首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TGF-β and IL-6 induce Th17 differentiation, and IL-23 is required for expansion and maintenance of Th17 cells. Recently, it was shown that IL-6 up-regulates IL-23R mRNA in naive CD4+ T cells and therefore IL-6 and IL-23 synergistically promote Th17 differentiation. However, the molecular mechanism whereby IL-6 and IL-23 induce Th17 differentiation and the relevance to TGF-β remain unknown. Here, we found that IL-6 up-regulated IL-23R mRNA expression, and IL-6 and IL-23 synergistically augmented its protein expression. The combination induced Th17 differentiation, and TGF-β1 further enhanced it. IL-6 augmented endogenous TGF-β1 mRNA expression, whereas the amount of TGF-β produced was not enough to induce Th17 differentiation by IL-6 alone. However, unexpectedly, the up-regulation of IL-23R and induction of Th17 differentiation by IL-6 and IL-23 were almost completely inhibited by anti-TGF-β. These results suggest that the induction of IL-23R and Th17 differentiation by IL-6 and IL-23 is mediated through endogenously produced TGF-β.  相似文献   

2.
Mesenchymal stem cells (MSCs), as cells with potential clinical utilities, have demonstrated preferential incorporation into inflammation sites. Immunophenotype and immunomodulatory functions of MSCs could alter by inflamed-microenvironments due to the local pro-inflammatory cytokine milieu. A major cellular mediator with specific function in promoting inflammation and pathogenicity of autoimmunity are IL-17-producing T helper 17 (Th17) cells that polarize in inflamed sites in the presence of pro-inflammatory cytokines such as Interleukin-1β (IL-1β), IL-6 and IL-23. Since MSCs are promising candidate for cell-based therapeutic strategies in inflammatory and autoimmune diseases, Th17 cell polarizing factors may alter MSCs phenotype and function. In this study, human bone-marrow-derived MSCs (BM-MSC) and adipose tissue-derived MSCs (AD-MSC) were cultured with or without IL-1β, IL-6 and IL-23 as pro-inflammatory cytokines. The surface markers and their differentiation capacity were measured in cytokine-untreated and cytokine-treated MSCs. MSCs-mediated immunomodulation was analyzed by their regulatory effects on mixed lymphocyte reaction (MLR) and the level of IL-10, TGF-β, IL-4, IFN-γ and TNF-α production as immunomodulatory cytokines. Pro-inflammatory cytokines showed no effect on MSCs morphology, immunophenotype and co-stimulatory molecules except up-regulation of CD45. Adipogenic and osteogenic differentiation capacity increased in CD45+ MSCs. Moreover, cytokine-treated MSCs preserved the suppressive ability of allogeneic T cell proliferation and produced higher level of TGF-β and lower level of IL-4. We concluded pro-inflammatory cytokines up-regulate the efficacy of MSCs in cell-based therapy of degenerative, inflammatory and autoimmune disorders.  相似文献   

3.
Th17 cells, a recently discovered inflammatory T cell subtype, have been implicated with autoimmune disorders. However, mechanism of generation or functions of intratumoral Th17 cells are still unclear. We have been investigating the mechanism of induction and role of Th17 cells in malignant gliomas using primary tumor as well as cell lines. We report here that: (1) a higher frequency of Th17 cells in gliomas were associated with higher number of myeloid (CD11b) cells as well as the expression of TGF-β1 or IL-6; (2) conditioned medium from glioma cells (Gl CM) induced Th17 cell differentiation, which was inhibited by anti-TGF-β1 and anti-IL-6; (3) glioma-associated monocytes secreted Th17-promoting cytokines IL-1β and IL-23; (4) CM from glioma and monocyte co-culture (Gl+Mo CM) induced high frequency of Th17 cells in naïve T cell culture, which was abrogated by anti-IL-1β and anti-IL-23 antibodies; (5) In vitro Gl+Mo CM-mediated Th17 generation was associated with a decrease in IFN-γ and a concomitant increase in IL-10 secretion. Anti-TGF-β1, but not anti-IL-6, significantly reversed this cytokine profile. These results demonstrate prevalence of Th17 cells in gliomas and implicate the cytokines derived from the tumor as well as infiltrating myeloid cells in the induction of Th17 cells in glioma microenvironment. Moreover, the data also suggest that glioma-associated Th17 cells may contribute to immune-suppression via TGF-β1-induced IL-10 secretion. Further studies on the mechanism of tumor-infiltration, developmental pathways, and pro-/anti-tumor functions of Th17 cells will provide rationale for developing novel adjuvant immunotherapeutic strategies for malignant gliomas.  相似文献   

4.
Cytokines are critical messengers that control the differentiation of Th cells. To evaluate their impact on the fate of human naive CD4(+) T cells from cord and adult blood, early T cell differentiation was monitored after T cell activation in the presence of pro- and anti-inflammatory cytokines. Interestingly, the analysis of Th cell lineage-specific molecules revealed that IL-1β on its own mediates differentiation of Th cells that secrete a wide range of proinflammatory cytokines and stably express CD69, STAT1, IFN-γ, and IL-17. Notably, our data suggest that IL-1β induces Th17 cells independent of RORC upregulation. In contrast, TGF-β that triggers RORC prevents Th17 cell development. This suppressive function of TGF-β is characterized by inhibition of STAT1, STAT3, and CD69. However, after repeated anti-CD3 and anti-CD28 stimulation, we observe that TGF-β provokes an increase in Th17 cells that presumably relies on reactivation of a default pathway by preferential inhibition of IFN-γ. Hence, our data extend the view that the principal cytokines for determining Th cell fate are IL-12 for the Th1 lineage, IL-4 for the Th2 lineage, and TGF-β in conjunction with IL-6 for the Th17 lineage. We propose that IL-1β induces a general proinflammatory Th cell precursor that, in the presence of the lineage-specifying cytokines, further differentiates into one of the specific Th cell subpopulations.  相似文献   

5.
TGF-β is a pleiotropic cytokine that predominantly exerts inhibitory functions in the immune system. Unexpectedly, the in vitro differentiation of both Th17 and Tc17 cells requires TGF-β. However, animals that are impaired in TGF-β signaling (TGF-βRIIDN mice) display multiorgan autoimmune disorders. Here we show that CD4(+) T cells from TGF-βRIIDN mice are resistant to Th17 cell differentiation and, paradoxically, that CD8(+) T cells from these animals spontaneously acquire an IL-17-producing phenotype. Neutralization of IL-17 or depletion of CD8(+) T cells dramatically inhibited inflammation in TGF-βRIIDN mice. Therefore, the absence of TGF-β triggers spontaneous differentiation of IL-17-producing CD8(+) T cells, suggesting that the in vivo and in vitro conditions that promote the differentiation of IL-17-producing CD8(+) T cells are distinct.  相似文献   

6.
The role of cytokines in Plasmodium infection have been extensively investigated, but pro and anti inflammatory cytokines mediated imbalance during malaria immune-pathogenesis is still unrevealed. Malaria is associated with the circulating levels of Interleukin-6 (IL-6) and transforming growth factor β (TGF-β), but association between these two cytokines in immune response remains largely obscured. Using mouse model, we proposed that IL-6 and TGF-β are involved in immune regulation of dendritic cells (DC), regulatory T cells (Treg), T-helper cells (Th17) during P. berghei ANKA (PbA) infection. Association between the cytokines and the severity of malaria was established with anti-TGF-β treatment resulting in increased parasitemia and increased immunopathology, whereas; anti-IL-6 treatment delays immunopathology during PbA infection. Further, splenocytes revealed differential alteration of myeloid DC (mDC), plasmocytoid DC (pDC), Treg, Th17 cells following TGF-β and IL-6 neutralization. Interestingly anti-TGF-β reduces CD11c+CD8+ DC expression, whereas anti-IL-6 administration causes a profound increase during PbA infection in Swiss mice. We observed down regulation of TGF-β, IL-10, NFAT, Foxp3, STAT-5 SMAD-3 and upregulation of IL-6, IL-23, IL-17 and STAT-3 in splenocytes during PbA infection. The STAT activity probably plays differential role in induction of Th17 and Treg cells. Interestingly we found increase in STAT-3 and decrease in STAT-5 expression during PbA infection. This pattern of STAT indicates that possibly TGF-β and IL-6 play a crucial role in differentiation of DCs subsets and Treg/Th17 imbalance during experimental cerebral malaria (ECM).  相似文献   

7.
Therapeutic effect of interferon-β (IFN-β) treatment has been associated with modulation of the balance between Th1, Th17, Th2 and regulatory T (Treg) cells, whereas the impact of disease modifying drugs on Th9-immunity in multiple sclerosis (MS) has not been studied. To investigate the short-term effects of IFN-β treatment on cytokines in MS, we determined serum levels of IL-17, IL-23, IL-10, IL-4, IFN-γ, IL-9 and TGF-β in relapsing remitting MS patients before and 2 months after IFN-β treatment by ELISA. MS patients showed increased IL-17, IL-23 and IL-4 levels and decreased IL-9 levels as compared to healthy controls. IFN-β treatment only reduced IL-17 and IL-23 levels, whereas the levels of other cytokines remained unchanged. IFN-β treatment appears to exert its earliest therapeutic effect on Th17-immunity. The influence of IL-9 on MS pathogenesis needs to be further studied.  相似文献   

8.
Th17 cells, which have been implicated in autoimmune diseases, require IL-6 and TGF-β for early differentiation. To gain pathogenicity, however, Th17 cells require IL-1β and IL-23. The underlying mechanism by which these confer pathogenicity is not well understood. Here we show that Sprouty4, an inhibitor of the PLCγ-ERK pathway, critically regulates inflammatory Th17 (iTh17) cell differentiation. Sprouty4-deficient mice, as well as mice adoptively transferred with Sprouty4-deficient T cells, were resistant to experimental autoimmune encephalitis (EAE) and showed decreased Th17 cell generation in vivo. In vitro, Sprouty4 deficiency did not severely affect TGF-β/IL-6-induced Th17 cell generation but strongly impaired Th17 differentiation induced by IL-1/IL-6/IL-23. Analysis of Th17-related gene expression revealed that Sprouty4-deficient Th17 cells expressed lower levels of IL-1R1 and IL-23R, while RORγt levels were similar. Consistently, overexpression of Sprouty4 or pharmacological inhibition of ERK upregulated IL-1R1 expression in primary T cells. Thus, Sprouty4 and ERK play a critical role in developing iTh17 cells in Th17 cell-driven autoimmune diseases.  相似文献   

9.
TGF-β can induce Foxp3(+) inducible regulatory T cells (Treg) and also synergize with IL-6 and IL-4 to induce Th17 and Th9 cells. We now report that NO modulates TGF-β activity away from Treg but toward the Th1 lineage. NO potentiated Th1 differentiation in the presence of TGF-β in both IL-12-independent and -dependent fashions by augmenting IFN-γ-activated STAT-1 and T-bet. Differentiation into Treg, Th1, and Th17 lineages could be modulated by NO competing with other cofactors, such as IL-6 and retinoic acid. NO antagonized IL-6 to block TGF-β-directed Th17 differentiation, and together with IL-6, NO suppressed Treg development induced by TGF-β and retinoic acid. Furthermore, we show that physiologically produced NO from TNF and inducible NO synthase-producing dendritic cells can contribute to Th1 development predominating over Treg development through a synergistic activity induced when these cells cocluster with conventional dendritic cells presenting Ag to naive Th cells. This illustrates that NO is another cofactor allowing TGF-β to participate in development of multiple Th lineages and suggests a new mechanism by which NO, which is associated with protection against intracellular pathogens, might maintain effective Th1 immunity.  相似文献   

10.
11.
12.
TGF-β is required for both Foxp3(+) regulatory T cell (Treg) and Th17 commitment. Plasmacytoid DCs (pDC) have been shown to participate to both Treg and Th17 commitment as well. However, few studies have evaluated the direct effect of TGF-β on pDC, and to our knowledge, no study has assessed the capacity of TGF-β-exposed pDC to polarize naive CD4(+) T cells. In this paper, we show that TGF-β-treated pDC favor Th17 but not Treg commitment. This process involves a TGF-β/Smad signal, because TGF-β treatment induced Smad2 phosphorylation in pDC and blockade of TGF-β signaling with the SD208 TGF-βRI kinase inhibitor abrogated Th17 commitment induced by TGF-β-treated pDC. Moreover, TGF-β mRNA synthesis and active TGF-β release were induced in TGF-β-treated pDC and anti-TGF-β Ab blocked Th17 commitment. Unexpectedly, TGF-β treatment also induced increased IL-6 production by pDC, which serves as the other arm for Th17 commitment driven by TGF-β-exposed pDC, because elimination of IL-6-mediated signal with either IL-6- or IL-6Rα-specific Abs prevented Th17 commitment. The in vivo pathogenic role of TGF-β-treated pDC was further confirmed in the Th17-dependent collagen-induced arthritis model in which TGF-β-treated pDC injection significantly increased arthritis severity and pathogenic Th17 cell accumulation in the draining lymph nodes. Thus, our data reveal a previously unrecognized effect of TGF-β-rich environment on pDC ability to trigger Th17 commitment. Such findings have implications in the pathogenesis of autoimmune diseases or immune responses against mucosal extracellular pathogens.  相似文献   

13.
Espinosa V  Rivera A 《Cytokine》2012,58(1):100-106
CD4 T cells play important and non-redundant roles in protection against infection with diverse fungi. Distinct CD4 T cell subsets can mediate protection against fungal disease where Th1 and Th17 CD4 T cell subsets have been found to promote fungal clearance and protective immunity against diverse fungal pathogens. The differentiation of na?ve CD4 T cells into Th1 or Th17 cells is crucially controlled by their interaction with dendritic cells and instructed by cytokines. IL-12 and IFN-γ promote Th1 differentiation while TGF-β, IL-6, IL-1, IL-21 and IL-23 promote Th17 differentiation and maintenance. The production of these cytokines by DCs is in turn regulated by innate receptors triggered in response to fungal infection. In this review we will discuss the contributions of cytokines found to influence fungus-specific CD4 T cell differentiation and their role in defense against fungal disease. We will also highlight the contributions of innate receptors involved in recognition of fungi and how they shape cytokine secretion and CD4 T cell differentiation.  相似文献   

14.
《Cytokine》2010,49(3):239-245
Discovery of the T-helper (Th) 17 cell lineage and functions in immune responses of mouse and man prompted us to investigate the role of transforming growth factor-beta (TGF-β) and interleukin (IL)-17 in innate resistance to murine schistosomiasis mansoni. Schistosoma mansoni-infected BALB/c and C57BL/6 mice were administered with recombinant TGF-β or mouse monoclonal antibody to TGF-β to evaluate the impact of this cytokine on host immune responses against lung-stage schistosomula, and subsequent effects on adult worm parameters. Developing schistosomula elicited increase in peripheral blood mononuclear cells (PBMC) mRNA expression and/or plasma levels of IL-4, IL-17, and interferon-gamma (IFN-γ), cytokines known to antagonize each other, resulting in impaired Th1/Th2, and Th17 immune responses and parasite evasion. Mice treated with TGF-β showed elevated PBMC mRNA expression of IL-6, IL-17, TGF-β, and TNF-α mRNA and increased IL-23 and IL-17 or TGF-β plasma levels, associated with significantly (P < 0.02–<0.0001) lower S. mansoni adult worm burden compared to controls in both mouse strains, thus suggesting that TGF-β led to heightened Th17 responses that mediated resistance to the infection. Mice treated with antibody to TGF-β showed increase in PBMC mRNA expression and plasma levels of IL-4, IL-12p70, and IFN-γ, and significantly (P < 0.02 and <0.0001) reduced worm burden and liver worm egg counts than untreated mice, indicating that Th1/Th2 immune responses were potentiated, resulting in significant innate resistance to schistosomiasis. The implications of these observations for schistosome immune evasion and vaccination were discussed.  相似文献   

15.
Th17 cells seem to have an important role in the efficacy of vaccines against Helicobacter pylori. Because children are a target group for human vaccination and Th17/T(reg) cells have intrinsically linked and antagonic commitments, we compared the gastric levels of Th17- and T(reg)-associated cytokines of children and adults. IL-6, IL-10 and TGF-β1 levels and Foxp3(+) cell numbers were higher, but IL-1β, IL-17A and IL-23 were lower in infected children than in infected adults. In conclusion T(reg) instead of Th17 cell response to H. pylori-infection predominates in children.  相似文献   

16.
Th17 cells are highly pathogenic in a variety of immune-mediated diseases, and a thorough understanding of the mechanisms of cytokine-mediated suppression of Th17 cells has great therapeutic potential. In this article, we characterize the regulation of both in vitro- and in vivo-derived Th17 cells by IL-4. We demonstrate that IL-4 suppresses reactivation of committed Th17 cells, even in the presence of TGF-β, IL-6, and IL-23. Downregulation of IL-17 by IL-4 is dependent on STAT6 and mediated by inhibition of STAT3 binding at the Il17a promoter. Although Th1 cytokines were shown to induce IFN-γ expression by Th17 cells, IL-4 does not induce a Th2 phenotype in Th17 cells. Suppression by IL-4 is stable and long-lived when applied to immature Th17 cells, but cells that have undergone multiple rounds of stimulation, either in vivo during a Th17-mediated inflammatory disease, or in vitro, become resistant to suppression by IL-4 and lose the ability to signal through IL-4R. Thus, although IL-4 is a potent suppressor of the Th17 genetic program at early stages after differentiation, prolonged stimulation renders Th17 cells impervious to regulatory cytokines.  相似文献   

17.
T helper (Th)17 cells and other interleukin (IL)-17-producing cells are supposed to play critical roles in several human immune-mediated diseases, including Crohn's disease (CD) and ulcerative colitis (UC), the main forms of inflammatory bowel diseases (IBD) in man. Th17 cells infiltrate massively the inflamed intestine of IBD patients and in vitro and in vivo studies have shown that Th17-type cytokines may trigger and amplify multiple inflammatory pathways. Nonetheless, some Th17-related cytokines, such as interleukin (IL)-17A and IL-22, may target gut epithelial cells and promote the activation of counter-regulatory mechanisms. This observation together with the demonstration that Th17 cells are not stable and can be converted into either regulatory T cells or Th1 cells if stimulated by immune-suppressive (e.g. TGF-β1) or inflammatory (e.g. IL-12, IL-23) cytokines have contributed to advance our understanding of mechanisms that regulate mucosal homeostasis and inflammation in the gut.  相似文献   

18.
Inhibitors of the JAK family of nonreceptor tyrosine kinases have demonstrated clinical efficacy in rheumatoid arthritis and other inflammatory disorders; however, the precise mechanisms by which JAK inhibition improves inflammatory immune responses remain unclear. In this study, we examined the mode of action of tofacitinib (CP-690,550) on JAK/STAT signaling pathways involved in adaptive and innate immune responses. To determine the extent of inhibition of specific JAK/STAT-dependent pathways, we analyzed cytokine stimulation of mouse and human T cells in vitro. We also investigated the consequences of CP-690,550 treatment on Th cell differentiation of naive murine CD4(+) T cells. CP-690,550 inhibited IL-4-dependent Th2 cell differentiation and interestingly also interfered with Th17 cell differentiation. Expression of IL-23 receptor and the Th17 cytokines IL-17A, IL-17F, and IL-22 were blocked when naive Th cells were stimulated with IL-6 and IL-23. In contrast, IL-17A production was enhanced when Th17 cells were differentiated in the presence of TGF-β. Moreover, CP-690,550 also prevented the activation of STAT1, induction of T-bet, and subsequent generation of Th1 cells. In a model of established arthritis, CP-690,550 rapidly improved disease by inhibiting the production of inflammatory mediators and suppressing STAT1-dependent genes in joint tissue. Furthermore, efficacy in this disease model correlated with the inhibition of both JAK1 and JAK3 signaling pathways. CP-690,550 also modulated innate responses to LPS in vivo through a mechanism likely involving the inhibition of STAT1 signaling. Thus, CP-690,550 may improve autoimmune diseases and prevent transplant rejection by suppressing the differentiation of pathogenic Th1 and Th17 cells as well as innate immune cell signaling.  相似文献   

19.
20.
Stem cells are a population of cells that has infinite or long-term self-renewal ability and can produce various kinds of descendent cells.Transforming growth factor β(TGF-β) family is a superfamily of growth factors,including TGF-β1,TGF-β2 and TGF-β3,bone morphogenetic proteins,activin/inhibin,and some other cytokines such as nodal,which plays very important roles in regulating a wide variety of biological processes,such as cell growth,differentiation,cell death.TGF-β,a pleiotropic cytokine,has been proved to be differentially involved in the regulation of multi-lineage differentiation of stem cells,through the Smad pathway,non-Smad pathways including mitogen-activated protein kinase pathways,phosphatidylinositol-3-kinase/AKT pathways and Rholike GTPase signaling pathways,and their cross-talks.For instance,it is generally known that TGF-β promotes the differentiation of stem cells into smooth muscle cells,immature cardiomyocytes,chondrocytes,neurocytes,hepatic stellate cells,Th17 cells,and dendritic cells.However,TGF-β inhibits the differentiation of stem cells into myotubes,adipocytes,endothelial cells,and natural killer cells.Additionally,TGF-β can provide competence for early stages of osteoblastic differentiation,but at late stages TGF-β acts as an inhibitor.The three mammalian isoforms(TGF-β1,2 and 3) have distinct but overlapping effects on hematopoiesis.Understanding the mechanisms underlying the regulatory effect of TGF-β in the stem cell multi-lineage differentiation is of importance in stem cell biology,and will facilitate both basic research and clinical applications of stem cells.In this article,we discuss the current status and progress in our understanding of different mechanisms by which TGF-β controls multi-lineage differentiation of stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号