首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sarakatsannis JN  Duan Y 《Proteins》2005,60(4):732-739
The structure and folding mechanism of a given protein are determined by many factors, including the electrostatic interactions between charged residues of protein molecules known in general as salt bridges. In this study, analyses were conducted on 10,370 salt bridges in 2017 proteins and the results compared to previous statistical surveys of 36 protein structures. Although many of the general trends remained consistent with other studies, more detailed information was illuminated by the larger dataset. In particular, it was shown that there is a strong correlation between secondary structure and salt bridge formation, and that salt bridges display preferential formation in an environment of about 30% solvent accessible surface area.  相似文献   

2.
Pairing of a consensus sequence of the precursor (pre)-mRNA intron with a short region of the U2 small nuclear (sn)RNA during assembly of the eukaryotic spliceosome results in formation of a complementary helix of seven base pairs with a single unpaired adenosine residue. The 2' OH of this adenosine, called the branch site, brings about nucleophilic attack at the pre-mRNA 5' splice site in the first step of splicing. Another feature of this pairing is the phylogenetic conservation of a pseudouridine (psi) residue in U2 snRNA nearly opposite the branch site. We show that the presence of this psi in the pre-mRNA branch-site helix of Saccharomyces cerevisiae induces a dramatically altered architectural landscape compared with that of its unmodified counterpart. The psi-induced structure places the nucleophile in an accessible position for the first step of splicing.  相似文献   

3.
The surface accessibility of macromolecules plays a key role in modulating molecular recognition events. RNA is a complex and dynamic molecule involved in many aspects of gene expression. However, there are few experimental methods available to measure the accessible surface of RNA. Here, we investigate the accessible surface of RNA using NMR and the small paramagnetic molecule TEMPOL. We investigated two RNAs with known structures, one that is extremely stable and one that is dynamic. For helical regions, the TEMPOL probing data correlate well with the predicted RNA surface, and the method is able to distinguish subtle variations in atom depths, such as the relative accessibility of pyrimidine versus purine aromatic carbon atoms. Dynamic motions are also detected by TEMPOL probing, and the method accurately reports a previously characterized pH-dependent conformational transition involving formation of a protonated C–A pair and base flipping. Some loop regions are observed to exhibit anomalously high accessibility, reflective of motions that are not evident within the ensemble of NMR structures. We conclude that TEMPOL probing can provide valuable insights into the surface accessibility and dynamics of RNA, and can also be used as an independent means of validating RNA structure and dynamics in solution.  相似文献   

4.
Edwards TE  Sigurdsson ST 《Biochemistry》2002,41(50):14843-14847
Electron paramagnetic resonance (EPR) spectroscopy was utilized to investigate the correlation between RNA structure and RNA internal dynamics in complexes of HIV-1 TAR RNA with small molecules. TAR RNAs containing single nitroxide spin-labels in the 2'-position of U23, U25, U38, or U40 were incubated with compounds known to inhibit TAR-Tat complex formation. The combined changes in nucleotide mobility at all four sites, as monitored by their EPR spectral width, yield a dynamic signature for each compound. The multicyclic dyes Hoechst 33258, DAPI, and berenil bind to TAR RNA in a similar manner and gave nearly identical signatures. Different signatures were obtained for the acridine derivative CGP 40336A and the aminoglycoside antibiotic neomycin, which bind to different regions of the RNA. The dynamic signature for guanidinoneomycin was remarkably similar to that obtained for argininamide and is evidence for guanidinoneomycin binding to the same site as arginine 52 of the Tat protein, rather than to the neomycin binding site. The data presented here show that the dynamic signatures provide strong insights into RNA structure and recognition and demonstrate the value of EPR spectroscopy for the investigation of small molecule binding to RNA.  相似文献   

5.
TEMPOL, the soluble spin-label 4-hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl, has been used to determine the surface characteristics of tendamistat, a small protein with a well-characterised structure both in solution and in the crystal. A good correlation has been found between predicted regions of exposed protein surface and the intensity attenuations induced by the probe on 2D NMR TOCSY cross peaks of tendamistat in the paramagnetic water solution. All the high paramagnetic effects have been interpreted in terms of more efficient competition of TEMPOL with water molecules at some surface positions. The active site of tendamistat coincides with the largest surface patch accessible to the probe. A strong hydration of protein N and C termini can also be suggested by this structural approach, as these locations exhibit reduced paramagnetic perturbations. Provided that the solution structure is known, the use of this paramagnetic probe seems to be well suited to delineate the dynamic behaviour of the protein surface and, more generally, to gain relevant information about the molecular presentation processes.  相似文献   

6.
7.
The chromosome structure is one of most challenging biological structures to be discovered. Most evidence about the structure comes from optical microscopy. Scanning force microscopy (SFM) can achieve molecular resolution and allows imaging in liquids. However, little information about the chromosome structure has been revealed by SFM. In this work, a mild enzymatic treatment is applied to the chromosomes to remove selectively the RNA and proteins coming from the cell. The resulting SFM images indicate that a protein film with embedded RNA molecules covers chromosomes in standard cytogenetic preparations. The thickness of the protein layer is 15-35 nm and the RNA adheres preferentially to the chromosome surface. The cell material film results in a quite smooth chromosome surface without evidence of any structural detail. After treatment, the chromosome was cleaned from cell residues and individual chromatin fibers at the surface were resolved. Furthermore, insights about the higher order structure of the chromosome can be inferred.  相似文献   

8.
The conformation of chicken, rat and human U1A RNAs in solution.   总被引:33,自引:18,他引:15       下载免费PDF全文
Chicken, rat and human U1A RNAs in solution, were examined for secondary structure, using several methods including hydrolysis by various nucleases, hybridization to DNA oligomers and analysis of fragment interactions. The experimental results showed that the three U1A RNAs have the same structure, stable over a wide range of pH and ionic conditions. They allowed the selection of one out of several possible models constructed from the data of primary structure. This model is characterized by 4 hairpins and two single-stranded regions, the two hairpins from the 3' part of the molecule bearing very stable stems. In addition, the experimental results showed that in contrast to the 5' half of the molecule, the 3' half has a compact conformation probably stabilized by tertiary interactions. The 5' end of U1A RNA is accessible and free of base-pairing so that it might base-pair with regions of other RNA molecules, for instance, with the extremities of introns as has been recently proposed in a model of splicing.  相似文献   

9.
Molecular dynamics (MD) simulations on stem loop 2 of U1 small nuclear RNA and a construct of the U1A protein were carried out to obtain predictions of the structures for the unbound forms in solution and to elucidate dynamical aspects of induced fit upon binding. A crystal structure of the complex between the U1A protein and stem loop 2 RNA and an NMR structure for the uncomplexed form of the U1A protein are available from Oubridge et al. (Nature, 1994, Vol. 372, pp. 432-438) and Avis et al. (Journal of Molecular Biology, 1996, Vol. 257, pp. 398-411), respectively. As a consequence, U1A-RNA binding is a particularly attractive case for investigations of induced fit in protein-nucleic acid complexation. When combined with the available structural data, the results from simulations indicate that structural adaptation of U1A protein and RNA define distinct mechanisms for induced fit. For the protein, the calculations indicate that induced fit upon binding involves a non-native thermodynamic substate in which the structure is preorganized for binding. In contrast, induced fit of the RNA involves a distortion of the native structure in solution to an unstable form. However, the RNA solution structures predicted from simulation show evidence that structures in which groups of bases are favorably oriented for binding the U1A protein are thermally accessible. These results, which quantify with computational modeling recent proposals on induced fit and conformational capture by Leuillot and Varani (Biochemistry, 2001, Vol. 40, pp. 7947-7956) and by Williamson (Nature Structural Biology, 2000, Vol. 7, pp. 834-837) suggest an important role for intrinsic molecular architecture and substates other than the native form in the specificity of protein-RNA interactions.  相似文献   

10.
Accompanying recent advances in determining RNA secondary structure is the growing appreciation for the importance of relatively simple topological constraints, encoded at the secondary structure level, in defining the overall architecture, folding pathways, and dynamic adaptability of RNA. A new view is emerging in which tertiary interactions do not define RNA 3D structure, but rather, help select specific conformers from an already narrow, topologically pre-defined conformational distribution. Studies are providing fundamental insights into the nature of these topological constraints, how they are encoded by the RNA secondary structure, and how they interplay with other interactions, breathing new meaning to RNA secondary structure. New approaches have been developed that take advantage of topological constraints in determining RNA backbone conformation based on secondary structure, and a limited set of other, easily accessible constraints. Topological constraints are also providing a much-needed framework for rationalizing and describing RNA dynamics and structural adaptation. Finally, studies suggest that topological constraints may play important roles in steering RNA folding pathways. Here, we review recent advances in our understanding of topological constraints encoded by the RNA secondary structure.  相似文献   

11.
Acrylamide quenching is widely used to monitor the solvent exposure of fluorescent probes in vitro. Here, we tested the utility of this technique to discriminate local RNA secondary structures using the fluorescent adenine analogue 2-aminopurine (2-AP). Under native conditions, the solvent accessibilities of most 2-AP-labeled RNA substrates were poorly resolved by classical single-population models; rather, a two-state quencher accessibility algorithm was required to model acrylamide-dependent changes in 2-AP fluorescence in structured RNA contexts. Comparing 2-AP quenching parameters between structured and unstructured RNA substrates permitted the effects of local RNA structure on 2-AP solvent exposure to be distinguished from nearest neighbor effects or environmental influences on intrinsic 2-AP photophysics. Using this strategy, the fractional accessibility of 2-AP for acrylamide ( f a) was found to be highly sensitive to local RNA structure. Base-paired 2-AP exhibited relatively poor accessibility, consistent with extensive shielding by adjacent bases. 2-AP in a single-base bulge was uniformly accessible to solvent, whereas the fractional accessibility of 2-AP in a hexanucleotide loop was indistinguishable from that of an unstructured RNA. However, these studies also provided evidence that the f a parameter reflects local conformational dynamics in base-paired RNA. Enhanced base pair dynamics at elevated temperatures were accompanied by increased f a values, while restricting local RNA breathing by adding a C-G base pair clamp or positioning 2-AP within extended RNA duplexes significantly decreased this parameter. Together, these studies show that 2-AP quenching studies can reveal local RNA structural and dynamic features beyond those that can be measured by conventional spectroscopic approaches.  相似文献   

12.
X-ray structure determination of the compound (C37H42N2O6)2+ .2Br-.4CH3OH, confirms that (+)-tubocurarine is a monoquaternary salt and has established that the molecule adopts different conformations in crystals of the dibromide and dichloride salts. The crystal structure is stabilised by a number of hydrogen bonds involving the two free hydroxyl groups and the tertiary nitrogen of the tubocurarine molecule, the bromide ions and the solvent molecules. The absolute configuration of the molecule, determined by X-ray anomalous scattering, confirms the configuration assigned earlier by chemical studies.  相似文献   

13.
Trypanosome RNA editing is a massive processing of mRNA by U deletion and U insertion, directed by trans-acting guide RNAs (gRNAs). A U deletion cycle and a U insertion cycle have been reproduced in vitro using synthetic ATPase (A6) pre-mRNA and gRNA. Here we examine which gRNA features are important for this U deletion. We find that, foremost, this editing depends critically on the single-stranded character of a few gRNA and a few mRNA residues abutting the anchor duplex, a feature not previously appreciated. That plus any base-pairing sequence to tether the upstream mRNA are all the gRNA needs to direct unexpectedly efficient in vitro U deletion, using either the purified editing complex or whole extract. In fact, our optimized gRNA constructs support faithful U deletion up to 100 times more efficiently than the natural gRNA, and they can edit the majority of mRNA molecules. This is a marked improvement of in vitro U deletion, in which previous artificial gRNAs were no more active than natural gRNA and the editing efficiencies were at most a few percent. Furthermore, this editing is not stimulated by most other previously noted gRNA features, including its potential ligation bridge, 3' OH moiety, any U residues in the tether, the conserved structure of the central region, or proteins that normally bind these regions. Our data also have implications about evolutionary forces active in RNA editing.  相似文献   

14.
Li P  Pok G  Jung KS  Shon HS  Ryu KH 《Proteomics》2011,11(19):3793-3801
Solvent exposure of amino acids measures how deep residues are buried in tertiary structure of proteins, and hence it provides important information for analyzing and predicting protein structure and functions. Existing methods of calculating solvent exposure such as accessible surface area, relative accessible surface area, residue depth, contact number, and half-sphere exposure still have some limitations. In this article, we propose a novel solvent exposure measure named quadrant-sphere exposure (QSE) based on eight quadrants derived from spherical neighborhood. The proposed measure forms a microenvironment around Cα atom as a sphere with a radius of 13??, and subdivides it into eight quadrants according to a rectangular coordinate system constructed based on geometric relationships of backbone atoms. The number of neighboring Cα atoms whose labels are the same is given as the QSE value of the center Cα atom at hand. As evidenced by histograms that show very different distributions for different structure configurations, the proposed measure captures local properties that are characteristic for a residue's eight-directional neighborhood within a sphere. Compared with other measures, QSE provides a different view of solvent exposure, and provides information that is specific for different tertiary structure. As the experimental results show, QSE measure can potentially be used in protein structure analysis and predictions.  相似文献   

15.
Poliovirus-specific RNA-dependent RNA polymerase (replicase, 3Dpol) was purified from HeLa cells infected with poliovirus. The purified enzyme preparation contained two proteins of apparent molecular weights 63,000 and 35,000. The 63,000-Mr polypeptide was virus-specific RNA-dependent RNA polymerase, and the 35,000-Mr polypeptide was of host origin. Both polypeptides copurified through five column chromatographic steps. The purified enzyme preparation catalyzed synthesis of covalently linked dimeric RNA products from a poliovirion RNA template. This reaction was absolutely dependent on added oligo(U) primer, and the dimeric product appeared to be made of both plus- and minus-strand RNA molecules. Experiments with 5' [32P]oligo(U) primer and all four unlabeled nucleotides suggest that the viral replicase elongates the primer, copying the poliovirion RNA template (plus strand), and the newly synthesized minus strand snaps back on itself to generate a template-primer structure which is elongated by the replicase to form covalently linked dimeric RNA molecules. Kinetic studies showed that a partially purified preparation of poliovirus replicase contains a nuclease which can cleave the covalently linked dimeric RNA molecules, generating template-length RNA products.  相似文献   

16.
17.
Solvent-accessible surfaces of nucleic acids   总被引:14,自引:0,他引:14  
Static solvent-accessible surface areas were calculated for DNA and RNA double helices of varied conformation, composition and sequence, for the single helix of poly(rC), and for a transfer RNA. The results show that for DNA and RNA double helices, two thirds of the water-accessible surface area become buried on double helix formation; phosphate oxygens retain near maximal exposure while the bases are 80% buried. Transfer RNA exposes slightly less surface per residue than does double-helical RNA, despite the presence of several additional “modified” groups, all of which are exposed significantly.When a probe corresponding to a single water molecule is used, both the total and atom type exposures are very similar for A-DNA and B-DNA, although marked differences appear in the major and minor groove exposures between the two conformations. For a given base-pair, the accessible surface area buried upon double-helical stacking is nearly constant (within 5%) for different sequences of neighboring base-pairs.For probes larger than single water molecules, there exist considerable differences in the total and atom type exposures of A-DNA and B-DNA. Conformational transitions between the A-DNA and B-DNA helical forms can thus be related to differences in the accessible areas for “structured” water, or a secondary hydration shell, rather than to interactions with individual water molecules of the primary hydration shell. The base-composition dependence of DNA helical conformation can be explained in terms of the opposing effects of thymine methyl groups of A · T base-pairs and the amino groups of G · C base-pairs upon the solvent within the grooves.The area calculations show that primarily the major groove of B-DNA and the minor groove of A-DNA have sufficient accessible surface area to be recognized by a probe size corresponding to the side-chains of amino acids.  相似文献   

18.
In order to evaluate uranyl photocleavage as a tool to identify and characterize structural and dynamic properties in RNA, we compared uranyl cleavage sites in five RNA molecules with known X-ray structures, namely the hammerhead and hepatitis delta virus ribozymes, the P4-P6 domain of the Tetrahymena group I intron, as well as tRNA(Phe) and tRNA(Asp) from yeast. Uranyl photocleavage was observed at specific positions in all molecules investigated. In order to characterize the sites, photocleavage was performed in the absence and in increasing amounts of MgCl(2). Uranyl photocleavage correlates well with sites of low calculated accessibility, suggesting that uranyl ions bind in tight RNA pockets formed by close approach of phosphate groups. RNA foldings require ion binding, usually magnesium ions. Thus, upon the adoption of the native structure, uranyl ions can no longer bind well except in flexible and open to the solvent regions that can undergo induced-fit without disrupting the native fold. Uranyl photocleavage was compared to N-ethyl-N-nitrosourea and lead-induced cleavages in the context of the three-dimensional X-ray structures. Overall, the regions protected from ENU attack are sites of uranyl cleavage, indicating sites of low accessibility which can form ion binding sites. On the contrary, lead cleavages occur at flexible and accessible sites and correlate with the unspecific cleavages prevalent in dynamic and open regions. Applied in a magnesium-dependent manner, and only in combination with other backbone probing agents such as N-ethyl-N-nitrosourea, lead and Fenton cleavage, uranyl probing has the potential to reveal high-affinity metal ion environments, as well as regions involved in conformational transitions.  相似文献   

19.
Guide RNAs (gRNAs) are small, metabolically stable RNA molecules which perform a pivotal, template-like function during the RNA editing process in kinetoplastid protozoa. The gRNA database currently contains 250 guide RNA sequences as well as secondary and tertiary structure models and other relevant information. The database is made available as a hypertext document accessible via the World Wide Web (WWW) at the URL: http://www.biochem.mpg.de/ goeringe/  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号