首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteus mirabilis forms a concentric-ring colony by undergoing periodic swarming. A colony in the process of such synchronized expansion was examined for its internal population structure. In alternating phases, i.e., swarming (active migration) and consolidation (growth without colony perimeter expansion), phase-specific distribution of cells differing in length, in situ mobility, and migration ability on an agar medium were recognized. In the consolidation phase, the distribution of mobile cells was restricted to the inner part of a new ring and a previous terrace. Cells composing the outer part of the ring were immobile in spite of their ordinary swimming ability in a viscous solution. A sectorial cell population having such an internal structure was replica printed on fresh agar medium. After printing, a transplant which was in the swarming phase continued its ongoing swarming while a transplanted consolidation front continued its scheduled consolidation. This shows that cessation of migration during the consolidation phase was not due to substances present in the underlying agar medium. The ongoing swarming schedule was modifiable by separative cutting of the swarming front or disruption of the ring pattern by random mixing of the pattern-forming cell population. The structured cell population seemed to play a role in characteristic colony growth. However, separation of a narrow consolidation front from a backward area did not induce disturbance in the ongoing swarming schedule. Thus, cells at the frontal part of consolidation area were independent of the internal cell population and destined to exert consolidation and swarming with the ongoing ordinary schedule.  相似文献   

2.
S ummary . Proteus spp. formed discrete colonies on a simple nutrient agar. This lack of swarming was neither a function of electrolyte deficiency nor of low osmotic pressure. If electrolytes and certain carbohydrates were added to such a medium the organism swarmed. Growth studies showed that 0.5% (w/v) NaCl or 2.86% (w/v) dulcitol promoted greater growth than 2.9% (w/v) glucose. Amongst the 9 genera tested only Proteus and Serratia grew better in the presence of NaCl. It is suggested that this growth enhancement is a factor in causing Proteus to swarm.  相似文献   

3.
The pathogenic bacterium Proteus mirabilis exhibits a form of multicellular behaviour called swarming migration. This involves the differentiation of vegetative cells at the colony margin into swarm cells which are long, aseptate, multinucleate, hyper-flagellated filaments able to undergo repeated cycles of co-ordinated population migration and consolidation (reversion to vegetative cells). Transposon mutagenesis of uropathogenic P. mirabilis strain U6450 with Tn5 generated 4860 chromosomal insertions and, of these, 75 (1.6%) caused visibly abnormal swarming behaviour, indicating that at least 45 genes are involved in directing motility, cell differentiation and multicellular behaviour. While about one fifth of the swarm-defective mutants lacked flagella and were non-motile non-swarming (NMNS) the majority were normally flagellated and motile but were unable to form swarm cells (motile non-swarming, MNS), or were motile and able to form swarm cells but displayed aberrant patterns of multicellular migration (dendritic swarming, DS) or consolidation (frequent and infrequent consolidation, FC and IC). Restriction enzyme mapping of representative mutant DNAs by Southern hybridization with transposon DNA probes identified eight different mutated genetic loci within the five phenotypic classes. Subsequent Southern analysis of large restriction fragments separated by pulsed-field electrophoresis showed that these eight mutated loci required for motility, cell differentiation and multicellular migration were clustered on a region of DNA spanning approximately 8% of the 4.2 mbp P. mirabilis chromosome. Further linkage analysis showed that the DS locus involved in the ordered migration of the swarm cell population mapped separately from two main clusters of swarm loci, one cluster containing, within 112 kbp, genetic determinants of motility (NMNS) and also differentiation into swarm cells (MNS1, MNS2), and a second within a neighbouring 95 kbp DNA sequence containing three loci involved in the control of consolidation (FC, IC1, IC2).  相似文献   

4.
Nonswarming and nonchemotactic mutants of Proteus mirabilis were isolated after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine or ultraviolet light. These mutants were used in experiments to determine if chemotaxis is involved in the swarming of P. mirabilis. Nonchemotactic mutants failed to form chemotactic bands in a semisolid casein hydrolysate medium, yet they swarmed on the same medium containing 1.5% agar. Nonswarming mutants were attracted towards individual amino acids and components of tryptose. In cross-feeding experiments, no evidence was obtained to indicate the production of a diffusable chemical repellent. In studies with the wild-type P. mirabilis, no clear-cut negative chemotaxis was seen even though three different assays were used and numerous chemicals were tested. Additional evidence against the involvement of chemotaxis in swarming comes from finding that dialysis does not interfere with swarming; swarm cells will swarm immediately when transferred to fresh media, and swarm cells will swarm on an agar-water medium supplemented with a surfactant. These data indicate that chemotaxis is not involved in the swarming of P. mirabilis.  相似文献   

5.
Nutrients have a pronounced effect on the growth and swarming behaviour of Proteus mirabilis 7002. Iron, zinc, amino acids, and dioxygen are important for rapid growth and normal swarming. Anaerobically grown cultures of P. mirabilis 7002 were unable to swarm on anaerobically maintained rich nutrient agar. Upon exposure to aerobic conditions, P. mirabilis 7002 resumed swarming behaviour. Scanning electron microscopy was used to demonstrate the presence of community organization and mature rafts during normal swarming. These results support the importance of dioxygen and redox status in cell differentiation.  相似文献   

6.
Proteus mirabilis swarming behavior is characterized by the development of concentric rings of growth that are formed as cyclic events of swarmer cell differentiation, swarming migration, and cellular differentiation are repeated during colony translocation across a surface. This cycle produces the bull’s-eye colony often associated with cultures of P. mirabilis. How the cells communicate with one another to coordinate these perfectly synchronized rings is presently unknown. We report here the identification of a genetic locus that, when mutated, results in a precocious swarming phenotype. These mutants are defective in the temporal control of swarming migration and start swarming ca. 60 min sooner than wild-type cells. Unlike the wild type, precocious swarming mutants are also constitutive swarmer cells and swarm on minimal agar medium. The defects were found to be localized to a 5.4-kb locus on the P. mirabilis genome encoding RsbA (regulator of swarming behavior) and the P. mirabilis homologs to RcsB and RcsC. RsbA is homologous to membrane sensor histidine kinases of the two-component family of regulatory proteins, suggesting that RsbA may function as a sensor of environmental conditions required to initiate swarming migration. Introduction of a rsbA mutation back into the wild type via allelic-exchange mutagenesis reconstructed the precocious swarming phenotype, which could be complemented in trans by a plasmid-borne copy of rsbA. Overexpression of RsbA in wild-type cells resulted in precocious swarming, suggesting that RsbA may have both positive and negative functions in regulating swarming migration. A possible model to describe the role of RsbA in swarming migration is discussed.  相似文献   

7.
Nutrients have a pronounced effect on the growth and swarming behaviour of Proteus mirabilis 7002. Iron, zinc, amino acids, and dioxygen are important for rapid growth and normal swarming. Anaerobically grown cultures of P. mirabilis 7002 were unable to swarm on anaerobically maintained rich nutrient agar. Upon exposure to aerobic conditions, P. mirabilis 7002 resumed swarming behaviour. Scanning electron microscopy was used to demonstrate the presence of community organization and mature rafts during normal swarming. These results support the importance of dioxygen and redox status in cell differentiation.  相似文献   

8.
Proteus mirabilis, a leading cause of catheter-associated urinary tract infection (CaUTI), differentiates into swarm cells that migrate across catheter surfaces and medium solidified with 1.5% agar. While many genes and nutrient requirements involved in the swarming process have been identified, few studies have addressed the signals that promote initiation of swarming following initial contact with a surface. In this study, we show that P. mirabilis CaUTI isolates initiate swarming in response to specific nutrients and environmental cues. Thirty-three compounds, including amino acids, polyamines, fatty acids, and tricarboxylic acid (TCA) cycle intermediates, were tested for the ability to promote swarming when added to normally nonpermissive media. l-Arginine, l-glutamine, dl-histidine, malate, and dl-ornithine promoted swarming on several types of media without enhancing swimming motility or growth rate. Testing of isogenic mutants revealed that swarming in response to the cues required putrescine biosynthesis and pathways involved in amino acid metabolism. Furthermore, excess glutamine was found to be a strict requirement for swarming on normal swarm agar in addition to being a swarming cue under normally nonpermissive conditions. We thus conclude that initiation of swarming occurs in response to specific cues and that manipulating concentrations of key nutrient cues can signal whether or not a particular environment is permissive for swarming.  相似文献   

9.
Proteus mirabilis colonies display striking symmetry and periodicity. Based on experimental observations of cellular differentiation and group motility, a kinetic model has been developed to describe the swarmer cell differentiation-dedifferentiation cycle and the spatial evolution of swimmer and swarmer cells during Proteus mirabilis swarm colony development. A key element of the model is the age dependence of swarmer cell behaviour, in particular specifying a minimal age for motility and maximum age for septation and dedifferentiation to swimmer cells. Density thresholds for collective motility by mature swarmer cells serve to synchronize the movements of distinct swarmer cell groups and thus help provide temporal coherence to colony expansion cycles. Numerical computations show that the model fits experimental data by generating a complete swarming plus consolidation cycle period that is robust to changes in parameters which affect other aspects of swarmer cell migration and colony development. The kinetic equations underlying this model provide a different mathematical basis for a temporal oscillator from reaction-diffusion partial differential equations. The modelling shows that Proteus colony geometries arise as a consequence of macroscopic rules governing collective motility. Thus, in this case, pattern formation results from the operation of an adaptive bacterial system for spreading on solid substrates, not as an independent biological function. Kinetic models similar to this one may be applicable to periodic phenomena displayed by other biological systems with differentiated components of defined lifetimes. Received 3 July 1996; received in revised form 9 December 1996  相似文献   

10.
The IgA-degrading metalloprotease, ZapA, of the urinary tract pathogen Proteus mirabilis is co-ordinately expressed along with other proteins and virulence factors during swarmer cell differentiation. In this communication, we have used zapA to monitor IgA protease expression during the differentiation of vegetative swimmer cells to fully differentiated swarmer cells. Northern blot analysis of wild-type cells and beta-galactosidase measurements using a zapA:lacZ fusion strain indicate that zapA is fully expressed only in differentiated swarmer cells. Moreover, the expression of zapA on nutrient agar medium is co-ordinately regulated in concert with the cycles of cellular differentiation, swarm migration and consolidation that produce the bull's-eye colonies typically associated with P. mirabilis. ZapA activity is not required for swarmer cell differentiation or swarming behaviour, as ZapA- strains produce wild-type colony patterns. ZapA- strains fail to degrade IgA and show decreased survival compared with the wild-type cells during infection in a mouse model of ascending urinary tract infection (UTI). These data underscore the importance of the P. mirabilis IgA-degrading metalloprotease in UTI. Analysis of the nucleotide sequences adjacent to zapA reveals four additional genes, zapE, zapB, zapC and zapD, which appear to possess functions required for ZapA activity and IgA proteolysis. Based on homology to other known proteins, these genes encode a second metalloprotease, ZapE, as well as a ZapA-specific ABC transporter system (ZapB, ZapC and ZapD). A model describing the function and interaction of each of these five proteins in the degradation of host IgA during UTI is presented.  相似文献   

11.
The natural wild-type Bacillus subtilis strain 3610 swarms rapidly on the synthetic B medium in symmetrical concentric waves of branched dendritic patterns. In a comparison of the behavior of the laboratory strain 168 (trp) on different media with that of 3610, strain 168 (trp), which does not produce surfactin, displayed less swarming activity, both qualitatively (pattern formation) and in speed of colonization. On E and B media, 168 failed to swarm; however, with the latter, swarming was arrested at an early stage of development, with filamentous cells and rafts of cells (characteristic of dendrites of 3610) associated with bud-like structures surrounding the central inoculum. In contrast, strain 168 apparently swarmed efficiently on Luria-Bertani (LB) agar, colonizing the entire plate in 24 h. However, analysis of the intermediate stages of development of swarms on LB medium demonstrated that, in comparison with strain 3610, initiation of swarming of 168 (trp) was delayed and the greatly reduced rate of expansion of the swarm was uncoordinated, with some regions advancing faster than others. Moreover, while early stages of swarming in 3610 are accompanied by the formation of large numbers of dendrites whose rapid advance involves packs of cells at the tips, strain 168 advanced more slowly as a continuous front. When sfp+ was inserted into the chromosome of 168 (trp) to reestablish surfactin production, many features observed with 3610 on LB medium were now visible with 168. However, swarming of 168 (sfp+) still showed some reduced speed and a distinctive pattern compared to swarming of 3610. The results are discussed in terms of the possible role of surfactin in the swarming process and the different modes of swarming on LB medium.  相似文献   

12.
S ummary : The addition of 50 μg of sulphamezathine/ml to egg-tellurite-glycine-pyruvate agar was effective in suppressing the growth and swarming of Proteus spp. Small numbers of Staphylococcus aureus (103/g) could be recovered quantitatively on the modified medium in the presence of up to 106/g of mixed Proteus vulgaris and Proteus mirabilis strains.  相似文献   

13.
Salmonella enterica serovar Typhimurium can differentiate into hyperflagellated swarmer cells on agar of an appropriate consistency (0.5 to 0.8%), allowing efficient colonization of the growth surface. Flagella are essential for this form of motility. In order to identify genes involved in swarming, we carried out extensive transposon mutagenesis of serovar Typhimurium, screening for those that had functional flagella yet were unable to swarm. A majority of these mutants were defective in lipopolysaccharide (LPS) synthesis, a large number were defective in chemotaxis, and some had defects in putative two-component signaling components. While the latter two classes were defective in swarmer cell differentiation, representative LPS mutants were not and could be rescued for swarming by external addition of a biosurfactant. A mutation in waaG (LPS core modification) secreted copious amounts of slime and showed a precocious swarming phenotype. We suggest that the O antigen improves surface "wettability" required for swarm colony expansion, that the LPS core could play a role in slime generation, and that multiple two-component systems cooperate to promote swarmer cell differentiation. The failure to identify specific swarming signals such as amino acids, pH changes, oxygen, iron starvation, increased viscosity, flagellar rotation, or autoinducers leads us to consider a model in which the external slime is itself both the signal and the milieu for swarming motility. The model explains the cell density dependence of the swarming phenomenon.  相似文献   

14.
Photorhabdus temperata, an insect pathogen and nematode symbiont, is motile in liquid medium by swimming. We found that P.?temperata was capable of surface movement, termed swarming behavior. Several lines of evidence indicate that P. temperata use the same flagella for both swimming and swarming motility. Both motility types required additional NaCl or KCl in the medium and had peritrichous flagella, which were composed of the same flagellin as detected by immunoblotting experiments. Mutants defective in flagellar structural proteins were nonmotile for both motility types. Unlike swimming, we observed swarming behavior to be a social form of movement in which the cells coordinately formed intricate channels covering a surface. The constituents of the swarm media affected motility. Swarming was optimal on low agar concentrations; as agar concentrations increased, swarm ring diameters decreased.  相似文献   

15.
16.
Swarming Proteus spp. were detected with the use of proteometry (a most-probable-number technique) in the fecal material of selected animal species and in raw sewage from a local sewage treatment plant. Proteus spp. were not detected in any of several soil and freshwater samples examined. Since rat feces harbored high numbers of Proteus mirabilis compared with other habitats examined, we chose to examine it for the possibility of supporting swarming. Immunofluorescent studies with a strain-specific conjugate revealed the morphogenesis of short forms into elongated swarm cells upon the surface of sterilized rat feces that had been inoculated with short forms of P. mirabilis. the same phenomenon was not observed consistently when nonsterile rat feces were inoculated and examined with immunofluorescence.  相似文献   

17.
The expression of nonagglutinating fimbriae (NAF) and mannose-resistant/Proteus-like (MR/P) pili in swarming colonies of Proteus mirabilis was investigated. Elongated swarmer cells do not express pili, and the relative number of bacteria expressing NAF during swarming and early consolidation phases was very low (<5%). Relative expression of NAF in a terrace increased to approximately 30% at 48 h. We also determined the expression of NAF and MR/P pili in two phenotypically distinguishable regions of each terrace. The expression of both NAF and MR/P pili was always higher in the region closer (proximal) to the middle of the colony than in the distal region of the terrace. The relative numbers of bacteria expressing NAF or MR/P pili in the proximal region were between 39.1 and 63% and between 5.9 and 7.7%, respectively. In the distal region, expression levels were between 20.8 and 27.3% and between 3.7 and 5. 6%, respectively. A time course experiment testing NAF expression in both the proximal and distal regions of a terrace indicated that NAF expression in the proximal regions was always higher than in the distal regions and increased to a plateau 40 to 50 h after the start of the swarming phase for any given terrace. These results indicate that expression of NAF or MR/P pili in swarming colonies of P. mirabilis is highly organized, spatially and temporally. The significance of this controlled differentiation remains to be uncovered.  相似文献   

18.
Factors governing the morphogenesis of Bacillus subtilis colonies as well as the spatial-temporal pattern of expression of a reporter gene during colony development were examined by systematically varying the initial nutrient levels and agar concentrations (wetness), the relative humidity throughout incubation, and the genotype of the inoculum. A relationship between colony form and reporter gene expression pattern was found, indicating that cells respond to local signals during colony development as well as global conditions. The most complex colony forms were produced by motile strains grown under specific conditions such that cells could swim within the colony but not swarm outward uniformly from the colony periphery. The wetness of the growth environment was found to be a critical factor. Complex colonies consisted of structures produced by growth of finger-like projections that expanded outward a finite distance before giving rise to a successive round of fingers that behaved in a similar fashion. Finger tip expansion occurred when groups of cells penetrated the peripheral boundary. Although surfactin production was found to influence similar colony forms in other B. subtilis strains, the strains used here to study reporter gene expression do not produce it. The temporal expression of a reporter gene during morphogenesis of complex colonies by motile strains such as M18 was investigated. Expression arose first in cells located at the tips of fingers that were no longer expanding. The final expression pattern obtained reflects the developmental history of the colony.  相似文献   

19.
Swarming by Proteus mirabilis involves differentiation of typical short vegetative rods into filamentous hyper-flagellated swarm cells which undergo cycles of rapid and co-ordinated population migration across surfaces and exhibit high levels of virulence gene expression. By supplementing a minimal growth medium (MGM) unable to support swarming migration we identified a single amino acid, glutamine, as sufficient to signal initiation of cell differentiation and migration. Bacteria isolated from the migrating edge of colonies grown for 8h with glutamine as the only amino acid were filamentous and synthesized the characteristic high levels of flagellin and haemolysin. In contrast, addition of the other 19 common amino acids (excluding glutamine) individually or in combination did not initiate differentiation even after 24 h, cells remaining typical vegetative rods with basal levels of haemolysin and flagellin. The glutamine analogue γ-glutamyl hydroxamate (GH) inhibited swarming but not growth of P. mirabilis on glutamine MGM and transposon mutants defective in glutamine uptake retained their response to glutamine signalling and its inhibition by GH, suggesting that differentiation signalling by glutamine may be transduced independently of the cellular glutamine transport system. Levels of mRNA transcribed from the haemolysin (hpmA) and flagellin (fliC) genes were low in vegetative cells grown on MGM without glutamine or with glutamine and GH, but were specifically increased c. 40-fold during glutamine-dependent differentiation. In liquid glutamine—MGM cultures, differentiation to filamentous hyper-flagellated hyper-haemorytic swarm cells occurred early in the exponential phase of growth, and increased concomitantly with the concentration of glutamine from a 0.1 mM threshold up to 10 mM. Differentiation in liquid culture was completely inhibited by GH but was further stimulated c. 30% in the absence of GH by the viscosity agent polyvinylpy-rollidone (PVP). Chemotaxis assays of bacterial cells in which the viscosity of liquid media was varied by PVP to allow either swimming or swarming motility demonstrated that glutamine was chemoattractive specifically to differentiated swarming cells.  相似文献   

20.
Xenorhabdus spp., entomopathogenic bacteria symbiotically associated with nematodes of the family Steinernematidae, occur spontaneously in two phases. Phase I, the variant naturally isolated from the infective-stage nematode, provides better conditions than the phase II variant for nematode reproduction. This study has shown that Xenorhabdus phase I variants displayed a swarming motility when they were grown on a suitable solid medium (0.6 to 1.2% agar). Whereas most of the phase I variants from different Xenorhabdus spp. were able to undergo cycle of rapid and coordinately population migration over the surface, phase II variants were unable to swarm and even to swim in semisolid agar, particularly in X. nematophilus. Optical and electron microscopic observations showed nonmotile cells with phase II variants of X. nematophilus F1 which lost their flagella. Flagellar filaments from strain F1 phase I variants were purified, and the molecular mass of the flagellar structural subunit was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be 36.5 kDa. Flagellin from cellular extracts or culture medium of phase II was undetectable with antiserum against the denatured flagellin by immunoblotting analysis. This suggests that the lack of flagella in phase II cells is due to a defect during flagellin synthesis. The importance of such a difference of motility between both phases is discussed in regard to adaptation of these bacteria to the insect prey and the nematode host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号