首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim We evaluated variation in fish assemblages on the basis of taxonomic composition and functional groups based on Pleistocene glacial boundaries in the Ohio River basin. We tested for the influence of habitat and hydrology on fish assemblage variation. Location Ohio River basin of North America, including the states of Ohio, Indiana and Illinois. Methods Fish collection sites were identified as Wisconsinan, pre‐Wisconsinan or unglaciated regions. Multivariate analyses, multi‐response permutation procedures, discriminant analysis and indicator species analyses were used to test whether taxonomic and functional assemblages were distinct among regions with varying glacial histories. Principal components analysis was used to identify habitat and water quality, as well as hydrological gradients that could be discerned by glacial region. Results We identified significant differences in both taxonomic and functional fish assemblage structure and habitat variation among regions that had different glaciation histories. The largest differences in taxonomic and functionally based fish communities were for unglaciated and pre‐Wisconsinan regions, while unglaciated and Wisconsinan regions were most similar. We correctly classified study regions in 71% and 60% of sites using taxonomy and functional analyses, respectively. Wisconsinan sites were characterized by Cyprinidae and Catostomidae assemblages with high abundances of tolerant fishes that tended to occur in habitats with reduced current velocity. Pre‐Wisconsinan sites were characterized by Cyprinidae, Catostomidae, Centrarchidae and Percidae families with increased abundances of intolerant fishes that tended to occur in habitats with coarser substrates and increased water velocity in streams of varying size. Unglaciated sites were characterized by Cyprinidae and Percidae families and were not closely associated with any habitat‐based functional group. Habitat in the unglaciated and pre‐Wisconsinan sites was significantly different from that in the Wisconsinan sites, which were characterized by increased channel structure and reduced stream size. Main conclusions Pleistocene glaciation events formed a lasting template of predictable regional differences in stream habitat and in the corresponding taxonomic and functional fish assemblage structures. While many factors impact the distribution of fishes, these results suggest that historical influences such as glaciation may be used to further explain the underlying mechanisms of spatial variation in fish assemblages.  相似文献   

2.
1. The use of trait‐based approaches to examine the ecology of stream fish assemblages is increasing. However, selection of traits that will be useful in testing spatial or temporal hypotheses about ecological organisation is currently limited by availability of data, rather than empirical evaluation. 2. We analysed two data sets of stream fish assemblages to compare taxonomy and trait‐based approaches. The Wabash River temporal data set is based on 25 years of boat electrofishing collections over a 230‐km river distance. The Indiana Department of Environmental Management data set of stream collections in the state of Indiana was selected to represent a spatial database. We compared several trait‐based approaches: reproductive guilds, life history variables, biomonitoring metrics, ecosystem‐based functional guilds and feeding and ecosystem interaction guilds. 3. Analyses of fish assemblages that are designed to detect how environmental variation structures fish assemblages can expect similar results using taxonomic or trait‐based approaches. Results of trait‐based approaches will vary according to the spatial extent of the region and the number of unique entities of trait groups for a given data set. However, taxonomic analyses accounted for more variation than any trait‐based analyses.  相似文献   

3.
陈兵  孟雪晨  张东  储玲  严云志 《生态学报》2019,39(15):5730-5745
确定鱼类群落的空间格局是保护和管理河流鱼类多样性的基础。尽管河流鱼类分类群(基于物种组成)的纵向梯度格局已得到大量报道,但其功能群(基于功能特征)的空间格局研究较少。以皖南山区新安江为研究流域,沿其"正源-下游"梯度共设置27个调查样点,分别于2017年5月和10月完成2次调查取样,着重研究了鱼类分类群和功能群结构的纵向梯度格局及其形成机制。共采集鱼类44种,可分为5个运动功能群和4个营养功能群,构成14个"营养-运动"复合功能群。双因素交互相似性分析结果显示,鱼类分类群和功能群均随河流级别显著变化,但两者均无显著的季节变化;根据相似性百分比分析,由1级至3级河流,数量优势物种和功能群的空间变化主要呈嵌套格局,而由3级至5级河流其变化主要呈周转格局。方差分解结果显示,局域栖息地、陆地景观和支流空间位置3类解释变量对分类群和功能群空间变化的解释率分别为33.6%和38.5%,其中,分类群受局域栖息地和支流空间位置变量的显著影响,而功能群受局域栖息地和陆地景观变量的显著影响。研究表明,沿着新安江的"上游-下游"纵向梯度,鱼类分类群和功能群的空间格局基本一致,但两者的形成机制不同:分类群的纵向梯度变化受环境过滤和扩散过程的联合影响,而功能群则主要受环境过滤影响。  相似文献   

4.
5.
Aim  To examine the roles of local and regional environmental variables and biotic interactions in determining the structure of local stream fish assemblages, and to compare results derived from analyses based on taxonomic and functional groups.
Location  Texas, USA.
Methods  Species abundance data were compiled for 157 stream fish assemblages in several river basins across Texas. Species were condensed into functional groups based on trophic and life-history characteristics. Local and regional environmental variables were either measured at each location or determined from scale maps and public-access data bases. The original taxonomic and functional group data sets were analysed using similarity indices, null models of co-occurrence, and direct and indirect ordination techniques. Results derived from taxonomic and functional group data sets are compared.
Results  Inferences regarding the relative roles of local and larger-scale factors in determining stream fish assemblage structure differ dramatically between analyses of taxonomic and functional groups. Taxonomic analyses suggest a prominent role of regional-scale environmental factors, and local assemblages sorted according to a biogeographic pattern. Functional group analyses suggest almost equal roles of factors representative of local and larger scales, and assemblages were distinguished by a habitat template irrespective of geographic region.
Main conclusions  The structure of local stream fish assemblages is determined ultimately by factors representing multiple scales, with the relative importance of each depending on the biological unit employed (species or functional groups). We suggest that analyses using functional groups can more directly infer ecological responses to environmental variation, and therefore may provide a more fruitful avenue for developing and testing ecological theory of community organization across biogeographic scales.  相似文献   

6.
Taxonomic sufficiency (TS) — defined as the minimum taxonomic detail required to discern some ecological pattern of interest — has been used extensively in bioassessment and biodiversity studies as a way of avoiding a portion of the time and monetary costs associated with species diagnoses. The taxonomic sufficiency for detecting species-level patterns among floodplain-lake benthic-invertebrate assemblages remains unexplored. We examined cross-taxonomic-level congruence in assemblage-environment relationships among 23 Chinese floodplain lakes. Our objectives were: (1) to compare the correlation between species richness and density and those at coarser taxonomic resolution; (2) to identify whether assemblage-environment relationships depend on taxonomic scale; and (3) to test whether the proportion of between-lake variability accounted for by environmental variables was independent of taxonomic scale. When taxonomic structure was described using sequentially coarser taxonomic aggregations, species-level patterns of richness and abundance were sequentially obscured (i.e., genus-level taxonomy best preserved patterns in species composition, order- and class-level taxonomy poorly represented species composition). Similar environmental variables were important for distinguishing lake species assemblages and genus assemblages; however, different environmental variables were important for describing family-, order-, and class-level assemblage patters. Moreover, environmental variables accounted for a similar amount of biological variability, regardless of taxonomic scale. Our results suggest genus taxonomy as sufficient for rapid assessments of lake diversity. Numerical dominance of the species- and genus-rich Chironomidae, Tubificidae, and Naididae, may account for the marked loss of information that occurs when lake invertebrates are assigned only to their families. In summary, we describe taxonomic sufficiency to detecting patterns of richness and abundance among subtropical lake macroinvertebrate faunas. This study will interest Chinese benthologists concerned with conservation and bioassessment.  相似文献   

7.
Due to the difficulty of identifying many taxa of freshwater invertebrates to species, many researchers have assessed the utility of surrogates for species-level identifications (e.g. higher taxa) in bioassessment programs. Here, we examined the efficiency of two different approaches to species surrogacy, one using coarser taxonomic resolution and a second approach based on random aggregation (“Best practicable aggregation of species”, BestAgg), in portraying patterns of stream macroinvertebrates in Central China. The main objectives were: (1) to compare the discriminatory power of biodiversity indices and assemblage structure for different levels of human disturbances based on different taxonomic resolution and on BestAgg; (2) to identify the congruence of assemblage-environment and biodiversity-indices-environment relationships for datasets at the species level versus those at surrogate levels. We found that genus-level and BestAgg datasets accurately reproduced the pattern of species-level communities, whereas family- and order-level datasets did not. Specifically, both genus-level and BestAgg approaches performed almost as well as species-level data in distinguishing sites subjected to different disturbance levels. Most of the environmental variables that were important for species-level assemblages, also emerged as significant when analyzing genera and BestAgg surrogates, as shown by both analyses of indices and assemblage composition according to distance-based ordination models. Our results suggest that genus-level taxonomy, which resulted in the least loss of ecological information relative to species-level identification, is sufficient in studies of community ecology and bioassessment of stream macroinvertebrates in Central China. In addition, the BestAgg approach, which required identification of fewer taxa than genus-level analysis, has a similar ability to depict multivariate patterns of macroinvertebrate assemblages and differentiate different disturbance levels. Applying our results could enhance speed and cost-effectiveness of freshwater biomonitoring and bioassessment programs; however, independent determination of best taxonomic level and BestAgg will be required whenever a new geographic area or habitat type is assessed.  相似文献   

8.
Distinct fish assemblages were found at the mesohabitat scale in 14 streams in eastern Sabah, Malaysia. Sites were designated a priori as pool, run or riffle on the basis of physical habitat structure and properties. Principal components analysis of physical habitat data confirmed the validity of the a priori designation with a major axis of three correlated variables: water velocity, depth and substratum type. Canonical discriminant analysis on fish abundance and biomass data confirmed the existence of a specialized assemblage of fishes from riffle areas of all streams. Overall, pool and run assemblages were highly variable, dependent on stream size, but also variable between streams of the same size. Multiple regression of species richness, diversity, abundance and biomass data on principal components revealed significant but low correlations with measured habitat variables. Riffle habitats showed lower species richness and diversity but high abundance. The fish assemblage in riffles was dominated by balitorid species, specialized for fast-water conditions. Pool assemblages had the highest species diversity and were dominated by cyprinid species of a number of morphological and ecological guilds. Run assemblages were intermediate in assemblage characteristics between riffle and pool assemblages. Between-stream variation in assemblage composition was less than within-stream variation. Of 38 species collected, seven could be designated as riffle specialists, 18 as pool specialists and 13 as ubiquitous, although most of the latter showed size-specific habitat use with larger size classes found in slower, deeper water.  相似文献   

9.
Habitat specialists are considered to be more sensitive to anthropogenic disturbance than habitat generalists. However, a number of studies have shown that habitat specialists can be tolerant to or even benefit from environmental degradation, suggesting that the effect of disturbance on distributions and abundances of habitat generalists and specialists can be unpredictable. In this study, we assessed the effects of anthropogenic disturbance on the degree of specialization of stream macroinvertebrates in boreal streams. We first measured the niche width for each macroinvertebrate species using the Outlying Mean Index (OMI) analysis and then, using independent data sets of near-pristine and anthropogenically altered streams, we examined the effects of human disturbances on stream macroinvertebrates with different tolerances to environmental conditions. As expected, human disturbance significantly decreased the level of the specialization in stream macroinvertebrate assemblages, and taxa with narrow environmental tolerances were more sensitive to disturbance than taxa with wide tolerances. Despite being more sensitive to disturbance, taxa with narrow environmental tolerances were locally more abundant than tolerant taxa in near-pristine streams, indicating their better performance in their optimal environments. However, many tolerant taxa decreased in their occurrence in disturbed streams, suggesting that habitat generalists also tend to negatively respond to disturbance. Species-rich assemblages harboured more taxa with narrow tolerances compared with species poor assemblages, suggesting a high conservation value of streams with diverse macroinvertebrate assemblages. Consistent with findings for many biological groups, our results indicate that macroinvertebrate species specialised in certain habitats are more sensitive to environmental degradation than habitat generalists. However, contrary to many previous studies, our results suggest that only a few species are likely to benefit from anthropogenic disturbance and, therefore, environmental degradation does not necessary result in macroinvertebrate assemblages composed of a few tolerant taxa.  相似文献   

10.
Landscape-scale patterns of freshwater fish diversity and assemblage structure remain poorly documented in many areas of Central America, while aquatic ecosystems throughout the region have been impacted by habitat degradation and hydrologic alterations. Diadromous fishes may be especially vulnerable to these changes, but there is currently very little information available regarding their distribution and abundance in Central American river systems. We sampled small streams at 20 sites in the Sixaola River basin in southeastern Costa Rica to examine altitudinal variation in the diversity and species composition of stream fish assemblages, with a particular focus on diadromous species. A set of environmental variables was also measured in the study sites to evaluate how changes in fish assemblage structure were related to gradients in stream habitat. Overall, fish diversity and abundance declined steeply with increasing elevation, with very limited species turnover. The contribution of diadromous fishes to local species richness and abundance increased significantly with elevation, and diadromous species dominated assemblages at the highest elevation sites. Ordination of the sampling sites based on fish species composition generally arranged sites by elevation, but also showed some clustering based on geographic proximity. The dominant gradient in fish community structure was strongly correlated with an altitudinal habitat gradient identified through ordination of the environmental variables. The variation we observed in stream fish assemblages over relatively small spatial scales has significant conservation implications and highlights the ecological importance of longitudinal connectivity in Central American river systems.  相似文献   

11.
Aim To (1) describe termite functional diversity patterns across five tropical regions using local species richness sampling of standardized areas of habitat; (2) assess the relative importance of environmental factors operating at different spatial and temporal scales in influencing variation in species representation within feeding groups and functional taxonomic groups across the tropics; (3) achieve a synthesis to explain the observed patterns of convergence and divergence in termite functional diversity that draws on termite ecological and biogeographical evidence to‐date, as well as the latest evidence for the evolutionary and distributional history of tropical rain forests. Location Pantropical. Methods A pantropical termite species richness data set was obtained through sampling of eighty‐seven standardized local termite diversity transects from twenty‐nine locations across five tropical regions. Local‐scale, intermediate‐scale and large‐scale environmental data were collected for each transect. Standardized termite assemblage and environmental data were analysed at the levels of whole assemblages and feeding groups (using components of variance analysis) and at the level of functional taxonomic groups (using correspondence analysis and canonical correspondence analysis). Results Overall species richness of local assemblages showed a greater component of variation attributable to local habitat disturbance level than to region. However, an analysis accounting for species richness across termite feeding groups indicated a much larger component of variation attributable to region. Mean local assemblage body size also showed the greater overall significance of region compared with habitat type in influencing variation. Ordination of functional taxonomic group data revealed a primary gradient of variation corresponding to rank order of species richness within sites and to mean local species richness within regions. The latter was in the order: Africa > south America > south‐east Asia > Madagascar > Australia. This primary gradient of species richness decrease can be explained by a decrease in species richness of less dispersive functional taxonomic groups feeding on more humified food substrates such as soil. Hence, the transects from more depauperate sites/regions were dominated by more dispersive functional taxonomic groups feeding on less humified food substrates such as dead wood. Direct gradient analysis indicated that ‘region’ and other large‐scale factors were the most important in explaining patterns of local termite functional diversity followed by intermediate‐scale geographical and site variables and, finally, local‐scale ecological variables. Synthesis and main conclusions Within regions, centres of termite functional diversity lie in lowland equatorial closed canopy tropical forests. Soil feeding termite evolution further down food substrate humification gradients is therefore more likely to have depended on the long‐term presence of this habitat. Known ecological and energetic constraints upon contemporary soil feeders lend support for this hypothesis. We propose further that the anomalous distribution of termite soil feeder species richness is partly explained by their generally very poor dispersal abilities across oceans. Evolution, radiation and dispersal of soil feeder diversity appears to have been largely restricted to what are now the African and south American regions. The inter‐regional differences in contemporary local patterns of termite species richness revealed by the global data set point to the possibility of large differences in consequent ecosystem processes in apparently similar habitats on different continents.  相似文献   

12.
13.
In spite of the general use of diet data in ecological research, still very little is known about the relative roles of spatial, temporal and biotic (e.g. taxonomic identity, size, sex) factors in dietary variability of fishes. Here, we applied canonical correspondence analysis and variation partitioning to examine the roles of taxonomic, annual, seasonal, lake basin, habitat and ontogenetic (standard length, L S) factors in the dietary variation of fishes in large and shallow Lake Balaton, Hungary. The analyses were performed at the assemblage (15 fish species) and the individual species levels, and based on high (24 fine resource categories) and low resolution (nine broad resource categories) diet data. As hypothesised, most of the explained variation related to interspecific differences, while the roles of sampling year, season, lake area, habitat and L S proved to be unexpectedly low at the assemblage level. In addition, no regularity was found in how the relative roles of these factors change between fish species. The high ratio of the unexplained variation suggests that individual variations in foraging strategies and resource use of fishes and unascertained stochastic processes had a strong influence on dietary variability both at the assemblage and the individual species levels.  相似文献   

14.
Understanding what mechanisms shape the diversity and composition of biological assemblages across broad‐scale gradients is central to ecology. Litter‐consuming detritivorous invertebrates in streams show an unusual diversity gradient, with α‐diversity increasing towards high latitudes but no trend in γ‐diversity. We hypothesized this pattern to be related to shifts in nestedness and several ecological processes shaping their assemblages (dispersal, environmental filtering and competition). We tested this hypothesis, using a global dataset, by examining latitudinal trends in nestedness and several indicators of the above processes along the latitudinal gradient. Our results suggest that strong environmental filtering and low dispersal in the tropics lead to often species‐poor local detritivore assemblages, nested in richer regional assemblages. At higher latitudes, dispersal becomes stronger, disrupting the nested assemblage structure and resulting in local assemblages that are generally more species‐rich and non‐nested subsets of the regional species pools. Our results provide evidence that mechanisms underlying assemblage composition and diversity of stream litter‐consuming detritivores shift across latitudes, and provide an explanation for their unusual pattern of increasing α‐diversity with latitude. When we repeated these analyses for whole invertebrate assemblages of leaf litter and for abundant taxa showing reverse or no diversity gradients we found no latitudinal patterns, suggesting that function‐based rather than taxon‐based analyses of assemblages may help elucidate the mechanisms behind diversity gradients.  相似文献   

15.
16.
Stream fishes are restricted to specific environments with appropriate habitats for feeding and reproduction. Interactions between streams and surrounding landscapes influence the availability and type of fish habitat, nutrient concentrations, suspended solids, and substrate composition. Valley width and gradient are geomorphological variables that influence the frequency and intensity that a stream interacts with the surrounding landscape. For example, in constrained valleys, canyon walls are steeply sloped and valleys are narrow, limiting the movement of water into riparian zones. Wide valleys have long, flat floodplains that are inundated with high discharge. We tested for differences in fish assemblages with geomorphology variation among stream sites. We selected rivers in similar forested and endorheic ecoregion types of the United States and Mongolia. Sites where we collected were defined as geomorphologically unique river segments (i.e., functional process zones; FPZs) using an automated ArcGIS‐based tool. This tool extracts geomorphic variables at the valley and catchment scales and uses them to cluster stream segments based on their similarity. We collected a representative fish sample from replicates of FPZs. Then, we used constrained ordinations to determine whether river geomorphology could predict fish assemblage variation. Our constrained ordination approach using geomorphology to predict fish assemblages resulted in significance using fish taxonomy and traits in several watersheds. The watersheds where constrained ordinations were not successful were next analyzed with unconstrained ordinations to examine patterns among fish taxonomy and traits with geomorphology variables. Common geomorphology variables as predictors for taxonomic fish assemblages were river gradient, valley width, and valley slope. Significant geomorphology predictors of functional traits were valley width‐to‐floor width ratio, elevation, gradient, and channel sinuosity. These results provide evidence that fish assemblages respond similarly and strongly to geomorphic variables on two continents.  相似文献   

17.
Environmental filtering and spatial structuring are important ecological processes for the generation and maintenance of biodiversity. However, the relative importance of these ecological drivers for multiple facets of diversity is still poorly understood in highland streams. Here, we examined the responses of three facets of stream macroinvertebrate alpha diversity to local environmental, landscape‐climate and spatial factors in a near‐pristine highland riverine ecosystem. Taxonomic (species richness, Shannon diversity, and evenness), functional (functional richness, evenness, divergence, and Rao's Quadratic entropy), and a proxy of phylogenetic alpha diversity (taxonomic distinctness and variation in taxonomic distinctness) were calculated for macroinvertebrate assemblages in 55 stream sites. Then Pearson correlation coefficient was used to explore congruence of indices within and across the three diversity facets. Finally, multiple linear regression models and variation partitioning were employed to identify the relative importance of different ecological drivers of biodiversity. We found most correlations between the diversity indices within the same facet, and between functional richness and species richness were relatively strong. The two phylogenetic diversity indices were quite independent from taxonomic diversity but correlated with functional diversity indices to some extent. Taxonomic and functional diversity were more strongly determined by environmental variables, while phylogenetic diversity was better explained by spatial factors. In terms of environmental variables, habitat‐scale variables describing habitat complexity and water physical features played the primary role in determining the diversity patterns of all three facets, whereas landscape factors appeared less influential. Our findings indicated that both environmental and spatial factors are important ecological drivers for biodiversity patterns of macroinvertebrates in Tibetan streams, although their relative importance was contingent on different facets of diversity. Such findings verified the complementary roles of taxonomic, functional and phylogenetic diversity, and highlighted the importance of comprehensively considering multiple ecological drivers for different facets of diversity in biodiversity assessment.  相似文献   

18.
To better understand temporal variations in species diversity and composition, ecological attributes, and environmental influences for the Middle Cambrian Burgess Shale community, we studied 50,900 fossil specimens belonging to 158 genera (mostly monospecific and non-biomineralized) representing 17 major taxonomic groups and 17 ecological categories. Fossils were collected in situ from within 26 massive siliciclastic mudstone beds of the Greater Phyllopod Bed (Walcott Quarry — Fossil Ridge). Previous taphonomic studies have demonstrated that each bed represents a single obrution event capturing a predominantly benthic community represented by census- and time-averaged assemblages, preserved within habitat. The Greater Phyllopod Bed (GPB) corresponds to an estimated depositional interval of 10 to 100 KA and thus potentially preserves community patterns in ecological and short-term evolutionary time.The community is dominated by epibenthic vagile deposit feeders and sessile suspension feeders, represented primarily by arthropods and sponges. Most species are characterized by low abundance and short stratigraphic range and usually do not recur through the section. It is likely that these are stenotopic forms (i.e., tolerant of a narrow range of habitats, or having a narrow geographical distribution). The few recurrent species tend to be numerically abundant and may represent eurytopic organisms (i.e., tolerant of a wide range of habitats, or having a wide geographical distribution). Rarefaction curves demonstrate variation in species richness through the GPB and suggest that more stenotopic species could still be discovered with additional sampling. Comparisons between richness and evenness trends suggest that the community is relatively stable overall, despite gradual species turnover through time, especially in assemblages from younger beds. Less diverse assemblages with low species evenness possibly represent the onset of less favourable environmental conditions.Fossil occurrences in individual beds were analysed using a range of statistical techniques (Correspondence Analysis, Canonical Correspondence Analysis, Minimum Spanning Tree, Indicator Species Analysis, Mantel Test) to extract community patterns. Results suggest the presence of four fossil assemblages based on distinct species associations. The different assemblages presumably reflect variations in environmental and ecological conditions, some acting through time, leading to species turnover. “Disturbances” (e.g., changes in paleo-redox conditions), differences in substrate firmness, and limited taphonomic biases are probably the main factors contributing to community structure. The influence of ecological factors, however, is also predicted from non-random patterns of species recurrences in successive events. Preliminary comparisons with Lower Cambrian Chengjiang-type assemblages of southern China suggest that the overall structure and ecology of Cambrian communities remained relatively stable until at least the Middle Cambrian in subtidal siliciclastic soft substrate environments.Comparisons with modern marine benthic ecosystems further suggest the Burgess Shale community was probably highly dependent on immigration from a regional pool of species after each burial event. This could support the view that species availability, habitat characteristics, and recolonisation processes were more important in structuring the community in the long-term than species interactions or environmental variations at a local scale.  相似文献   

19.
We assessed spatial, seasonal, and annual variation in fish assemblages over 17 months in three small- to medium-sized, incised streams characteristic of northwestern Mississippi streams. We sampled 17 962 fish representing 52 species and compared assemblages within and among streams. Although annual and seasonal variability in assemblage structure was high, fish assemblages maintained characteristics unique to each stream. High variability in fish catch-per-unit-effort (CPUE) was exemplified in one site where total CPUE increased an order of magnitude from July 1993 to 1994. Species turnover and percent dissimilarity were often higher seasonally than annually, consistent with a period of change in spring to early summer and a return to similar species compositions between summers. Temporal variability was also high at the individual species level, and no species were classified as 'stable'. We found little evidence for correlation between changes in fish assemblage structure and measured habitat conditions. The fish characteristics fit the profile of 'colonizing assemblages', which probably resulted from both natural and anthropogenic causes. Flashy hydrographs , created in part by stream channelization and incision and watershed deforestation, may play a large role in structuring these fish assemblages. Extreme interannual variability in assemblages in the absence of detectable habitat change has important implications for the statistical power of fish monitoring programs designed to detect trends in fish assemblages over time.  相似文献   

20.
Species that pass through similar environmental filters, regardless of geographic proximity or evolutionary history, are expected to share many traits, resulting in similar assemblage trait distributions. Convergence of assemblage trait distributions among different biotic regions would indicate that consistent ecological processes produce repeated patterns of adaptive evolution. This study analyzes trait–environment relationships across multiple stream fish assemblages representing evolutionarily divergent faunas. We hypothesized that trait–environment patterns converge across regional faunas in response to a common set of environmental filters acting on functional traits. One hundred and ninety‐seven species and forty streams were sampled from five regions: Belize, Benin, Brazil, Cambodia and USA. By examining trait–environment plots, multiple congruent trait–environment patterns were found across all regions, indicative of a consistent set of environmental filters acting on local community assembly. The consistency of these patterns strongly suggests that water velocity and habitat structural complexity function as universal environmental filters, producing similar assemblage trait distributions in streams across all regions. Bivariate relationships were not universal, and only one of the associations between a single functional trait and single environmental variable was statistically significant across all five regions. Strong phylogenetic signal was found in traits and habitat use, which implies that niche conservatism also influenced assemblage trait distributions. Overall, results support the idea that habitat templates structure trait distributions of stream fish assemblages and do so in a consistent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号