the bph operon were also obtained for some other biphenyl-utilizing strains which possess bph operons nearly identical to that of KF707.  相似文献   

9.
N Kimura  A Nishi  M Goto    K Furukawa 《Journal of bacteriology》1997,179(12):3936-3943
The biphenyl dioxygenases (BP Dox) of strains Pseudomonas pseudoalcaligenes KF707 and Pseudomonas cepacia LB400 exhibit a distinct difference in substrate ranges of polychlorinated biphenyls (PCB) despite nearly identical amino acid sequences. The range of congeners oxidized by LB400 BP Dox is much wider than that oxidized by KF707 BP Dox. The PCB degradation abilities of these BP Dox were highly dependent on the recognition of the chlorinated rings and the sites of oxygen activation. The KF707 BP Dox recognized primarily the 4'-chlorinated ring (97%) of 2,5,4'-trichlorobiphenyl and introduced molecular oxygen at the 2',3' position. The LB400 BP Dox recognized primarily the 2,5-dichlorinated ring (95%) of the same compound and introduced O2 at the 3,4 position. It was confirmed that the BphA1 subunit (iron-sulfur protein of terminal dioxygenase encoded by bphA1) plays a crucial role in determining the substrate selectivity. We constructed a variety of chimeric bphA1 genes by exchanging four common restriction fragments between the KF707 bphA1 and the LB400 bphA1. Observation of Escherichia coli cells expressing various chimeric BP Dox revealed that a relatively small number of amino acids in the carboxy-terminal half (among 20 different amino acids in total) are involved in the recognition of the chlorinated ring and the sites of dioxygenation and thereby are responsible for the degradation of PCB. The site-directed mutagenesis of Thr-376 (KF707) to Asn-376 (LB400) in KF707 BP Dox resulted in the expansion of the range of biodegradable PCB congeners.  相似文献   

10.
Biphenyl-grown cells and cell extracts prepared from biphenyl-grown cells of Pseudomonas sp. strain LB400 oxidize a much wider range of chlorinated biphenyls than do analogous preparations from Pseudomonas pseudoalcaligenes KF707. These results are attributed to differences in the substrate specificity of the biphenyl 2,3-dioxygenases from both organisms.  相似文献   

11.
Biphenyl dioxygenase (Bph Dox) catalyzes the initial oxygenation of biphenyl and related compounds. Bph Dox is a multicomponent enzyme in which a large subunit (encoded by the bphA1 gene) is significantly responsible for substrate specificity. By using the process of DNA shuffling of bphA1 of Pseudomonas pseudoalcaligenes KF707 and Burkholderia cepacia LB400, a number of evolved Bph Dox enzymes were created. Among them, an Escherichia coli clone expressing chimeric Bph Dox exhibited extremely enhanced benzene-, toluene-, and alkylbenzene-degrading abilities. In this evolved BphA1, four amino acids (H255Q, V258I, G268A, and F277Y) were changed from the KF707 enzyme to those of the LB400 enzyme. Subsequent site-directed mutagenesis allowed us to determine the amino acids responsible for the degradation of monocyclic aromatic hydrocarbons.  相似文献   

12.
Biphenyl dioxygenase catalyzes the first step in the aerobic degradation of polychlorinated biphenyls (PCBs). The nucleotide and amino acid sequences of the biphenyl dioxygenases from two PCB-degrading strains (Pseudomonas sp. strain LB400 and Pseudomonas pseudoalcaligenes KF707) were compared. The sequences were found to be nearly identical, yet these enzymes exhibited dramatically different substrate specificities for PCBs. Site-directed mutagenesis of the LB400 bphA gene resulted in an enzyme combining the broad congener specificity of LB400 with increased activity against several congeners characteristic of KF707. These data strongly suggest that the BphA subunit of biphenyl dioxygenase plays an important role in determining substrate selectivity. Further alteration of this enzyme can be used to develop a greater understanding of the structural basis for congener specificity and to broaden the range of degradable PCB congeners.  相似文献   

13.
The susceptibility to various biocides was examined in planktonic cells and biofilms of the obligate aerobe, PCBs degrader, Pseudomonas pseudoalcaligenes KF707. The toxicity of two antibiotics, amikacin and rifampicin, three metalloid oxyanions (AsO(2) (-), SeO(3) (2-), TeO(3) (2-)) and three metal cations (Cd(2+), Ni(2+), Al(3+)) was tested at two stages of the biofilm-development (4 and 24 h) and compared to planktonic cells susceptibility. Mature biofilms formed in rich (LB, Luria-Bertani) medium were thicker (23 mum) than biofilms grown in minimal (SA saccarose-arginine) medium (13 mum). Early grown (4 h) SA-biofilms, which consisted of a few sparse/attached cells, were 50-100 times more resistant to antibiotics than planktonic cells. Conversely, minor changes in tolerance to metal(loid)s were seen in both SA- and LB-grown biofilms. In contrast to planktonic cells, no reduction of TeO(3) (2-) to elemental Te(0) or SeO(3) (2-) to elemental Se(0) was seen in KF707 biofilms. The data indicate that: (a) metal tolerance in KF707 biofilms, under the growth and exposure conditions described here, is different than antibiotic tolerance; (b) KF707 planktonic cells and biofilms, are almost equally susceptible to killing by metal cations and oxyanions, and (c) biofilm-tolerance to TeO(3) (2-) and SeO(3) (2-) is not linked to metalloid reduction; this means that KF707 planktonic cells and biofilms differ in their physiology and strategy to counteract metalloid toxicity.  相似文献   

14.
15.
Pseudomonas pseudoalcaligenes KF707 grows on biphenyl and salicylate as sole sources of carbon. The biphenyl-catabolic (bph) genes are organized as bphR1A1A2(orf3)A3A4BCX0X1X2X3D, encoding the enzymes for conversion of biphenyl to acetyl coenzyme A. In this study, the salicylate-catabolic (sal) gene cluster encoding the enzymes for conversion of salicylate to acetyl coenzyme A were identified 6.6-kb downstream of the bph gene cluster along with a second regulatory gene, bphR2. Both the bph and sal genes were cross-regulated positively and/or negatively by the two regulatory proteins, BphR1 and BphR2, in the presence or absence of the effectors. The BphR2 binding sequence exhibits homology with the NahR binding sequences in various naphthalene-degrading bacteria. Based on previous studies and the present study we propose a new regulatory model for biphenyl and salicylate catabolism in strain KF707.  相似文献   

16.
3-Chlorobiphenyl is known to be mineralized by biphenyl-utilizing bacteria to 3-chlorobenzoate, which is further metabolized to 3-chlorocatechol. An extradiol dioxygenase, 2,3-dihydroxybiphenyl 1,2-dioxygenase (DHB12O; EC 1.13.11.39), which is encoded by the bphC gene, catalyzes the third step of the upper pathway of 3-chlorobiphenyl degradation. In this study, two full-length bphCs and nine partial fragments of bphCs fused to the 3' end of bphC in Pseudomonas pseudoalcaligenes KF707 were cloned from different biphenyl-utilizing soil bacteria and expressed in Escherichia coli. The enzyme activities of the expressed DHB12Os were inhibited to varying degrees by 3-chlorocatechol, and the E. coli cells overexpressing DHB12O could not grow or grew very slowly in the presence of 3-chlorocatechol. These sensitivities of enzyme activity and cell growth to 3-chlorocatechol were well correlated, and this phenomenon was employed in screening chimeric BphCs formed by family shuffling of bphC genes isolated from Comamonas testosteroni KF704 and C. testosteroni KF712. The resultant DHB12Os were more resistant by a factor of two to 3-chlorocatechol than one of the best parents, KF707 DHB12O.  相似文献   

17.
All the genes we examined that encoded biphenyl/polychlorinated biphenyl (PCB) degradation were chromosomal, unlike many other degradation-encoding genes, which are plasmid borne. The molecular relationship of genes coding for biphenyl/PCB catabolism in various biphenyl/PCB-degrading Pseudomonas, Achromobacter, Alcaligenes, Moraxella, and Arthrobacter strains was investigated. Among 15 strains tested, 5 Pseudomonas strains and one Alcaligenes strain possessed the bphABC gene cluster on the XhoI 7.2-kilobase fragment corresponding to that of Pseudomonas pseudoalcaligenes KF707. More importantly, the restriction profiles of these XhoI 7.2-kilobase fragments containing bphABC genes were very similar, if not identical, despite the dissimilarity of the flanking chromosomal regions. Three other strains also possessed bphABC genes homologous with those of KF707, and five other strains showed weak or no significant genetic homology with bphABC of KF707. The immunological cross-reactivity of 2,3-dihydroxybiphenyl dioxygenases from various strains corresponded well to the DNA homology. On the other hand, the bphC gene of another PCB-degrading strain, Pseudomonas paucimobilis Q1, lacked genetic as well as immunological homology with any of the other 15 biphenyl/PCB degraders tested. The existence of the nearly identical chromosomal genes among various strains may suggest that a segment containing the bphABC genes has a mechanism for transferring the gene from one strain to another.  相似文献   

18.
19.
Prokaryotic dioxygenase is known to catalyze aromatic compounds into their corresponding cis-dihydrodiols without the formation of an epoxide intermediate. Biphenyl dioxygenase from Pseudomonas pseudoalcaligenes KF707 showed novel monooxygenase activity by converting 2(R)- and 2(S)-flavanone to their corresponding epoxides (2-(7-oxabicyclo[4.1.0]hepta-2,4-dien-2-yl)-2, 3-dihydro-4H-chromen-4-one), whereby the epoxide bond was formed between C2' and C3' on the B ring of the flavanone. The enzyme also converted 6-hydroxyflavanone and 7-hydroxyflavanone, which do not contain a hydroxyl group on the B-ring, to their corresponding epoxides. In a previous report (S.-Y. Kim, J. Jung, Y. Lim, J.-H. Ahn, S.-I. Kim, and H.-G. Hur, Antonie Leeuwenhoek 84:261-268, 2003), however, we found that the same enzyme showed dioxygenase activity toward flavone, resulting in the production of flavone cis-2',3'-dihydrodiol. Extensive structural identification of the metabolites of flavanone by using high-pressure liquid chromatography, liquid chromatography/mass spectrometry, and nuclear magnetic resonance confirmed the presence of an epoxide functional group on the metabolites. Epoxide formation as the initial activation step of aromatic compounds by oxygenases has been reported to occur only by eukaryotic monooxygenases. To the best of our knowledge, biphenyl dioxygenase from P. pseudoalcaligenes KF707 is the first prokaryotic enzyme detected that can produce an epoxide derivative on the aromatic ring structure of flavanone.  相似文献   

20.
Biphenyl dioxygenase (Bph Dox) is responsible for the initial dioxygenation of biphenyl. The large subunit (BphA1) of Bph Dox plays a crucial role in determination of substrate specificity of biphenyl-related compounds including polychlorinated biphenyls (PCBs). Functional evolution of Bph Dox of Pseudomonas pseudoalcaligenes KF707 was accomplished by random priming recombination of the bphA1 gene, involving two rounds of in vitro recombination and mutation followed by selection for increased activity in vivo. Evolved Bph Dox acquired novel and multifunctional degradation capabilities not only for PCBs but also for dibenzofuran, dibenzo-p-dioxin, dibenzothiophene, and fluorene, the compounds scarcely attacked by the original KF707 Bph Dox. The modes of oxygenation were angular and lateral dioxygenation for dibenzofuran and dibenzo-p-dioxin, sulfoxidation for dibenzothiophene, and mono-oxygenation for fluorene. These enzymes also exhibited enhanced degradation abilities for PCB congeners, retaining 2,3-dioxygenase activity and gaining 3,4-dioxygenase activity, depending on the chlorine substitution of PCB congeners. Further mutation analysis revealed that the amino acid at position 376 in BphA1 is significantly involved in the acquisition of multifunctional oxygenase activities and mode of oxygenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号