首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In jasmonate biosynthetic pathway, allene oxide synthase (AOS, EC 4.2.1.92), which is a cytochrome P450 (CYP74A), catalyzes the first committed step. We herein cloned a novel cDNA from Lonicera japonica Thunb., named LjAOS (GenBank accession: DQ303120), which was homologous to other AOSs. Southern blot analysis revealed that it was a multi-copy gene. Real-time quantitative PCR analysis showed that LjAOS mRNA accumulated most abundantly in alabastrums, in which the content of chlorogenic acid (CA, the major important active ingredient indicator) was previously proven to be the highest.  相似文献   

2.
In the endeavor to enhance the production of pharmaceutically valuable tropane alkaloids including hyoscyamine and scopolamine in Hyoscyamus niger, methyl jasmonate (MeJA) showed significant stimulation both in tropane biosynthetic pathway enzymes activities and tropane alkaloids yields. Therefore it was speculated that genetic engineering of jasmonate biosynthetic pathway might enhance the endogenous jasmonates concentration, followed by stimulating the production of tropane alkaloids. Herein a full-length cDNA encoding allene oxide synthase (AOS, EC 4.2.1.92), the first committed step enzyme in jasmonate biosynthetic pathway was reported (named HnAOS, GenBank accession: EF532599). HnAOS was a novel member of the cytochrome P450 (CYP74A) subfamily. Real-time quantitative PCR analysis showed that HnAOS mRNA accumulated mainly in stems, and responded significantly to wounding or methyl jasmonate. The article is published in the original.  相似文献   

3.
Hyoscyamus niger L. is a medicinal plant which produces a class of jasmonate-responsive pharmaceutical secondary metabolites named as tropane alkaloids. As a family of signaling phytohormones, jasmonates play significant roles in the biosynthesis of many plant secondary metabolites. In jasmonate biosynthetic pathway of plants, allene oxide cyclase (AOC, [...] EC 5.3.99.6 [...]) catalyzes the most important step. Here we cloned a cDNA from H. niger, named HnAOC (GenBank accession: AY708383), which was 1044 bp long, with a 747 bp open reading frame (ORF) encoding a polypeptide of 248 amino acid residues. Southern blot analysis indicated that it was a multi-copy gene. RT-PCR analysis revealed that the expression of HnAOC was regulated by various stresses and elicitors, with methyl-jasmonate showing the most prominent inducement. The characterization of HnAOC would be helpful for improving the production of valuable secondary metabolites by regulating the biosynthesis ofjasmonates.  相似文献   

4.
Herein, we cloned a full-length cDNA encoding allene oxide cyclase (AOC, EC 5.3.99.6) that is a key enzyme in jasmonates (JAs) biosynthetic pathway from Jatropha curcas L., an important plant species as its seed is the raw material for biodiesels, named as JcAOC (GenBank accession no. FJ874630). The cDNA was 924 bp in length with a complete open reading frame of 750 bp, which encoded a polypeptide of 250 amino acids including a putative signal peptide of 65 amino acid residues and a mature protein of 185 amino acids with a predicted molecular mass of 20.7 kDa and a isoelectric point of 6.24. Phylogenetic analysis indicated that JcAOC belonged to the AOC superfamily. Semi-quantitative RT-PCR analysis revealed that JcAOC mRNA was expressed in roots, stems, leaves, young seeds, endosperms, and flowers, but that the expression level was highest in leaves and lowest in seeds, and mRNA expression of JcAOC could be induced by salt stress (300 mM NaCl) and low temperature (4°C). Furthermore, the full-length coding region of JcAOC excluding signal peptide sequence was inserted into pET-30a and was successfully expressed in Escherichia coli. Overexpression of JcAOC in E. coli conferred its resistance to salt stress and low temperature.  相似文献   

5.
The gene encoding the xlnR xylanolytic activator of the heterologous fungus Aspergillus niger was incorporated into the Penicillium canescens genome. Integration of the xlnR gene resulted in the increase in a number of activities, i.e. endoxylanase, β-xylosidase, α-L-arabinofuranosidase, α-galactosidase, and feruloyl esterase, compared to the host P. canescens PCA 10 strain, while β-galactosidase, β-glucosidase, endoglucanase, and CMCase activities remained constant. Two different expression constructs were developed. The first consisted of the nucleotide sequence containing the mature P. canescens phytase gene under control of the axhA promoter region gene encoding A. niger (1,4)-β-D-arabinoxylan-arabinofuranohydrolase. The second construct combined the P. canescens phytase gene and the bgaS promoter region encoding homologous β-galactosidase. Both expression cassettes were transformed into P. canescens host strain containing xlnR. Phytase synthesis was observed only for strains with the bgaS promoter on arabinose-containing culture media. In conclusion, the bgaS and axhA promoters were regulated by different inducers and activators in the P. canescens strain containing a structural tandem of the axhA promoter and the gene of the xlnR xylanolytic activator.  相似文献   

6.
Summary Biosorption of manganese from its aqueous solution using yeast biomass Saccharomyces cerevisiae and fungal biomass Aspergillus niger was carried out. Manganese biosorption equilibration time for A. niger and S. cerevisiae were found to be 60 and 20 min, with uptakes of 19.34 and 18.95 mg/g, respectively. Biosorption increased with rise in pH, biomass, and manganese concentration. The biosorption equilibrium data fitted with the Freundlich isotherm model revealed that A. niger was a better biosorbent of manganese than S. cerevisiae.  相似文献   

7.
The aim of this work was to prepare recombinant amine oxidase from Aspergillus niger after overexpressing in yeast. The yeast expression vector pDR197 that includes a constitutive PMA1 promoter was used for the expression in Saccharomyces cerevisiae. Recombinant amine oxidase was extracted from the growth medium of the yeast, purified to homogeneity and identified by activity assay and MALDI-TOF peptide mass fingerprinting. Similarity search in the newly published A. niger genome identified six genes coding for copper amine oxidase, two of them corresponding to the previously described enzymes AO-I a methylamine oxidase and three other genes coding for FAD amine oxidases. Thus, A. niger possesses an enormous metabolic gear to grow on amine compounds and thus support its saprophytic lifestyle.  相似文献   

8.
9.
Two new effective microbial producers of inulinases were isolated from Jerusalem artichoke tubers grown in Thailand and identified as Aspergillus niger TISTR 3570 and Candida guilliermondii TISTR 5844. The inulinases produced by both these microorganisms were appropriate for hydrolysing inulin to fructose as the principal product. An initial inulin concentration of ∼100 g l−1 and the enzyme concentration of 0.2 U g−1 of substrate, yielded 37.5 g l−1 of fructose in 20 h at 40°C when A. niger TISTR 3570 inulinase was the biocatalyst. The yield of fructose on inulin was 0.39 g g−1. Under identical conditions, the yeast inulinase afforded 35.3 g l−1 of fructose in 25 h. The fructose yield was 0.35 g g−1 of substrate. The fructose productivities were 1.9 g l−1 h−1 and 1.4 g l−1 h−1 for the mold and yeast enzymes, respectively. After 20 h of reaction, the mold enzyme hydrolysate contained 53% fructose and more than 41% of initial inulin had been hydrolysed. Using the yeast enzymes, the hydrolysate contained nearly 38% fructose at 25 h and nearly 36% of initial inulin had been hydrolysed. The A. niger TISTR 3570 inulinases exhibited both endo-inulinase and exo-inulinase activities. In contrast, the yeast inulinases displayed mainly exo-inulinase activity. The mold and yeast crude inulinases mixed in the activity ratio of 5:1 proved superior to individual crude inulinases in hydrolysing inulin to fructose. The enzyme mixture provided a better combination of endo- and exo-inulinase activities than did the crude extracts of either the mold or the yeast individually.  相似文献   

10.
11.
12.
Gene silencing using siRNA has been examined in the industrially-important fungus, Aspergillus niger. Protoplasts of an A. niger strain containing a single genomic copy of the Escherichia coli uidA gene, encoding β-glucuronidase (GUS), under control of the A. niger glaA promoter at the same genomic locus, were exposed to siRNA targeted against the uidA gene. Down-regulation of uidA mRNA and GUS activity by siRNA was observed in mycelia that developed from the protoplasts. The down-regulation was transient and was not carried over to conidiation. We concluded that gene silencing by siRNA provides a relatively quick method for analysis of gene function in A. niger.  相似文献   

13.
Brassica nigra is a newly found invasive species in Zhejiang Province, China. It distributes alongside the roads, in vegetable fields and on riversides. When it blooms, some natives there will suffer from allergic rhinitis. We designed gene-specific primer pairs according to reported profilin genes and successfully isolated their homolog from flower bud cDNA of B. nigra. The gene, designated BnPFN, was submitted to GenBank under accession number EU004073. BnPFN was 405 bp in length encoding 134 amino acids. Expression analysis of BnPFN gene was carried out by means of RT-PCR. The results showed that BnPFN express only in anthers and pollens, and there was no detection in roots, leaves, stems, sepals, petals and pistils. We suggest that BnPFN is a pollen-specific gene and may be responsible for pollen anaphylactic reactions in those invading areas when B. nigra blooms.  相似文献   

14.
We have previously isolated a Brassica juncea cDNA encoding a novel chitinase BjCHI1 with two chitin-binding domains (Zhao and Chye in Plant Mol Biol 40:1009–1018, 1999). The expression of BjCHI1 was highly inducible by methyl jasmonate (MeJA) treatment, wounding, caterpillar feeding, and pathogenic fungal infection. These observations suggest that the promoter of BjCHI1 gene might contain specific cis-acting elements for stress responses. Here, we report the cloning and characterization of the BjCHI1 promoter. A 1,098 bp BjCHI1 genomic DNA fragment upstream of the ATG start codon was isolated by PCR walking and various constructs were made by fusing the BjCHI1 promoter or its derivatives to β-glucuronidase reporter gene. The transgenic Arabidopsis plants showed that the BjCHI1 promoter responded to wounding and MeJA treatment, and to treatments with either NaCl or polyethyleneglycol (PEG 6000), indicating that the BjCHI1 promoter responses to both biotic and abiotic stresses. A transient gene expression system of Nicotiana benthamiana leaves was adopted for promoter deletion analysis, and the results showed that a 76 bp region from −695 to −620 in the BjCHI1 promoter was necessary for MeJA-responsive expression. Furthermore, removal of a conserved T/G-box (AACGTG) at −353 to −348 of the promoter greatly reduced the induction by MeJA. This is the first T/G-box element identified in a chitinase gene promoter. Gain-of-function analysis demonstrated that the cis-acting element present in the 76 bp region requires coupling with the T/G-box to confer full magnitude of BjCHI1 induction by MeJA.  相似文献   

15.
Considering the extraordinary microbial diversity and importance of fungi as enzyme producers, the search for new biocatalysts with special characteristics and possible applications in biocatalysis is of great interest. Here, we report the performance in the resolution of racemic ibuprofen of a native enantioselective lipase from Aspergillus niger, free and immobilized in five types of support (Accurel EP-100, Amberlite MB-1, Celite, Montmorillonite K10 and Silica gel). Amberlite MB-1 was found to be the best support, with a conversion of 38.2%, enantiomeric excess of 50.7% and enantiomeric ratio (E value) of 19 in 72 h of reaction. After a thorough optimization of several parameters, the E value of the immobilized Aspergillus niger lipase was increased (E = 23) in a shorter reaction period (48 h) at 35°C. Moreover, the immobilized Aspergillus niger lipase maintained an esterification activity of at least 80% after 8 months of storage at 4°C and could be reused at least six times.  相似文献   

16.
The fungal immunomodulatory proteins (FIPs) are a new protein family identified from several edible and medical mushrooms and play an important role in anti-tumor, anti-allergy and immunomodulating activities. A gene encoding the FIP was cloned from the mycelia of Changbai Lingzhi (Ganoderma lucidum) and recombinant expressed in the Pichia pastoris expression system. SDS-PAGE, amino acid composition and circular dichroism analyses of the recombinant FIP (reFIP) indicated that the gene was correctly and successfully expressed. In vitro assays of biological activities revealed that the reFIP exhibited similar immunomodulating capacities as native FIPs. The reFIP significantly stimulated the proliferation of mouse spleen lymphocytes and apparently enhanced the expression level of interleukin-2 released from the mouse splenocytes. In addition, anti-tumor activity assay showed that the reFIP could inhibit the proliferation of human leukemia-NB4 by inducing the cell apoptosis to a degree of about 32.4%. Taken together, the FIP gene from Changbai G. lucidum has been integrated into the yeast genome and expressed effectively at a high level (about 191.2 mg l−1). The reFIP possessed very similar biological activities to native FIPs, suggesting its potential application as a food supplement or immunomodulating agent in pharmaceuticals and even medical studies. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Ruan L  He W  He J  Sun M  Yu Z 《Antonie van Leeuwenhoek》2005,87(4):283-288
Previous work from our laboratory has shown that most of Bacillus thuringiensis strains possess the ability to produce melanin in the presence of l-tyrosine at elevated temperatures (42 °C). Furthermore, it was shown that the melanin produced by B. thuringiensis was synthesized by the action of tyrosinase, which catalyzed the conversion of l-tyrosine, via l-DOPA, to melanin. In this study, the tyrosinase-encoding gene (mel) from B. thuringiensis 4D11 was cloned using PCR techniques and expressed in Escherichia coli DH5 . A DNA fragment with 1179 bp which contained the intact mel gene in the recombinant plasmid pGEM1179 imparted the ability to synthesize melanin to the E. coli recipient strain. The nucleotide sequence of this DNA fragment revealed an open reading frame of 744 bp, encoding a protein of 248 amino acids. The novel mel gene from B.thuringiensis expressed in E. coli DH5 conferred UV protection on the recipient strain.  相似文献   

18.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

19.
Fermentation conditions were statistically optimized for producing extracellular xylanase by Aspergillus niger SL-05 using apple pomace and cotton seed meal. The primary study shows that culture medium with a 1:1 ratio of apple pomace and cotton seed meal (carbon and nitrogen sources) yielded maximal xylanase activity. Three significant factors influencing xylanase production were identified as urea, KH(2)PO(4), and initial moisture content using Plackett-Burman design study. The effects of these three factors were further investigated using a design of rotation-regression-orthogonal combination. The optimized conditions by response surface analysis were 2.5% Urea, 0.09% KH(2)PO(4), and 62% initial moisture content. The analysis of variance indicated that the established model was significant (P < 0.05), "while" or "and" the lack of fit was not significant. Under the optimized conditions, the model predicted 4,998 IU/g dry content, whereas validation experiments produced an enzymatic activity of xylanase at 5,662 IU/g dry content after 60 h fermentation. This study innovatively developed a fermentation medium and process to utilize inexpensive agro-industrial wastes to produce a high yield of xylanase.  相似文献   

20.
Summary   Funastrum rupicola Goyder, a new species of Apocynaceae: Asclepiadoideae from Bolivia, is described and illustrated. The conservation status of this species is assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号