首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transient neonatal diabetes mellitus (TNDM) is a rare disease characterized by intrauterine growth retardation, dehydration, and failure to thrive due to a lack of normal insulin secretion. This disease is associated with paternal uniparental disomy or paternal duplication of chromosome 6, suggesting that the causative gene(s) for TNDM is imprinted. Recently, Gardner et al. (1999, J. Med. Genet. 36: 192-196) proposed that a candidate gene for TNDM lies within chromosome 6q24.1-q24.3. To find human imprinted genes, we performed a database search for EST sequences that mapped to this region, followed by RT-PCR analysis using monochromosomal hybrid cells with a human chromosome 6 of defined parental origin. Here we report the identification of a novel imprinted gene, HYMAI. This gene exhibits differential DNA methylation between the two parental alleles at an adjacent CpG island and is expressed only from the paternal chromosome. A previously characterized imprinted gene, ZAC/LOT1, is located 70 kb downstream of HYMAI and is also expressed only from the paternal allele. In the pancreas, both genes are moderately expressed. HYMAI and ZAC/LOT1 are therefore candidate genes involved in TNDM. Furthermore, the human chromosome 6q24 region is syntenic to mouse chromosome 10 and represents a novel imprinted domain.  相似文献   

2.
Transient neonatal diabetes mellitus (TNDM) is a rare disease characterized by intrauterine growth retardation, dehydration, and failure to thrive due to a lack of normal insulin secretion. This disease is associated with paternal uniparental disomy or paternal duplication of chromosome 6, suggesting that the causative gene(s) for TNDM is imprinted. Recently, Gardner et al. (1999, J. Med. Genet. 36: 192–196) proposed that a candidate gene for TNDM lies within chromosome 6q24.1–q24.3. To find human imprinted genes, we performed a database search for EST sequences that mapped to this region, followed by RT-PCR analysis using monochromosomal hybrid cells with a human chromosome 6 of defined parental origin. Here we report the identification of a novel imprinted gene, HYMAI. This gene exhibits differential DNA methylation between the two parental alleles at an adjacent CpG island and is expressed only from the paternal chromosome. A previously characterized imprinted gene, ZAC/LOT1, is located 70 kb downstream of HYMAI and is also expressed only from the paternal allele. In the pancreas, both genes are moderately expressed. HYMAI and ZAC/LOT1 are therefore candidate genes involved in TNDM. Furthermore, the human chromosome 6q24 region is syntenic to mouse chromosome 10 and represents a novel imprinted domain.  相似文献   

3.
Transient neonatal diabetes mellitus (TNDM) is associated with overexpression of an imprinted locus on chromosome 6q24; this locus contains a differentially methylated region (DMR) consisting of an imprinted CpG island that normally allows expression only from the paternal allele of genes under its control. Three types of abnormality involving 6q24 are known to cause TNDM: paternal uniparental disomy of chromosome 6 (pUPD6), an isolated methylation defect of the imprinted CpG island at chromosome 6q24 and a duplication of 6q24 of paternal origin. A fourth group of patients has no identifiable anomaly of 6q24. Bisulphite sequencing of the DMR has facilitated the development of a diagnostic test for TNDM based on ratiometric methylation-specific polymerase chain reaction. We have applied this method to 45 cases of TNDM, including 12 with pUPD6, 11 with an isolated methylation mutation at 6q24, 16 with a duplication of 6q24 and six of unknown aetiology, together with 29 normal controls. All were correctly assigned. The method is therefore capable of detecting all known genetic causes of TNDM at 6q24, although pUPD6 and methylation mutation cases are not distinguished from one another. In addition, we have carried out bisulphite sequencing of the DMR to compare its methylation status between six TNDM patients with a known methylation mutation, six patients with no identifiable 6q24 mutation and six normal controls. Whereas methylation mutation patients showed a near-total absence of DNA methylation at the TNDM locus, the patients with no identified molecular anomaly showed no marked methylation variation from controls.  相似文献   

4.
The mouse Zac1 locus: basis for imprinting and comparison with human ZAC   总被引:6,自引:0,他引:6  
Smith RJ  Arnaud P  Konfortova G  Dean WL  Beechey CV  Kelsey G 《Gene》2002,292(1-2):101-112
  相似文献   

5.
We have identified a novel, maternally expressed imprinted gene encoding a C/D-box small nucleolar RNA (snoRNA) called MBII-343, which may regulate RNA editing or alternative splicing of an as yet unknown target gene. This gene is closely linked to an imprinted gene, Meg3, on mouse distal chromosome 12, which is syntenic to human chromosome 14. The paternal duplication of mouse distal chromosome 12 leads to late embryonal/neonatal lethality, growth promotion, and cardiomyopathy, whereas maternal duplication leads to late embryonal lethality and growth retardation. Human paternal uniparental disomy for chromosome 14 leads to musculoskeletal problems and mental retardation, whereas maternal uniparental disomy leads to intrauterine growth retardation, motor developmental delay, premature puberty, hypotonia, joint laxity, macrocephaly, short statue, neonatal poor sucking, skill with jigsaw puzzles, skin picking, obesity, and maturity onset diabetes of the young.  相似文献   

6.
Distal mouse chromosome 12 is imprinted. Phenotypic analysis of mouse embryos with maternal or paternal uniparental disomy for the whole of chromosome 12 has characterized the developmental defects associated with the altered dosage of imprinted genes on this chromosome. Here we conduct a characterization of maternal and paternal Dp(dist12) mice using the reciprocal translocation T(4;12)47H. This limits the region analysed to the chromosomal domain distal to the T47H breakpoint in B3 on mouse chromosome 12. Both MatDp(dist12)T47H and PatDp(dist12)T47H conceptuses are non-viable and the frequency of recovery of Dp(dist12) conceptuses by 10.5 days post coitum (dpc) was lower than expected after normal adjacent-1 disjunction. A subset of MatDp(dist12) embryos can survive up to one day post partum. In contrast to paternal uniparental disomy 12 embryos, no live PatDp (dist12) embryos were recovered after 16.5 days of gestation. Other phenotypes observed in maternal and paternal chromosome 12 uniparental disomy mice are recapitulated in the Dp(dist12) mice and include placental, muscle and skeletal defects. Additional defects were also noted in the skin of both MatDp(dist12) and maternal uniparental disomy 12 embryos. This study shows that the developmental abnormalities associated with the altered parent of origin for mouse chromosome 12 can be attributed to the genomic region distal to the T47H breakpoint.  相似文献   

7.
Imprinted genes are expressed from one allele according to their parent of origin, and many are essential to mammalian embryogenesis. Here we show that the epsilon-sarcoglycan gene (Sgce) and Zac1 (Lot1) are both paternally expressed imprinted genes. They were identified in a subtractive screen for imprinted genes using a cDNA library made from novel parthenogenetic and wild-type fibroblast lines. Sgce is a component of the dystrophin-sarcoglycan complex, Zac1 is a nuclear protein inducing growth arrest and/or apoptosis, and Zac1 is a potential tumor suppressor gene. Sgce and Zac1 are expressed predominantly from their paternal alleles in all adult mouse tissues, except that Zac1 is biallelic in the liver and Sgce is weakly expressed from the maternal allele in the brain. Sgce and Zac1 are broadly expressed in embryos, with Zac1 being highly expressed in the liver primordium, the umbilical region, and the neural tube. Sgce, however, is strongly expressed in the allantoic region on day 9.5 but becomes more widely expressed throughout the embryo by day 11.5. Sgce is located at the proximal end of mouse chromosome 6 and is a candidate gene for embryonic lethality associated with uniparental maternal inheritance of this region. Zac1 maps to the proximal region of chromosome 10, identifying a new imprinted locus in the mouse, homologous with human chromosome 6q24-q25. In humans, unipaternal disomy for this region is associated with fetal growth retardation and transient neonatal diabetes mellitus. In addition, loss of expression of ZAC has been described for a number of breast and ovarian carcinomas, suggesting that ZAC is a potential tumor suppressor gene.  相似文献   

8.
Uniparental disomy of chromosome 14 (UPD 14) results in one of two distinct abnormal phenotypes, depending upon the parent of origin. This discordance may result from the reciprocal over-expression and/or under-expression of one or more imprinted genes. We report a case of segmental paternal isodisomy for chromosome 14 with features similar to those reported in other paternal disomy 14 cases. Microsatellite marker analysis revealed an apparent somatic recombination event in 14q12 leading to proximal biparental inheritance, but segmental paternal uniparental isodisomy distal to this site. Analysis of monochromosomal somatic cell hybrids containing either the paternally inherited or the maternally inherited chromosome 14 revealed no deletion of the maternally inherited chromosome 14 and demonstrated the presence of paternal sequences from D14S121 to the telomere on both chromosomes 14. Thus, the patient has paternal isodisomy for 14q12-14qter. Because the patient shows most of the features associated with paternal disomy 14, this supports the presence of the imprinted domain(s) distal to 14q12 and suggests that the proximal region of chromosome 14 does not contain imprinted genes that contribute significantly to the paternal UPD 14 phenotype.  相似文献   

9.
Molecular analysis of a patient affected by the autosomal recessive skeletal dysplasia, pycnodysostosis (cathepsin K deficiency; MIM 265800), revealed homozygosity for a novel missense mutation (A277V). Since the A277V mutation was carried by the patient's father but not by his mother, who had two normal cathepsin K alleles, paternal uniparental disomy was suspected. Karyotyping of the patient and of both parents was normal, and high-resolution cytogenetic analyses of chromosome 1, to which cathepsin K is mapped, revealed no abnormalities. Evaluation of polymorphic DNA markers spanning chromosome 1 demonstrated that the patient had inherited two paternal chromosome 1 homologues, whereas alleles for markers from other chromosomes were inherited in a Mendelian fashion. The patient was homoallelic for informative markers mapping near the chromosome 1 centromere, but he was heteroallelic for markers near both telomeres, establishing that the paternal uniparental disomy with partial isodisomy was caused by a meiosis II nondisjunction event. Phenotypically, the patient had normal birth height and weight, had normal psychomotor development at age 7 years, and had only the usual features of pycnodysostosis. This patient represents the first case of paternal uniparental disomy of chromosome 1 and provides conclusive evidence that paternally derived genes on human chromosome 1 are not imprinted.  相似文献   

10.
Paternal uniparental disomy (UPD) of chromosome 6 has been reported several times in patients with (transient) neonatal diabetes mellitus ((T)NDM). Here we present our short tandem repeat typing results in a new patient with NDM, revealing a paternal isodisomy (UPiD). Summarising these data with those published previously on complete paternal (n=13) and maternal (n=2) UPD6, all cases show isodisomy. In general, several modes of UPD formation have been suggested: While a meiotic origin of UPD mainly results in a uniparental heterodisomy (UPhD), UPiD is probably the result of a post-zygotic mitotic error. This mode of formation consists of a mitotic nondisjunction in a disomic zygote, followed by either a trisomic rescue or a reduplication. Endoduplication in a monosomic zygote is another possible but less probable mechanism, taking into consideration that monosomic zygotes are not viable. The exclusive finding of isodisomy in case of chromosome 6 therefore gives strong evidence that segregational errors of this chromosome are mainly influenced by postzygotic factors. This hypothesis is supported by the observation of two cases with partial paternal UPiD6 originating from mitotic recombination events. The influence of mitotic segregational errors in UPD6 formation is in agreement with the results in trisomy/UPD of other chromosomes of the C group (7 and 8), and is in remarkable contrast to the findings in studies on the origin of the frequent aneuploidies. Multiple factors ensure normal segregation and we speculate that they vary in importance for each chromosome.  相似文献   

11.
Genomic imprinting is an epigenetic mechanism controlling parental-origin-specific gene expression. Perturbing the parental origin of the distal portion of mouse chromosome 12 causes alterations in the dosage of imprinted genes resulting in embryonic lethality and developmental abnormalities of both embryo and placenta. A 1 Mb imprinted domain identified on distal chromosome 12 contains three paternally expressed protein-coding genes and multiple non-coding RNA genes, including snoRNAs and microRNAs, expressed from the maternally inherited chromosome. An intergenic, parental-origin-specific differentially methylated region, the IG-DMR, which is unmethylated on the maternally inherited chromosome, is necessary for the repression of the paternally expressed protein-coding genes and for activation of the maternally expressed non-coding RNAs: its absence causes the maternal chromosome to behave like the paternally inherited one. Here, we characterise the developmental consequences of this epigenotype switch and compare these with phenotypes associated with paternal uniparental disomy of mouse chromosome 12. The results show that the embryonic defects described for uniparental disomy embryos can be attributed to this one cluster of imprinted genes on distal chromosome 12 and that these defects alone, and not the mutant placenta, can cause prenatal lethality. In the placenta, the absence of the IG-DMR has no phenotypic consequence. Loss of repression of the protein-coding genes occurs but the non-coding RNAs are not repressed on the maternally inherited chromosome. This indicates that the mechanism of action of the IG-DMR is different in the embryo and the placenta and suggests that the epigenetic control of imprinting differs in these two lineages.  相似文献   

12.
The Angelman (AS) and Prader-Willi (PWS) syndromes are two clinically distinct disorders that are caused by a differential parental origin of chromosome 15q11-q13 deletions. Both also can result from uniparental disomy (the inheritance of both copies of chromosome 15 from only one parent). Loss of the paternal copy of 15q11-q13, whether by deletion or maternal uniparental disomy, leads to PWS, whereas a maternal deletion or paternal uniparental disomy leads to AS. The differential modification in expression of certain mammalian genes dependent upon parental origin is known as genomic imprinting, and AS and PWS represent the best examples of this phenomenon in humans. Although the molecular mechanisms of genomic imprinting are unknown, DNA methylation has been postulated to play a role in the imprinting process. Using restriction digests with the methyl-sensitive enzymes HpaII and HhaI and probing Southern blots with several genomic and cDNA probes, we have systematically scanned segments of 15q11-q13 for DNA methylation differences between patients with PWS (20 deletion, 20 uniparental disomy) and those with AS (26 deletion, 1 uniparental disomy). The highly evolutionarily conserved cDNA, DN34, identifies distinct differences in DNA methylation of the parental alleles at the D15S9 locus. Thus, DNA methylation may be used as a reliable, postnatal diagnostic tool in these syndromes. Furthermore, our findings demonstrate the first known epigenetic event, dependent on the sex of the parent, for a locus within 15q11-q13. We propose that expression of the gene detected by DN34 is regulated by genomic imprinting and, therefore, that it is a candidate gene for PWS and/or AS.  相似文献   

13.
Genetic analysis has shown that the distal portion of mouse chromosome 12 is imprinted; however, the developmental roles of imprinted genes in this region are not known. We have therefore generated conceptuses with uniparental disomy for chromosome 12, in which both copies of chromosome 12 are either paternally or maternally derived (pUPD12 and mUPD12, respectively). Both types of UPD12 result in embryos that are non-viable and that exhibit distinct developmental abnormalities. Embryos with pUPD12 die late in gestation, whereas embryos with mUPD12 can survive to term but die perinatally. The mUPD12 conceptuses are invariably growth-retarded while pUPD12 conceptuses exhibit placentomegaly. Skeletal muscle maturation defects are evident in both types of UPD12. In addition, embryos with paternal UPD12 have costal cartilage defects and hypo-ossification of mesoderm-derived bones. In embryos with mUPD12, the development of the neural crest-derived middle ear ossicles is defective. Some of these anomalies are consistent with those seen with uniparental disomies of the orthologous chromosome 14 region in humans. Thus, imprinted genes on chromosome 12 are essential for viability, the regulation of prenatal growth, and the development of mesodermal and neural crest-derived lineages.  相似文献   

14.
Beckwith-Wiedemann syndrome (BWS) is a model human imprinting disorder resulting from altered activity of one or more genes in the 11p15.5 imprinted gene cluster. Approximately 20% of BWS cases have uniparental disomy (UPD) of chromosome 11. Such cases appear to result from mitotic recombination occurring in early embryogenesis and offer a rare opportunity to study mitotic recombination in nonneoplastic cells. We analyzed a cohort of 52 children with BWS and UPD using a panel of microsatellite markers for chromosome 11. All cases demonstrated mosaic paternal isodisomy, and IGF2 and H19 were included in the segment of UPD in all cases. However, the extent of segmental disomy was variable, with no evidence of clustering of the proximal UPD breakpoint. In most cases (92% of those informative) UPD did not involve 11q, but 4 patients demonstrated UPD for the whole of chromosome 11. In contrast to meiotic recombination, the mitotic recombination frequency did not decline near the centromere.  相似文献   

15.
16.
Transient neonatal diabetes mellitus (TNDM) is associated with paternal over-expression of an imprinted locus on chromosome 6q24, which contains one differentially methylated region (DMR); maternal demethylation at the DMR accounts for ~20% of cases. Here we report female monozygous triplets, two of whom have TNDM arising from loss of maternal methylation within the TNDM DMR.  相似文献   

17.
18.
The Prader-Willi syndrome (PWS) is a developmental disorder caused by a deficiency of paternal contributions, arising from differently sized deletions, uniparental disomy or rare imprinting mutations, in the chromosome region 15q11–q13. We studied 41 patients with suspected PWS and their parents using cytogenetic and molecular techniques. Of the 27 clinically typical PWS patients, 23 (85%) had a molecular deletion that could be classified into four size categories. Only 15 of them (71%) could be detected cytogenetically. Maternal uniparental heterodisomy was observed in four cases. The rest of the patients showed no molecular defects including rare imprinting mutations. In our experience, the use of the methylation test with the probe PW71 (D15S63), together with the probe hN4HS (SNRPN), which distinguishes between a deletion and uniparental disomy, is the method of choice for the diagnosis of PWS.  相似文献   

19.
Uniparental disomy (UPD) involving several different chromosomes has been described in several cases of human pathologies. In order to investigate whether UPD for chromosome 21 is associated with abnormal phenotypes, we analyzed DNA polymorphisms in DNA from a family with de novo Robertsonian translocation t(21q;21q). The proband was a healthy male with 45 dup(21q) who was ascertained through his trisomy 21 offspring. No phenotypic abnormalities were noted in the physical exam, and his past medical history was unremarkable. We obtained genotypes for the proband and his parents' leukocyte DNAs from 17 highly informative short sequence repeat polymorphisms that map in the pericentromeric region and along the entire length of 21q. The order of the markers has been previously determined through the linkage and physical maps of this chromosome. For the nine informative markers there was no maternal allele contribution to the genotype of the proband; in addition, there was always reduction to homozygosity of a paternal allele. These data indicated that there was paternal uniparental isodisomy for chromosome 21 (pUPiD21). We conclude that pUPiD21 is not associated with abnormal phenotypes and that there are probably no imprinted genes on chromosome 21.  相似文献   

20.
Genetic imprinting has been implicated in the etiology of two clinically distinct but cytogenetically indistinguishable disorders--Angelman syndrome (AS) and Prader-Willi syndrome (PWS). This hypothesis is derived from two lines of evidence. First, while the molecular extents of de novo cytogenetic deletions of chromosome 15q11q13 in AS and PWS patients are the same, the deletions originate from different parental chromosomes. In AS, the deletion occurs in the maternally inherited chromosome 15, while in PWS the deletion is found in the paternally inherited chromosome 15. The second line of evidence comes from the deletion of an abnormal parental contribution of 15q11q13 in PWS patients without a cytogenetic and molecular deletion. These patients have two maternal copies and no paternal copy of 15q11q13 (maternal uniparental disomy) instead of one copy from each parent. By qualitative hybridization with chromosome 15q11q13 specific DNA markers, we have now examined DNA samples from 10 AS patients (at least seven of which are familial cases) with no cytogenetic or molecular deletion of chromosome 15q11q13. Inheritance of one maternal copy and one paternal copy of 15q11q13 was observed in each family, suggesting that paternal uniparental disomy of 15q11q13 is not responsible for expression of the AS phenotype in these patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号