首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dietary intake of inorganic arsenic, previously assumed to be an insignificant source of arsenic exposure in humans, was estimated for Canadian and United States populations. Input data included arsenic contents of various food groups, a limited historical database from the Ontario Ministry of the Environment measuring the percent inorganic arsenic in food groups, and food consumption data. Estimated daily dietary intake of inorganic arsenic ranges from 8.3 to 14?µg/day in the United States and from 4.8 to 12.7?µg/day in Canada for various age groups. These data suggest that between 21% to 40% of total dietary arsenic occurs in inorganic forms. Uncertainties regarding total arsenic in dairy products in the data set applied here may account for observed differences between United States and Canadian estimates. While estimates provided here are preliminary because of limitations in data on the proportion of inorganic arsenic in foods, this analysis suggests that dietary intake of inorganic arsenic is higher than is currently assumed. Additional research is needed to more fully characterize inorganic arsenic concentrations in foods. Future study is also needed on the variability of total and inorganic arsenic in foods and the bioavailability of dietary inorganic arsenic.  相似文献   

2.
The anamorphic basidomycetous yeast Cryptococcus humicolus was shown by hydride generation-gas chromatography-atomic absorption spectrometry to methylate inorganic antimony compounds to mono-, di-, and trimethylantimony species under oxic growth conditions. Methylantimony levels were positively correlated with initial substrate concentrations up to 300 mg Sb l–1 as potassium antimony tartrate (K-Sb-tartrate). Increasing concentrations of K-Sb-tartrate increased the ratio of di- to trimethylantimony species, indicating that methylation of dimethylantimony was rate limiting. Antimony methylation capability in C. humicolus was developed after the exponential growth phase and was dependent upon protein synthesis in the early stationary phase. Inclusion of inorganic arsenic (III) or (V) species alongside antimony in culture incubations enhanced antimony methylation. Pre-incubation of cells with inorganic arsenic (III) further induced antimony methylation capability, whereas pre-incubation with inorganic antimony (III) did not. Exposure of cells to inorganic arsenic—either through pre-incubation or provision during cultivation—influenced the antimony speciation; involatile trimethylantimony species was the sole methylated antimony species detected, i.e. mono- and dimethylantimony species were not detected. Competitive inhibition of antimony methylation was observed at high arsenic loadings. These data indicate that antimony methylation is a fortuitous process, catalysed at least in part by enzymes responsible for arsenic methylation.  相似文献   

3.
The classical concept of arsenic transfer into plants through arsenate uptake via phosphate transporters, reduction to arsenite, complexation and compartmentation within vacuoles is challenged by recent identification of bidirectional transporters for arsenite and their potential role in plant As status regulation. Soil-based studies with chemical analysis of soil solution require root mat formation amplifying root effects on their surroundings and additionally denying investigations along individual roots differing in age and function. We tried to overcome these shortcomings by using bioreporter bacteria to visualise the spatial distribution of inorganic arsenic along roots and to characterize inorganic arsenic gradients in the rhizosphere concurrent with root age and branching. Therefore we developed an agar-based carrier element ensuring intimate contact between bioreporters and root-soil system and enabling fast and easy reporter output analysis. We show that inorganic arsenic distribution is related to root development with the highest bioreporter signal induction around lateral roots, which are known to show the highest expression of transporters responsible for bidirectional arsenite flux. Since there is so far no evidence for an arsenate efflux mechanism this is a strong indicator that we observed rather arsenite than arsenate efflux. No signal was detected along the distal region of young adventitious roots, i.e. the region of extension growth and root hair formation. The novel bioreporter assay may thus complement conventional measurements by providing information on the spatial distribution of inorganic arsenic on mm to cm-scale.  相似文献   

4.
Arsenic is widely distributed in the environment by natural and human means. The potential for adverse health effects from inorganic arsenic depends on the level and route of exposure. To estimate potential health risks of inorganic arsenic, the apportionment of exposure among sources of inorganic arsenic is critical. In this study, daily inorganic arsenic intake of U.S. adults from food, water, and soil ingestion and from airborne particle inhalation was estimated. To account for variations in exposure across the U.S., a Monte Carlo approach was taken using simulations for 100,000 individuals representing the age, gender, and county of residence of the U.S. population based on census data. Our analysis found that food is the greatest source of inorganic arsenic intake and that drinking water is the next highest contributor. Inhalation of airborne arsenic-containing particles and ingestion of arsenic-containing soils were negligible contributors. The exposure is best represented by the ranges of inorganic arsenic intake (at the 10th and 90th percentiles), which were 1.8 to 11.4 µg/day for males and 1.3 to 9.4 µg/day for females. Regional differences in inorganic arsenic exposure were due mostly to consumption of drinking water containing differing inorganic arsenic content rather than to food preferences.  相似文献   

5.
Bacterial methylation of arsenic converts inorganic arsenic into volatile and non-volatile methylated species. It plays an important role in the arsenic cycle in the environment. Despite the potential environmental significance of AsMB, an assessment of their population size and activity remains unknown. This study has now established a protocol for enumeration of AsMB by means of the anaerobic-culture-tube, most probable number (MPN) method. Direct detection of volatile arsenic species is then done by GC-MS. This method is advantageous as it can simultaneously enumerate AsMB and acetate and formate-utilizing methanogens. The incubation time for this method was determined to be 6 weeks, sufficient time for AsMB growth.  相似文献   

6.
Arsenic is a natural component of the environment and is ubiquitous in soils, water, and the diet. Because dietary intake can be a significant source of background exposure to inorganic arsenic (the most toxicologically significant form), accurate intake estimates are needed to provide a context for risk management of arsenic exposure. Intake of inorganic arsenic by adults is fairly well characterized, but previous estimates of childhood intake were based on inorganic arsenic analyses in a limited number of foods (13 food types). This article estimates dietary intake for U.S. children (1 to 6 years of age) based on reported inorganic arsenic concentrations in 38 foods and in water used in cooking those foods (inorganic arsenic concentration of 0.8 μg/L), and U.S. Department of Agriculture food consumption data. This information is combined using a probabilistic software model to extract food consumption patterns and compute exposure distributions. The mean childhood dietary intake estimate for inorganic arsenic was 3.2 μg/day with a range of 1.6 to 6.2 μg/day for the 10th and 95th percentiles, respectively. For both the mean and 95th percentile inorganic arsenic intake rates, intake was predominantly contributed by grain and grain products, fruits and fruit juices, rice and rice products, and milk.  相似文献   

7.
Metabolic conversion of inorganic arsenic into methylated products is a multistep process that yields mono-, di-, and trimethylated arsenicals. In recent years, it has become apparent that formation of methylated metabolites of inorganic arsenic is not necessarily a detoxification process. Intermediates and products formed in this pathway may be more reactive and toxic than inorganic arsenic. Like all metabolic pathways, understanding the pathway for arsenic methylation involves identification of each individual step in the process and the characterization of the molecules which participate in each step. Among several arsenic methyltransferases that have been identified, arsenic (+3 oxidation state) methyltransferase is the one best characterized at the genetic and functional levels. This review focuses on phylogenetic relationships in the deuterostomal lineage for this enzyme and on the relation between genotype for arsenic (+3 oxidation state) methyltransferase and phenotype for conversion of inorganic arsenic to methylated metabolites. Two conceptual models for function of arsenic (+3 oxidation state) methyltransferase which posit different roles for cellular reductants in the conversion of inorganic arsenic to methylated metabolites are compared. Although each model accurately represents some aspects of enzyme's role in the pathway for arsenic methylation, neither model is a fully satisfactory representation of all the steps in this metabolic pathway. Additional information on the structure and function of the enzyme will be needed to develop a more comprehensive model for this pathway.  相似文献   

8.
Major sources of arsenic exposure for humans are foods, particularly aquatic organisms, which are called seafood in this report. Although seafood contains a variety of arsenicals, including inorganic arsenic, which is toxic and carcinogenic, and arsenobetaine, which is considered nontoxic, the arsenic content of seafood commonly is reported only as total arsenic. A goal of this literature survey is to determine if generalizable values can be derived for the percentage of total arsenic in seafood that is inorganic arsenic. Generalizable values for percent inorganic arsenic are needed for use as default values in U.S. human health risk assessments of seafood from arsenic-contaminated sites. Data from the worldwide literature indicate the percent of inorganic arsenic in marine/estuarine finfish does not exceed 7.3% and in shellfish can reach 25% in organisms from presumably uncontaminated areas, with few data available for freshwater organisms. However, percentages can be much higher in organisms from contaminated areas and in seaweed. U.S. site-specific data for marine/estuarine finfish and shellfish are similar to the worldwide data, and for freshwater finfish indicate that the average percent inorganic arsenic is generally < 10%, but ranges up to nearly 30%. Derivation of nationwide defaults for percent inorganic arsenic in fish, shellfish, and seaweed collected from arsenic-contaminated areas in the United States is not supported by the surveyed literature.  相似文献   

9.
Total arsenic in urine is often the principal means for assessing chronic exposure to arsenic-contaminated drinking water. This approach ignores many components of the human diet, especially fish and seafood that contain arsenic at significant concentrations. The toxicity differences between the inorganic forms and the dietary forms suggest both should be evaluated when attempting to assess risk from arsenic exposure. Urine biomonitoring for 53 participants was used to confirm reduction in arsenic exposure resulting from well water remediation removing inorganic arsenic from drinking water. Initially, only total arsenic urine assays were performed, but spikes in total arsenic urine concentrations were determined to be diet related and demonstrated the need for analytical methods that differentiate the arsenic species. A secondary analysis was added that quantified inorganic-related arsenic in urine and the dietary forms related to fish and seafood by subtraction from total arsenic. Significant differences were found between the inorganic arsenic component and the total arsenic measured in their urine. On average, approximately 76% of total arsenic in urine was attributed to fish and other organo-arsenic dietary sources, implying a potential significant overestimate of exposure, and demonstrating the need for differentiation of the inorganic-related arsenic from dietary arsenic.  相似文献   

10.
Environmental or occupational exposure to arsenic is associated with a greatly increased risk of skin, urinary bladder, and respiratory tract cancers in arseniasis-endemic areas throughout the world. Arsenic shares many properties of tumor promoters by affecting specific cell signal transduction pathways responsible for cell proliferation. The activation of the epidermal growth factor receptor (EGFR)-extracellular signal-regulated protein kinase (ERK) pathway is important in mediating gene expression related to regulation of cellular growth. In the current studies, we demonstrate that arsenic activates EGFR and ERK in a human uroepithelial cell line. The EGFR phosphorylation by arsenic is ligand-independent and does not involve the major autophosphorylation site Tyr(1173). c-Src activity is also induced by arsenic and is a prerequisite for the EGFR and ERK activation. Consistent with these in vitro observations, exposure of mice to arsenic in drinking water, which has been found previously to be associated with AP-1 activation and epithelial proliferation, induces EGFR and ERK activation in the urinary bladder. This response is also accompanied with an increase in c-Src levels interacting with EGFR. These findings represent a potential pathway for mediating arsenic-induced phenotypic changes in the uroepithelium.  相似文献   

11.
Hanaoka  Ken'ichi  Tagawa  Shoji  Kaise  Toshikazu 《Hydrobiologia》1992,235(1):623-628
Two growth media containing arsenobetaine [(CH3)3 As+ CH2COO] were mixed with coastal marine sediments, the latter providing a source of microorganisms. The mixtures were kept at 25 °C in the dark and shaken for several weeks under an atmosphere of air. The disappearance of arsenobetaine and the appearance of two metabolites were followed by HPLC. The HPLC-retention time of the first metabolite agreed with that of trimethylarsine oxide [(CH3)3AsO]. The second metabolite was identified as arsenate (As(V)) using hydride generation/cold trap/GC MS analysis and thin layer chromatography. This is the first scientific evidence showing that arsenobetaine is degraded by microorganisms to inorganic arsenic via trimethylarsine oxide. The degradation of arsenobetaine to inorganic arsenic completes the marine arsenic cycle that begins with the methylation of inorganic arsenic on the way to arsenobetaine.  相似文献   

12.
Abstract

Total arsenic, inorganic arsenic (iAs), total cadmium concentrations and chemical forms of cadmium were analysed in Porphyra yezoensis collected monthly from January to April in 2011 and in Laminaria Japonica collected monthly from March to July in 2010. Results showed that total As concentrations in P. yezoensis were much lower than those in L. Japonica. The iAs concentrations in both macroalgae were all below the maximum limit according to the legislation in China, while total Cd concentrations in all samples of P. yezoensis exceeded the maximum limit. The percentage of iAs to total As decreased in both macroalgae with the time. The results provide important information showing that both macroalgae are able to metabolise inorganic arsenic to organic forms. Thus both macroalgae have evolved arsenic resistance which is linked to the capability of metabolising toxic inorganic arsenic. In addition, the results suggest that the transformation rate of arsenate to organic arsenic in both algae increases with the growth and metabolic rate that increase with elevated environmental temperature. Temperatures rise from January to April in Jiangsu province and from March to July in Liaoning Province. Most Cd was associated with pectates and protein (extractable by 1 M NaCl) in both algae, and only a small percentage of the Cd was inorganic (extractable by 80% ethanol). The Cd chemical forms have no obvious relationship with the time in both algae.  相似文献   

13.
Arsenic is naturally occurring element that exists in both organic and inorganic formulations. The inorganic form arsenite has a positive association with development of multiple cancer types. There are significant populations throughout the world with high exposure to arsenite via drinking water. Thus, human exposure to arsenic has become a significant public health problem. Recent evidence suggests that reactive oxygen species (ROS) mediate multiple changes to cell behavior after acute arsenic exposure, including activation of proliferative signaling and angiogenesis. However, the role of ROS in mediating cell transformation by chronic arsenic exposure is unknown. We found that cells chronically exposed to sodium arsenite increased proliferation and gained anchorage-independent growth. This cell transformation phenotype required constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. We also observed these cells constitutively produce ROS, which was required for the constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. Suppression of ROS levels by forced expression of catalase also reduced cell proliferation and anchorage-independent growth. These results indicate cell transformation induced by chronic arsenic exposure is mediated by increased cellular levels of ROS, which mediates activation of AKT, ERK1/2, and p70S6K1.  相似文献   

14.
Arsenate-sensitive and resistant mutants of Chlamydomonas reinhardtii were obtained by screening mutants generated by random insertional mutagenesis for growth in the presence of various concentrations of arsenate. The intracellular concentrations of arsenic in the mutants kept in the arsenate-containing medium were determined with an atomic absorption spectrophotometer. The intracellular levels of arsenic in the arsenate-resistant mutants were all lower than that of the parent strain CC425. Some of the arsenate-sensitive mutants, AS1 and AS3, showed obviously higher levels of arsenic than that of CC425, while other sensitive mutant, AS2, did not accumulate arsenic so much. Analysis of the chemical species of arsenic suggested that inorganic arsenic was converted to dimethylarsinic acid (DMAA) in CC425. However, DMAA was hardly detected in AS2. The mechanisms of the resistance to arsenate are discussed on its uptake and detoxification.  相似文献   

15.
Problems and concerns in relation to the use of inorganic fertilisers, irrigation, herbicides and pesticides have led to the search for alternative strategies to combat limiting soil nutrient and water levels and the effect of weeds and pests on crops. Greater utilisation of microorganisms in agricultural systems could possibly allow reductions in the use of inorganic fertilisers, water, herbicides and pesticides with no impact on crop yield. Positive plant microbial interactions which are currently under study are considered here.  相似文献   

16.
Environmental organoarsenicals are produced by microorganisms and are introduced anthropogenically as herbicides and antimicrobial growth promoters for poultry and swine. Nearly every prokaryote has an ars (arsenic resistance) operon, and some have an arsH gene encoding an atypical flavodoxin. The role of ArsH in arsenic resistance has been unclear. Here we demonstrate that ArsH is an organoarsenical oxidase that detoxifies trivalent methylated and aromatic arsenicals by oxidation to pentavalent species. Escherichia coli, which does not have an arsH gene, is very sensitive to the trivalent forms of the herbicide monosodium methylarsenate [MSMA or MAs(V)] and antimicrobial growth promoter roxarsone [Rox(V)], as well as to phenylarsenite [PhAs(III), also called phenylarsine oxide or PAO]. Pseudomonas putida has two chromosomally encoded arsH genes and is highly resistant to the trivalent forms of these organoarsenicals. A derivative of P. putida with both arsH genes deleted is sensitive to MAs(III), PhAs(III) or Rox(III). P. putida arsH expressed in E. coli conferred resistance to each trivalent organoarsenical. Cells expressing PpArsH oxidized the trivalent organoarsenicals. PpArsH was purified, and the enzyme in vitro similarly oxidized the trivalent organoarsenicals. These results suggest that ArsH catalyzes a novel biotransformation that confers resistance to environmental methylated and aromatic arsenicals.  相似文献   

17.
Epidemiological studies have demonstrated an association between long-term exposure to inorganic arsenic and the related adverse effects such as cancers, skin lesions, and vascular diseases. Although several hypotheses have been proposed for the mechanism of arsenic-induced pathogenesis, it remains imperfectly understood. Recent studies have suggested that alterations in growth signal transduction pathways, particularly involving transforming growth factor-alpha (TGF-alpha), may be important. Immunoassays were used to determine the plasma levels of TGF-alpha and epidermal growth factor receptor (EGFR), which is the receptor for TGF-alpha, in residents of an arseniasis area of Taiwan in relation to their estimated cumulative arsenic exposure from drinking water. No relationship between arsenic exposure and EGFR was found. However, among the high cumulative exposure group (>6 ppm-years), levels of plasma TGF-alpha (25.5+/-38.2 pg ml-1) and the proportion of individuals with TGF-alpha over-expression (29.4%) were significantly higher (p<0.05) than normal, healthy unexposed controls (8.1+/-5.6 pg ml-1, 8.6%, respectively). There was a significant linear trend between cumulative arsenic exposure and the prevalence of plasma TGF-alpha over-expression after adjusting for age and sex (p=0.019). The results suggest that plasma TGF-alpha expression may be a useful biomarker when detecting adverse effects on arsenic exposed population.  相似文献   

18.
Mechanism of arsenic carcinogenesis: an integrated approach   总被引:33,自引:0,他引:33  
Rossman TG 《Mutation research》2003,533(1-2):37-65
Epidemiological evidence shows an association between inorganic arsenic in drinking water and increased risk of skin, lung and bladder cancers. The lack of animal models has hindered mechanistic studies of arsenic carcinogenesis in the past, but some promising new models for these cancers are now available. The various forms of arsenic to which humans are exposed, either directly or via metabolism of inorganic arsenic to various methylated forms, further complicate the issue of mechanism, since these compounds can have different effects, both genotoxic and non-genotoxic. This review will try to integrate all of these issues, with a strong bias toward effects that are produced by environmentally relevant arsenic concentrations.  相似文献   

19.
Arsenic is the most toxic metalloid present in the natural environment in both organic and inorganic arsenic forms. Inorganic arsenic is often more hazardous than the organic form. Arsenite and arsenate compounds are the major inorganic forms which are toxic causing severe human health dysfunction including cancer. Excretion of arsenic from the system is found elusive. Therefore, it is of interest to screen channel proteins with the arsenic complex in the different combination of arsenic, GSH (glutathione) and arsenic, selenium using docking methods. The mode of arsenic removal. The complex structure revealed the mode of arsenic binding efficiency with the receptor aquaporine 9 and ABCC1 channel protein. This provides insights to understand the mechanism of arsenic efflux. These inferences find application in the design, identification and development of novel nutracetucal or any other formulation useful in the balance of arsenic efflux.  相似文献   

20.
The extent of arsenopyrite weathering in relation to co-existing minerals in an Austrian soil and the leaching of arsenic from the soil has been investigated. Soil and underlying bedrock samples were collected and characterized by chemical and mineralogical analyses. The solubility of the soil arsenic under anaerobic conditions was studied by incubating the soil sample in distilled water for different periods of time using a customized lycimeter. The solubility of arsenic from pure arsenopyrite mineral and mixtures of arsenopyrite with chalcopyrite or pyrite was studied by incubating the pulverized minerals. Speciation of arsenic in the incubated and non-incubated soil samples was carried out by sequential leaching, solvent-extraction, and ion exchange chromatographic techniques.

Results of SEM analysis indicated that arsenopyite (FeAsS), the most common mineral in the area, occurs in paragenesis with pyrite (FeS2) and chalcopyrite (CuFeS2). The existence of these minerals with arsenopyrite was found to enhance its solubilization. From the speciation study it was found that nearly all (92%) of the arsenic in the soil exists in the inorganic form. Out of the total inorganic arsenic, the trivalent inorganic species accounted for only 3% and the remaining 89% was found to be the pentavalent form. The low solubility of As in the Graz soil is attributed to the prevalence of this pentavalent inorganic species.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号