首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
Chinese hamster ovary (CHO) cells in culture were utilized to determine the cytotoxicity, specific-locus mutation induction, and DNA alkylation which result from treatment of the cells with a range of concentrations of N-methyl-N-nitrosourea (MNU) or N-ethyl-N-nitrosourea (ENU). With [3H]MNU over the concentration range 0.43--13.7 mM, methylation of DNA was found to increase linearly, with a mean value of 56.7 pmol residue per mumol nucleoside per mM. With [1-3H]ENU over the concentration range 1.7--26.8 mM, ethylation was linear, with a mean value of 3.8 pmol residue per mumol nucleotide per mM. Mutation induction at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus was quantified by determination of the frequency of resistance to 6-thioguanine under stringently-defined selection conditions. The mutation frequency increased linearly with MNU or ENU concentration (0.01--2.0 mM); mean values were 2800 and 840 mutants per 10(6) clonable cells per mM, respectively. At equal levels of DNA alkylation, ENU was found to be approx. 4.5 times as mutagenic as MNU.  相似文献   

2.
Methylation damage response in hematopoietic progenitor cells   总被引:1,自引:0,他引:1  
The cellular response to methylation DNA damage was compared in multipotent CD34(+) hematopoietic stem cells and mature CD34(-) cells isolated from cord blood of the same donor. Cytofluorimetric analysis of freshly isolated cord blood cells indicated that both cell types were in the G0/G1 phase of the cell cycle. Quantitative RT-PCR identified a general trend towards high expression of several DNA repair genes in CD34(+) cells compared to their terminally differentiated CD34(-) counterparts. The overexpressed genes included members of the mismatch repair (MMR) (MSH2, MSH6, MLH1, PMS2), base excision repair (AAG, APEX), DNA damage reversal (O(6)-methylguanine DNA methyltransferase) (MGMT), and DNA double strand breaks repair pathways. These differences in gene expression were not apparent in CD34(+) and CD34(-) cells obtained following expansion of CD34(+) cells in a medium containing early acting cytokines. Early progenitor CD34(+) and early precursor CD34(-) cells form the two populations isolated under these experimental conditions, and both contain a significant proportion of cycling cells. The methylating agent N-methyl-N-nitrosourea (MNU) induced similar levels of apoptosis in these cycling CD34(+) and CD34(-) cells. Cytotoxicity required the presence of the MGMT inhibitor O(6)-benzylguanine and the timing of MNU cell death (48 and 72h) was similar in CD34(+) and CD34(-) cells. These data indicate that cycling CD34(+) and CD34(-) cells are equally sensitive to methylation damage. MGMT provides significant protection against MNU toxicity and MGMT and MMR play the expected roles in the MNU sensitivity of these cells.  相似文献   

3.
4.
5.
The detection of abnormal DNA base pairing arrangements and conformations is chemically probed in synthetic 32P-end-labeled deoxyribonucleotide oligomers using N-methyl-N-nitrosourea (MNU) and 2,12,-dimethyl-3,7,11,17-tetraazabicyclo-[11.3.1]heptadeca-1 -[17],2,11,13,15 pentaene-Ni (II) (Ni-complex) with KHSO5. The DNA targets studied are single-stranded (s-s) DNA, double-stranded (d-s) DNA, d-s DNA with G-G, G-A and G-T mismatches, d-s DNA with a single bulged G and d-s DNA with two bulged G's. The effect of the non-Watson--Crick structures on the formation of N7-methylguanine (N7-MeG) by MNU and the oxidation of G by Ni-complex is reported along with the Tm's and circular dichroism spectra of the different duplex oligomers. The results for MNU and Ni-complex show that the qualitative and quantitative character of the cleavage patterns at a G3 run change with the nature of the abnormal base pairing motif. Based on the DNA substrates studied, the results indicate that a combination of reagents which report electronic and steric perturbations can be a useful approach to monitor DNA mismatches and bulges.  相似文献   

6.
Whereas DNA methylation is essential for genomic imprinting, the importance of histone methylation in the allelic expression of imprinted genes is unclear. Imprinting control regions (ICRs), however, are marked by histone H3-K9 methylation on their DNA-methylated allele. In the placenta, the paternal silencing along the Kcnq1 domain on distal chromosome 7 also correlates with the presence of H3-K9 methylation, but imprinted repression at these genes is maintained independently of DNA methylation. To explore which histone methyltransferase (HMT) could mediate the allelic H3-K9 methylation on distal chromosome 7, and at ICRs, we generated mouse conceptuses deficient for the SET domain protein G9a. We found that in the embryo and placenta, the differential DNA methylation at ICRs and imprinted genes is maintained in the absence of G9a. Accordingly, in embryos, imprinted gene expression was unchanged at the domains analyzed, in spite of a global loss of H3-K9 dimethylation (H3K9me2). In contrast, the placenta-specific imprinting of genes on distal chromosome 7 is impaired in the absence of G9a, and this correlates with reduced levels of H3K9me2 and H3K9me3. These findings provide the first evidence for the involvement of an HMT and suggest that histone methylation contributes to imprinted gene repression in the trophoblast.  相似文献   

7.
N-Methyl-N-nitrosourea (MNU) increased the induction of mutations to 8-azaguanine resistance in Chinese hamster cells in a dose-dependent manner. Mutations were only observed with toxic concentrations of MNU. Since a plot of the fraction of cells surviving alkylation against the extent of methylation of DNA exhibited a shoulder it followed that there was a threshold level of DNA reaction which did not lead to mutations possibly due to efficient repair of DNA damage. Post-alkylation incubation in medium containing caffeine decreased cell survival while at the same time it increased the induced mutation frequency. Mutation frequency was increased whether caffeine was present for 48 h or for a further 12 days in the presence of the selective agent 8-azaguanine. MNU caused chromatid aberrations in Chinese hamster cells and these reached a value of 15% of the treated cells by 48 h after methylation. Post-alkylation incubation in caffeine increased the percentage of cells showing chromosomal damage to a maximum of 86% of treated cells by 40 h after alkylation. A large proportion of cells exhibited completely fragmented or shattered chromosomes. The proportion of cells showing the presence of micronuclei also dramatically increased following incubation of methylated cells in caffeine. These results are discussed in terms of the possibility that damage to DNA is responsible for the lethal, mutagenic and cytological effects of MNU in Chinese hamster cells, and that there is a caffeine sensitive step(s) in the repair of the DNA damage which is responsible for these effects.  相似文献   

8.
Sodium selenite was found to protect Escherichia coli cells against killing and mutagenic effects of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). Such protective effects were not observed when cells were treated with N-methyl-N-nitrosourea (MNU). The protection by sodium selenite was not controlled by the ada gene, which is responsible for the repair of alkylated damage in DNA. A reduction of the amount of glutathione was found when cells were treated with sodium selenite, and glutathione is known to be involved in the methylation of DNA by MNNG, not by MNU. Reduced methylation by MNNG due to the reduction of the amount of glutathione caused by abundant sodium selenite was suggested to be the mechanism of protection.  相似文献   

9.
Deficient mismatch repair (MMR) is identified as a mutation of one of four major MMR genes and(or) microsatellite instability. These genomic changes are used as markers of MMR status of the heredity nonpolyposis colorectal cancer (HNPCC) spectrum tumors--familial and sporadic tumors of colon and extracolonic cancers fulfilling Amsterdam clinical criteria II. MMR-deficiency results in mutator phenotype and resistance to geno- and cytotoxicity of alkylating agents. The main cytotoxic damage to DNA in response to chemical methylation is O6-methylguanine (O6-mG). The secondary DNA strand breaks, which are formed during the MMR functioning, are proposed to be required for methylation induced cytotoxicity. We have assumed that the secondary double stand breaks (DSB) upon DNA methylation are able to represent functional efficiency of MMR in cells. The purpose of the paper was to test this assumption on human tumor cells differing in MMR-status and pulse-treated with methylnitrosourea (MNU). We used 3 cell lines: HeLa (MMR-competent endometrial tumor cells), HCT116 (MMR-deficient colorectal carcinoma cells), and Colo320 (sigmoid intestine tumor cells with uncharacterized MMR status). DSBs were evaluated with neutral comet assay. Cytotoxicity/viability was evaluated with MTT-asay and apoptotic index (frequency of morphologically determined apoptotic cells). We show that 1) cytotoxic effect of MNU (250 microM) on HeLa cells was exhibited 3 days after pulse-treatment of cells with MNU; 2) DSBs occurred 48 h after the drug treatment but prior to the onset of apoptosis of HeLa cells; 3) MMR-deficient HCT116 cells were resistant to the drug: no decreased viability, DSBs and apoptosis were observed during 3 days after cell treatment. Both cell lines exhibited high sensitivity to etoposide, classical inductor of unrepairable DSBs and p53. Etoposide has been found to induce DSBs in 6-12 h, which was followed by apoptosis (in 24 h). Colo320 cells exhibited intermediate position between HeLa and HCT116 cell lines in regard to sensitivity to MNU according to MTT-assay and the number of secondary DSBs formed in MNU-treated cells. Nevertheless, in contrast to HeLa cells, these breaks did not induce apoptosis in Colo320 cells. Our data confirm the assumption about case/effect relationship between secondary DNA double strand breaks, induced by monofunctional methylating agent MNU, and functioning of MMR in human tumor cells.  相似文献   

10.
11.
12.
We have used the initiation-promotion model of MNU-induced hepatocarcinogenesis to test the hypothesis that alteration of the methylation status of DNA cytosines could be involved in the initiation of carcinogenesis. In fact cell proliferation plays a fundamental role in the initiation of liver carcinogenesis and hepatocytes in the S phase are more sensitive towards MNU initiation than at other times in the cycle. The molecular mechanisms involved in these processes, however, are still poorly understood and it seemed of value to monitor the DNA methylation status in this system. The results obtained indicate that MNU hepatocarcinogenic action might consist also of the inhibition of DNA hypomethylation biologically associated with cell proliferation.  相似文献   

13.
DNA methylation pattern was investigated on Chinese hamster ovary (CHO) cells after treatment with N-(14C)-methyl-N-nitrosourea (14C-MNU). The main target was the N-7 position of guanine, exceeding the methylation in the O6 position of guanine by a factor of 8 and that in the N-3 position of guanine and adenine by a factor of 20. No DNA repair could be observed within 2 hours after methylation. Pretreatment of cells with gamma irradiation (7 rad) before application of MNU induced repair of N-7-methylguanine. This methylation product was decreased to about 50% within two hours, whereas the repair of the other methylated bases was not influenced. The analysis was carried out by high performance liquid chromatography after acid hydrolysis of isolated DNA. 14C-methylated products were determined by liquid scintillation counting.  相似文献   

14.
Eukaryotic genomes are partitioned into active and inactive domains called euchromatin and heterochromatin, respectively. In Neurospora crassa, heterochromatin formation requires methylation of histone H3 at lysine 9 (H3K9) by the SET domain protein DIM-5. Heterochromatin protein 1 (HP1) reads this mark and directly recruits the DNA methyltransferase, DIM-2. An ectopic H3 gene carrying a substitution at K9 (hH3(K9L) or hH3(K9R)) causes global loss of DNA methylation in the presence of wild-type hH3 (hH3(WT)). We investigated whether other residues in the N-terminal tail of H3 are important for methylation of DNA and of H3K9. Mutations in the N-terminal tail of H3 were generated and tested for effects in vitro and in vivo, in the presence or absence of the wild-type allele. Substitutions at K4, K9, T11, G12, G13, K14, K27, S28, and K36 were lethal in the absence of a wild-type allele. In contrast, mutants bearing substitutions of R2, A7, R8, S10, A15, P16, R17, K18, and K23 were viable. The effect of substitutions on DNA methylation were variable; some were recessive and others caused a semi-dominant loss of DNA methylation. Substitutions of R2, A7, R8, S10, T11, G12, G13, K14, and P16 caused partial or complete loss of DNA methylation in vivo. Only residues R8-G12 were required for DIM-5 activity in vitro. DIM-5 activity was inhibited by dimethylation of H3K4 and by phosphorylation of H3S10, but not by acetylation of H3K14. We conclude that the H3 tail acts as an integrating platform for signals that influence DNA methylation, in part through methylation of H3K9.  相似文献   

15.
Escherichia coli cells made permeable to deoxynucleoside triphosphates by brief treatment with toluene (permeablized) were used to measure the effect of the following chemical alkylating agents on either DNA replication or DNA repair synthesis: methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), N-methyl-N-nitrosourea (MNU), N-ethyl-N-nitrosourea (ENU), N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and N-ethyl-N′-nitro-N-nitrosoguanidine (ENNG). Replication of DNA in this pseudo-in vivo system was completely inhibited 10–15 min after exposure to MMS at concentrations of 5 mM or higher or to MNU or MNNG at concentrations of 1 mM or higher. The ethyl derivatives of the alkylating agents were less inhibitory than their corresponding methyl derivatives, and inhibition of DNA replication occurred in the following order: EMS < ENNG < ENU. Maximum inhibition of DNA replication by all of the alkylating agents tested except EMS occurred at a concentration of 20 mM or lower. The extent of replication in cells exposed to EMS continued to decrease with concentrations of EMS up to 100 mM (the highest concentration tested).The experiments in which the inhibition of DNA replication by MMS, MNU, or MNNG was measured were repeated under similar assay conditions except that a density label was included and the DNA was banded in CsCl gradients. The bulk of the newly synthesized DNA from the untreated cells was found to be of the replicative (semi-conservative) type. The amount of replicative DNA decreased with increasing concentration of methylating agent in a manner similar to that observed in the incorporation experiments.Polymerase I (Pol I)-directed DNA repair synthesis induced by X-irradiation of permeablized cells was assayed under conditions that blocked the activity of DNA polymerases II and III. Exposure of cells to MNNG or ENNG at a concentration of 20 mM resulted in reductions in Pol I activity of 40 and 30%, respectively, compared with untreated controls. ENU was slightly inhibitory to Pol I activity, while MMS, EMS, and MNU all caused some enhancement of Pol I activity.These data show that DNA replication in a pseudo-in vivo bacterial system is particularly sensitive to the actions of known chemical mutagens, whereas DNA repair carried out by the Pol I repair enzyme is much less sensitive and in some cases apparently unaffected by such treatment. Possible mechanisms for this differential effect on DNA metabolism and its correlation with current theories of chemically induced mutagenesis and carcinogenesis are discussed.  相似文献   

16.
The difference in efficiency of methylnitrosourea (MNU) and ethylnitrosourea (ENU) to induce SCE in early or late G1 was determined in synchronized murine salivary gland cells in vivo, as a measure of the capacity of this tissue to repair the lesions involved in SCE formation during G1. The repair during G1 was determined by treating the cells in early or late G1. Treatment was in the first cycle (G1 before incorporation of 5-bromodeoxyuridine (BrdU)) or in G1 of the second cycle (after a single round of BrdU incorporation). It was observed that 50% of the lesions induced by MNU that elicit SCE are repaired during G1. BrdU incorporation into DNA increases the sensitivity of the cell to SCE induction by MNU nearly 40%; however under this circumstance a slightly lower SCE frequency was observed in the cells exposed to MNU at early G1, indicating that during G1 only few lesions are repaired. The ENU-induced DNA-lesions involved in SCE production are nearly 100% persistent along G1; besides, a slight but significantly higher SCE frequency was observed in cells exposed at early G1, suggesting the formation of SCE-inducing lesions during G1. BrdU incorporation to DNA sensitizes the cell to SCE induction by ENU, increasing the SCE frequency to nearly to a 40%, although these additional lesions involved in SCE induction seem to be susceptible to repair during G1.  相似文献   

17.
The possible impact of long-term overexposure to ethanol was studied in a group of chronic alcoholics in the psychiatric hospital. The level of DNA methylation and unscheduled DNA synthesis (UDS) induced by N-methyl-N-nitrosourea (MNU) in lymphocytes and lipid peroxidation (LPO) in plasma were used as markers of injury caused by alcohol abuse. The data were correlated with plasma levels of some natural antioxidants (vitamins A, C and E) and vitamin B12. The following results were obtained. The degree of DNA methylation by MNU in lymphocytes was the same in the exposed and control groups under our experimental conditions. The DNA excision-repair capacity of lymphocytes measured as UDS was decreased in alcoholics (p less than 0.01) and LPO in plasma was significantly higher (p less than 0.01) as a consequence of alcohol overconsumption. By the simple regression method, a correlation was found between LPO and vitamin C levels (LPO = -0.078 x vit. C + 1.9; p less than 0.05) and between UDS and LPO values (UDS = -0.384 x LPO + 4.1; p less than 0.05). These results support the hypothesis of a connection of cell membrane status and DNA damage and repair and the possible role of active oxygen species in cell damage caused by ethanol.  相似文献   

18.
We have used circular dichroism and UV absorption spectroscopy to characterize the formation and melting behaviour of an intramolecular DNA triple helix containing parallel T*A:T and G*G:C triplets. Our approach to induce and to stabilize a parallel triplex involves the oligonucleotide 5'-d(G4A4G4[T4]C4T4C4-[T4]G4T4G4) ([T4] represents a stretch of four thymine residues). In a 10 mM sodium cacodylate, 0.2 mM disodium EDTA (pH 7) buffer, we have shown the following significant results. (i) While in the absence of MgCl2 this oligonucleotide adopts an intramolecular hairpin duplex structure prolonged by the single strand extremity 5'-d([T4]G4T4G4), the presence of millimolar concentrations of MgCl2generates an intramolecular triplex (via double hairpin formation). (ii) In contrast to the antiparallel triplex formed by the oligonucleotide 5'-d(G4T4G4[T4]G4A4G4[T4]C4T4C4), the parallel triplex melts in a biphasic manner (a triplex to duplex transition followed by a duplex to coil transition) and is less stable than the antiparallel one. The enthalpy change associated with triplex formation (-37 kcal/mol) is approximately half that of duplex formation (-81 kcal/mol). (iii) The parallel triple helix is disrupted by increasing the concentration of KCl(>10 mM), whereas, under the same conditions, the antiparallel triplex remains stable. (iv) Netropsin, a natural DNA minor groove-binding ligand, binds to the central site A4/T4of the duplex or triplex in an equimolar stoichiometry. Its association constant K is smaller for the parallel triplex ( approximately 1 x 10(7) M-1) than for the antiparallel one ( approximately 1 x 10(8) M-1). In contrast to the antiparallel structure, netropsin binding has no apparent effect on thermal stability of the parallel triple helix.  相似文献   

19.
To assess the role of DNA alkylation damage in oncogene activation, plasmid DNA containing H-ras proto-oncogene (p220-EC) and oncogene (p220-EJ) were treated with increasing concentrations of carcinogenic methylnitrosourea (MNU) and ethylnitrosourea (ENU). The modified plasmid DNA were analyzed by transfection-transformation of the NIH/3T3-recipient cells. Treatment with varying doses of MNU (0.1-5 mM) and ENU (1-15 mM) did not result in the inactivation of the plasmid containing target genes. A transformation efficiency of greater than 40% was observed upon treatment of H-ras oncogene with the highest doses of the alkylating agents. The morphologically transformed foci obtained with alkylated p220-EC ranged from 2.8 to 0.3/microgram MNU alkylated and 1.6 to 0.6/microgram ENU alkylated plasmid DNA. A significant proportion of the morphological transformants exhibited growth in soft agar. The HpaII/MspI restriction length polymorphism (RFLP) at codon 12 of H-ras exon-1 was detected with 4 independently isolated clones obtained from MNU-alkylated p220-EC transfections. Allele-specific in situ gel hybridization with a battery of codon 12 and codon 61 oligonucleotide probes confirmed these RFLPs to be due to sequence changes at codon 12. No clone with sequence changes in the H-ras codon 61 could be detected. The data indicate that a high degree of in vitro alkylation damage of the target gene is necessary to elicit mutational activation of H-ras in transfection-transformation assay. Low frequency notwithstanding, the data demonstrate that DNA alkylation damage at critical target sites can initiate neoplastic cellular transformation.  相似文献   

20.
The alternating copolymer poly(dA-dT) has been methylated with either dimethyl sulphate (DMS) or N-methyl-N-nitrosourea (MNU) and the levels of the various methylation products determined. In addition to the methylated adenines formed by both methylating agents, MNU resulted also in the formation of 3-methylthymine, O4-methylthymine and phosphotriesters. The methylated polymers have been ution of complementary and non-complementary nucleotides determined. With the DMS methylated template no wrong nucleotide incorporation was detectable, but with the MNU methylated polymer the incorporation of dGMP was observed. The amount of dGMP incorporated correlated with the level of O4-methylthymine in the template over the range of methylation studied. The results indicate that O4-methylthymine is capable of miscoding on a one-to-one basis while the products of DMS methylation (1-, 3- and 7-methyladenines), and also possibly the phosphotriesters, do not lead to any misincorporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号