首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long distance vocalizations have been shown to be good indicators of genetic species in primates. Here the loud calls of two recently identified greater galago taxa —Galago crassicaudatus andG. garnettii — are compared and analyzed statistically. Observed differences in call structures are investigated further as potential indicators of differences in the structures of habitats frequented by the two species. Although the calls share a repetitive structure, and show similar dominant frequency bands (1,000 – 1,500 Hz), they differ significantly in the number of units per call, unit duration, inter-unit interval, highest frequency, lowest frequency, dominant frequency band, first harmonic, and call duration. The duration of theG. crassicaudatus call is more than twice that ofG. garnettii. Strong intraspecific consistency is seen in the most energetic frequency bands (dominant frequency band and first harmonic), and durations of the individual units and inter-unit intervals. Information important to species recognition is thus most likely to be contained in these features. Individual recognition may be encoded in the relative emphasis of higher level harmonics. The frequency structures of the calls will reflect requirements for acoustical transmission in a forest environment, as well as structural constraints imposed by body size. Higher frequencies detected in theG. garnettii call (up to 8,500 Hz) may have a functional significance related to distance estimation, or may simply be a reflection of smaller body size. The greater modulation of theG. garnettii call suggests that its habitat constitutes a denser or more turbulent medium for sound transmission than does the habitat ofG. crassicaudatus.  相似文献   

2.
The matched filter hypothesis proposes that the tuning of females' auditory sensitivity matches the spectral energy distribution of males' signals. Such correspondence is expected to arise over evolutionary time, as it promotes conspecific information transfer and reduces interference from other sound sources. Our main objective was to determine the correspondence between the acoustic sensitivity of female frogs of Eupsophus roseus and the spectral characteristics of advertisement vocalizations produced by conspecific males. We also aimed to determine how auditory sensitivity is related to the characteristics of background noise. We analysed data on the auditory sensitivity of E. roseus females, and recordings of conspecific male vocalizations and of the acoustic environment during the breeding period of this species. Our results indicate a concordance between the auditory sensitivity of females and call spectra that would provide an appropriate detection of these signals. In addition, this matching is large relative to the correspondence between auditory sensitivity with the spectra of the abiotic and biotic background noise, with the last component being associated with calls of the related species Eupsophus vertebralis. This may be an adaptation of receivers confronting sound interference, which improves the capability of E. roseus to communicate sexually by means of acoustic signals. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 814–827.  相似文献   

3.
Long‐distance calls used for mate attraction and territorial spacing are distinctive signals in the felid vocal repertoire. Their evolution is subject to natural and sexual selection, as well as various constraints. Body size is an important morphological constraint, with the scaling of the spectral characteristics of a species' vocalizations with its body size being established for several vertebrate groups. Alternatively, the structure of long‐distance calls may have been optimized for transmission in species' habitats (acoustic adaptation hypothesis). The present study assessed whether the mean dominant frequency of long‐distance calls in the Felidae (approximately 70% of all species incorporated) is influenced by the species' body size and/or conforms to the acoustic adaptation hypothesis. After controlling for phylogenetic relationships, we found a significant correlation between mean dominant frequency of a taxon's long‐distance calls and conditions for sound transmission in its habitat type (‘open/heterogeneous’ versus ‘dense’), although no significant influence of body size. Taxa living in more open habitat types have long‐distance calls with significantly lower mean dominant frequencies than those living in dense habitats. The result obtained in the present analysis is fairly robust against random removal of single or few taxa from the data, and also against the use of different branch‐length transformation models in phylogenetic regression. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 487–500.  相似文献   

4.
Spectral characteristics of intense mew calls of six cat (sub)species in the genus Felis were studied in captivity: European wildcat (Felis s. silvestris), African wildcat (F. s. lybica), Asiatic steppe cat (F. s. ornata), black-footed cat (F. nigripes), jungle cat (F. chaus), and sand cat (F. margarita). The body weight of the largest (jungle cat) of the six taxa is about six times that of the smallest (black-footed cat), and they live in different habitat types ranging from open desert virtually devoid of vegetation (sand cat) to various types of rather dense forest and shrubland (European wildcat). These habitats differ considerably in the conditions for sound propagation. In this study we analyzed whether and how spectral characteristics of the intense mew calls of these cat taxa are related to their body weight/size and predominant habitat type (open vs. dense). Neither the mean fundamental frequency nor the mean dominant frequency of the intense calls of these cat (sub)species showed an inverse correlation with their respective body weights (“frequency scaling rule”). Rather, the mean dominant frequency is significantly positively correlated with body weight, being lower in the calls of the smaller taxa living in open habitat compared to those of the larger taxa living in dense habitat types. The hypothesis supported best by our data is that spectral features of intense mew calls in the Felis taxa studied have evolved to reduce attenuation when propagating through their respective habitat types. B. Tonkin-Leyhausen is retired and has no institutional affiliation any longer.  相似文献   

5.
Playback experiments were conducted to investigate interspecific discrimination of male loud calls in Sulawesi macaques. Loud calls of four macaque species living in Sulawesi (Macaca tonkeana, M. maurus, M. hecki, andM. nigrescens) and a control stimulus (an 8-sec frequency modulated sound) were played back to semi-free-ranging Tonkean macaques (M. tonkeana). A preliminary acoustic analysis indicated that the calls of these four species differ in some spectral and temporal features. In the playback experiments, Tonkean macaques responded in a similar manner to conspecific calls and calls of two other species,M. maurus andM. hecki. In contrast, animals responded more weakly to the call ofM. nigrescens and the control stimulus. Males responded more strongly than females to all stimuli, while females appeared to be more discriminating for species differences than males. Analyses on the acoustic features of loud calls suggested that high frequency, wide frequency range, and repetition of sound units at a high rate elicit quick responses from animals.  相似文献   

6.
Closely related species often have remarkably different vocalizations. Some of the variation in acoustic structure may result from species adapting their calls to maximize transmission through their acoustic environments. We document the relative magnitude of inter- and intraspecific variation in acoustic transmission properties of the habitats of three closely related marmot species to study the relative importance that the acoustic environment may have played in selecting for species-specific marmot alarm calls. We used spectrogram correlation to quantify the degree to which pure tones and alarm calls changed as they were broadcast through marmot home ranges to describe the acoustic habitats of golden (M. candata aurea), yellow-bellied (M. flaviventris), and alpine (M. marmota L.) marmots. Species lived in quantifiably different acoustic habitats. One analysis partitioned variation between species and between marmot social groups (nested within species). We found significant interspecific variation in the acoustic transmission fidelity of the three species' habitats and insignificant intraspecific variation between social groups. Further analysis of a larger sample of alarm calls broadcast through golden marmot social groups found significant intraspecific variation. Interspecific variation greater than intraspecific variation suggests that variable acoustic habitats may be responsible for at least some of the interspecific variation in alarm call structure. This is the first study to use spectrogram correlation to describe habitat acoustics. We discuss aspects of the method that may be useful for others seeking to quantify habitat acoustics.  相似文献   

7.
Bioacoustic research has made several advancements in developing systems to record extensive acoustic data and classify bat echolocation calls to species level using automated classifiers. These systems are useful as echolocation calls give valuable information on bat behaviour and ecology and hence are widely used for research and conservation of bat populations. Despite the challenges associated with automated classifiers, due to the interspecific differences in call characteristics of bat species found in the Maltese Islands, the use of a quantitative and automated approach is investigated. The sound analysis pipeline involved the use of an algorithm to clean sound files from background noise and measure temporal and spectral parameters of bat echolocation calls. These parameters were then fed to a trained and validated artificial neural network using a bat call library built from reference bat calls from Malta. The automatic classifier achieved an overall correct classification rate of 98%. This high correct classification rate for reliable species identification may have benefitted from the absence of typically problematic species, such as species in the genus Myotis, in the analyses. This study’s results pave the way for efficient and reliable bat acoustic surveys in Malta in aid of necessary monitoring and conservation by providing an updated bat species list and their echolocation characteristics.  相似文献   

8.
This survey of the acoustic characteristics of howling monkey loud calls, covering six of the seven members of the genus Alouattaand presenting audiospectrograms of roars from two species for the first time, suggests that the genus consists of at least two groups: a monotypic palliatagroup, including all subspecies, and a non-palliatagroup, including belzebul, caraya, fusca, pigra,and seniculus.The non-palliatagroup vocalizes continuously for sustained periods of time;their loud calls exhibit a wide bandwidth relative to the calls of the palliatagroup, with emphasized frequencies generally in the range 300- 2000 Hz. The palliatagroup does not vocalize continuously, their vocal bouts being significantly shorter than those of the non-palliataforms. The emphasized frequencies are normally restricted to 300- 1000 Hz, with little acoustic energy in higher frequencies. This bipartite classification places pigrawithin the non-palliatagroup father than with parapatric palliata,which may have important phylogenetic implications. Further, the classification suggests two modes of employing the highly derived howler vocal tract to produce loud calls within the portion of the ambient noise spectrum favorable to long- distance transmission of sound. Finally, I discuss the constraints placed by environmental acoustics on strategies for long- distance communication, hypothesized modes of vocal production, and the use of acoustic studies for phylogenetic reconstruction. Each discussion suggests projects, some already under way, that could elucidate the determinants of variations in communicative patterns within specific social and physical environments.  相似文献   

9.
Many nonhuman primates produce species-typical loud calls used to communicate between and within groups over long distances. Given their observed spacing functions, primate loud calls are likely to show acoustic adaptations to increase their propagation over distance. Here we evaluate the hypothesis that primates emit loud calls at relatively low sound frequencies to minimize their attenuation. We tested this hypothesis within and between species. First, we compared the frequencies of loud calls produced by each species with those of other calls from their vocal repertoires. Second, we investigated the relationship between loud call frequency and home range size across a sample of primate species. Comparisons indicated that primates produce loud calls at lower frequencies than other calls within their vocal repertoires. In addition, a significant negative relationship exists between loud call frequency and home range size among species. The relationship between call frequency and range size holds after controlling for the potentially confounding effects of body size and phylogeny. These results are consistent with the hypothesis that nonhuman primates produce loud calls at relatively low frequencies to facilitate their transmission over long distances.  相似文献   

10.
The acoustic adaptation hypothesis is based on the assumption that senders are directionally selected to maximize transmission and minimize degradation; however, the two aims are not necessarily convergent. In complex habitats, where more effects that might potentially cause attenuation and degradation co‐occur and longer transmission must incur a higher cost, signals should attenuate faster and have shorter transmission ranges. At the same time, such signals should be more resistant to degradation in order to preserve their communicatory function. Based on a sound transmission experiment, we tested the evidence for these predictions using territorial calls of three sympatric species of rails, inhabiting habitats with increasing complexity: Corncrake Crex crex, Spotted Crake Porzana porzana and Water Rail Rallus aquaticus. In the experiment, the calls were broadcasted with similar amplitudes through a heterogeneous habitat inhabited by all three species and rerecorded at different distances up to 320 m. Despite standardized amplitudes and habitats, calls of the species living in simpler habitats had longer transmission ranges but were more susceptible to degradation than calls of the species living in more complex habitats. Our results suggest that narrow frequency bandwidth is an adaptation of species inhabiting complex habitats that helps their calls to degrade less at the cost of stronger attenuation and shorter transmission range. By contrast, wide frequency bandwidth extends the range but increases degradation and thus it is used only by species inhabiting structurally simpler habitats. This study shows that, in more complex habitats, the clarity of the message is preserved at the cost of range.  相似文献   

11.
Animals that rely on vocal communication must broadcast sound so that a perceptible signal is transmitted over an appropriate distance. We found that male blue-throated hummingbirds modified the amplitude of their vocalizations in response to both naturally occurring and experimenter-controlled changes in ambient noise levels. This phenomenon is known as the Lombard effect and may increase the efficiency of acoustic signalling. This study demonstrates the effect under natural field conditions and documents the first hummingbird species (Apodiformes: Trochilidae) to show this behaviour. We measured sound pressure levels (SPLs) of Serial Chip territorial advertisement calls across a natural range of ambient noise, primarily due to creeks within male territories. We found a significant correlation between the amplitude of Serial Chips and the amplitude of background noise. To test this relationship, we broadcast recordings of creek noise at high and low amplitudes while target individuals were producing Serial Chip vocalizations. We measured vocal SPLs before and during the playback. Individuals responded to changes in playback creek noise by changing the amplitude of Serial Chip production. We also measured transmission properties of Serial Chip calls through natural habitat to calculate the approximate amplitude of vocalizations at the position of the calling bird. We suggest that amplitude regulation of vocalizations contibutes to signal transmission distance along with the established relationships between singing behaviour, acoustic structure and habitat. Copyright 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.  相似文献   

12.
Organisms that use vocal signals to communicate often modulate their vocalizations to avoid being masked by other sounds in the environment. Although some environmental noise is continuous, both biotic and abiotic noise can be intermittent, or even periodic. Interference from intermittent noise can be avoided if calls are timed to coincide with periods of silence, a capacity that is unambiguously present in insects, amphibians, birds, and humans. Surprisingly, we know virtually nothing about this fundamental capacity in nonhuman primates. Here we show that a New World monkey, the cotton-top tamarin (Saguinus oedipus), can restrict calls to periodic silent intervals in loud white noise. In addition, calls produced during these silent intervals were significantly louder than calls recorded in silent baseline sessions. Finally, average call duration dropped across sessions, indicating that experience with temporally patterned noise caused tamarins to compress their calls. Taken together, these results show that in the presence of a predictable, intermittent environmental noise, cotton-top tamarins are able to modify the duration, timing, and amplitude of their calls to avoid acoustic interference.  相似文献   

13.
In animal communication, signal loudness is often ignored and seldom measured. We used a playback experiment to examine the role of vocal loudness (i.e., sound pressure level) in sibling to sibling communication of nestling barn owls Tyto alba. In this species, siblings vocally negotiate among each other for priority access to parental food resources. Call rate and call duration play key roles in this vocal communication system, with the most vocal nestlings deterring their siblings from competing for access to the food item next delivered by parents. Here, we broadcast calls at different loudness levels and call rate to live nestlings. The loudness of playback calls did not affect owlets' investment in call rate, call duration or call loudness. The rate at which playback calls were broadcast affected owlets' call rate but did not influence their response in terms of loudness. This suggests that selection for producing loud signals may be weak in this species, as loud calls may attract predators. Moreover, given that owlets do not overlap their calls and that they communicate to nearby siblings in the silence of the night, loud signals may not be necessary to convey reliable information about food need.  相似文献   

14.
We investigated the potential use of call playback for surveying the elusive golden-backed uakari (Cacajao melanocephalus), a diurnal social primate that typically inhabits the relatively inaccessible black-water swamp forests of the upper Amazon (Igapó forest) during the wet season. Furthermore, our objective was to understand better the functions of vocalisations of these rare and threatened monkeys. We focussed on the “tchó” call, a loud vocalisation that varies in temporal and frequency characteristics according to behavioural context and individual signaller (Bezerra et al. in Int J Primatol, 2010b). We investigated the vocal and behavioural responses of golden-backed uakaris from three Igapó areas to three different playback stimuli: own group calls (OGC); neighbouring group calls (NGC); and control (background noise). The call stimuli were used to simulate the unexpected presence of monkeys from the monkeys’ own and neighbouring Igapó areas. Playback of OGC and NGC increased calling and altered behaviour in golden-backed uakaris, whereas no noticeable response occurred to the control stimuli. Furthermore, there was no evidence of habituation to the call stimuli and the natural behavioural pattern of the groups was not obviously affected. Hence, call playback seems to be a valuable tool for locating these elusive monkeys in river surveys. Most of the agonistic-related behaviour observed after NGC playback was also observed after OGC playback. As golden-backed uakaris are not territorial, the presence of strange conspecifics to the area may not necessarily represent a more threatening situation. Our methods and results may also be useful for surveys of other primate species living in the Igapó forest and in other habitat types.  相似文献   

15.
We tested the ability of birds to detect and discriminate natural vocal signals in the presence of masking noise using operant conditioning. Masked thresholds were measured for budgerigars, Melopsittacus undulatus, and zebra finches, Taeniopygia guttata, on natural contact calls of budgerigars, zebra finches and canaries, Serinus canaria. Thresholds increased with increasing call bandwidth, the presence of amplitude modulation and high rates of frequency modulation in calls. As expected, detection thresholds increased monotonically with background noise level. Call detection thresholds varied with the spectral shape of noise. Vocal signals were masked predominantly by noise energy in the spectral region of the signals and not by energy at spectral regions remote from the signals. In all cases, thresholds for discrimination between calls of the same species were higher than thresholds for detection of those calls. Our data provide the first opportunity to estimate distances over which specific communication signals may be effective (i.e. their ‘active space’) using masked thresholds for the signals themselves. Our results suggest that measures of peak sound pressure level, combined with the spectrum level of noise within the frequency channel having the greatest signal power relative to background noise, give the most similar results for estimating a signal's maximum communication distance across a variety of sounds. We provide a simple model for estimating likely detection and discrimination distances for the signals tested here. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.  相似文献   

16.
Many animals rely on information from vocal signals to assess potential competitors and mates. For example, in primates, males use loud calls to assess rivals when the acoustic properties of the calls reliably indicate the condition or quality of the sender. Here, we investigate whether the loud calls of male geladas (Theropithecus gelada) function as a quality signal. Gelada males produce loud calls during ritualistic chases with rival males. Given the physically taxing nature of these displays, we hypothesize that variation in the acoustic properties of loud calls reliably signal male stamina or competitive ability. To test this hypothesis, we examined whether the acoustic properties of the gelada loud call varied in relation to individual, age, status, and exhaustion. Specifically, we examined 12 call parameters (e.g., fundamental frequency) and 3 bout parameters (e.g., number of calls per bout), that have been previously shown to vary across condition in male primates. We found that several acoustic features varied consistently across age and status such that males deemed higher quality in gelada society (e.g., high status) produced more calls per bout, produced calls that were lower in overall frequency measures, and exhibited a greater vocal range. In addition, we found that similar acoustic features varied with exhaustion; after a long chase event, males produced both fewer calls per bout and calls with higher spectral measures. Results from this study are consistent with the hypothesis that gelada loud calls are quality signals, contributing to the growing evidence that primates may use acoustic information to assess the quality of a rival or a potential mate.  相似文献   

17.
Local environments can act as selective agents on some characteristics of birds’ songs, whereas other song traits may not reflect local genetic adaptation. Geographic variation in songs of two Australian bird species (red‐capped robins Petroica goodenovii, western gerygones Gerygone fusca) was studied to examine one component of the ‘habitat‐dependent selection’ hypothesis. This hypothesis suggests that: (1) the detailed spectral characteristics of male songs are an evolved response to local habitat conditions affecting signal propagation and detection and (2) parallel evolution of other fitness traits sets up the potential for assortative mating by female choice. To examine the first part of the hypothesis, I made comparisons among widespread mainland populations and an island population using two levels of analysis: a typological analysis of song morphology (phonology: notes, syllables, syntax, temporal pattern, repertoires) and a spectral analysis of acoustic characteristics of songs (mean frequency, Wiener entropy, frequency modulation) using an automated procedure of feature extraction (Sound Analysis Pro). Spectral analysis was also used to extract values of the same acoustic features from the background sound environment of each recorded population. The typological analysis revealed no differences among mainland populations of either species, but large differences between mainland songs and those on the island. In contrast, the spectral analysis revealed acoustic divergence among populations, both mainland and island. For both species, Wiener entropy of songs correlated negatively with that of the ambient sound environment, consistent with predictions of the habitat‐dependent selection hypothesis of environmental selection on signal design.  相似文献   

18.
Biological invasions are a major threat to biodiversity. Invasive species that use acoustic communication can affect native species through interference in the acoustic niche. The American Bullfrog Lithobates catesbeianus is a highly invasive anuran that is widely distributed in the Brazilian Atlantic Rainforest. Adult male bullfrogs emit loud advertisement calls at frequencies that overlap with the calls of several native species of frogs. Given that spectral overlap is a major factor in acoustic masking, the purpose of this study was to test the effects of the acoustic invasion of L. catesbeianus on native frogs that have calls with and without spectral overlap with the invader. In field experiments, we exposed calling males of two overlapping species and two non-overlapping species to recorded bullfrog vocalizations, white noise, and the vocalization of another native frog species. To identify effects, we compared calls recorded before, during, and after exposure. Our results showed that native species altered their calls in response to the bullfrog calls. However, we also observed similar responses to white noise and heterospecific native calls. Both the invasive and heterospecific calls were emitted at low frequencies, which suggests that the observed responses might be specific to low-frequency calls. Our results provide evidence that the introduction of new sounds can cause native species to modify their calls, and that responses to exogenous sounds are species- and stimulus-specific.  相似文献   

19.
The habitat ambient noise may exert an important selective pressure on frequencies used in acoustic communication by animals. A previous study demonstrated the presence of a match between the low-frequency quiet region of the stream ambient noise (termed ‘quiet window’) and the main frequencies used for sound production and hearing by two stream gobies (Padogobius bonelli, Gobius nigricans). The present study examines the spectral features of ambient noise in very shallow freshwater, brackish and marine habitats and correlates them to the range of dominant frequencies of sounds used by nine species of Mediterranean gobies reproducing in these environments. Ambient noise spectra of these habitats featured a low-frequency quiet window centered at 100 Hz (stream, sandy/rocky sea shore), or at 200 Hz (spring, brackish lagoon). The analysis of the ambient noise/sound spectrum relationships showed the sound frequencies matched the frequency band of the quiet window in the ambient noise typical of their own habitat. Analogous ambient noise/sound frequency relationships were observed in other shallow-water teleosts living in similar underwater environments. Conclusions may be relevant to the understanding of evolution of fish acoustic communication and hearing.  相似文献   

20.
Cook Inlet beluga whales (CIBs) are an endangered population residing in Cook Inlet, Alaska. We characterized the calling behavior of CIBs to improve our understanding of sounds produced by this population. Bottom‐moored hydrophones were deployed at Eagle Bay in summer 2009 and at Trading Bay in summer and winter 2009. CIB sounds were qualitatively analyzed and categorized as a whistle, pulsed call, or click train. A total of 4,097 calls were analyzed, and 66 unique whistle contours were identified. Whistles were quantitatively analyzed using a custom Matlab program. A chi‐square test showed the call category usage at Eagle Bay during summer 2009 and those at Trading Bay during summer 2009 and winter 2009–2010 differed significantly (P < 0.001). Pulsed calls were more common during summer months, and click trains within the frequency band (12.5 kHz) were more common in Eagle Bay. The variation in calling behavior suggests differences in habitat usage or in the surrounding environment, including background noise. With the proposed development projects in Cook Inlet and the potential increase in ambient noise level due to ocean acidification, it is important to understand how this endangered population uses sound, and what anthropogenic factors may influence that use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号