首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of Zn deficiency on the plasma level as well asthe hepatic and intestinal gene expression of apolipoprotein (apo) A-Iwas examined in rats and hamsters. Male Sprague-Dawley rats (8 wk old)and Golden Syrian hamsters (7 wk old) were assigned to three dietarytreatments: Zn adequate (ZA, 30 mg Zn/kg diet), Zn deficient (ZD,<0.5 mg Zn/kg diet), and Zn replete (ZDA, ZD animals fed the ZA dietfor the last 2 days). The dietary treatments lasted for 18 days forrats or 6 wk for hamsters. For the measurement of apoA-I mRNAabundance, hamster apoA-I cDNA was cloned from the small intestine. Thefull-length 905-base pair cDNA shared ~80% similarity with thehuman, rat, and mouse apoA-I cDNAs. Hepatic and plasma Zn levels werereduced in ZD animals but normalized in ZDA rats and increased in ZDAhamsters compared with ZA animals. Zn deficiency reduced plasma apoA-Iand hepatic apoA-I mRNA levels 13 and 38%, respectively, in ZD rats.The 2 days of Zn replenishment raised plasma apoA-I and hepatic apoA-ImRNA levels in ZDA rats by 34 and 28%, respectively, higher than ZArats. Similarly, these levels were decreased by 18 and 25%,respectively, in ZD hamsters but normalized in ZDA hamsters comparedwith ZA hamsters. In contrast to the alterations of hepatic apoA-I mRNAlevels, neither Zn deficiency nor subsequent Zn repletion producedalterations in the intestinal apoA-I mRNA abundance. Data from thisstudy demonstrated that Zn deficiency specifically decreases hepaticapoA-I gene expression, which may at least be partly responsible forthe reduction of plasma apoA-I levels.

  相似文献   

2.
Zinc (Zn) requirements are increased during lactation. Increased demand is partially met through increased Zn absorption from the diet. It is estimated that 60–80% of women of reproductive age are at risk for Zn deficiency due to low intake of bioavailable Zn and increased demands during pregnancy and lactation. How Zn is redistributed within the body to meet the demands of lactation, and how Zn deficiency affects this process, is not understood. Female C57bl/6J mice were fed a control (ZA; 30 mg Zn/kg) or a marginally Zn deficient (ZD; 15 mg Zn/kg) diet for 30 days prior to mating through mid-lactation and compared with nulliparous mice fed the same diets. While stomach and plasma Zn concentration increased during lactation in mice fed ZA, mice fed ZD had lower stomach Zn concentration and abrogated plasma Zn levels during lactation. Additionally, femur Zn decreased during lactation in mice fed ZA, while mice fed ZD did not experience this decrease. Furthermore, red blood cell, pancreas, muscle and mammary gland Zn concentration increased, and liver and adrenal gland Zn decreased during lactation, independent of diet, while kidney Zn concentration increased only in mice fed ZD. Finally, maternal Zn deficiency significantly increased the liver Zn concentration in offspring but decreased weight gain and survival. This study provides novel insight into how Zn is redistributed to meet the increased metabolic demands of lactation and how marginal Zn deficiency interferes with these homeostatic adjustments.  相似文献   

3.
Methionine synthase (MS) and betaine-homocysteine methyltransferase (BHMT) are both zinc (Zn)-dependent methyltransferases and involved in the methylation of homocysteine. The objective of this study was to investigate the effects of dietary Zn supply on homocysteine levels and expression of the two enzymes in growing rats. Male weanling Sprague-Dawley rats were assigned randomly to four dietary groups (n = 8/group) for 3 weeks: Zn deficient (ZD; <1 mg Zn/kg); Zn control (ZC; 30 mg Zn/kg); Zn supplemented (ZS; 300 mg Zn/kg); pair fed (PF; 30 mg Zn/kg) to the ZD group. Serum and femur Zn concentrations were 83% and 58% lower in ZD, and 49% and 62% higher in ZS compared to ZC (P < 0.001), respectively. The ZD rats had lower feed intake (37%), body weight gains (45%), liver (43%) and kidney (31%) weights than those of ZC (P < 0.001), but these parameters in ZD were not significantly different from the PF controls. Serum homocysteine concentrations were 65% higher in ZD compared to PF (P < 0.05), and there was no significant difference in serum folate levels between ZD and PF groups. The mRNA expression of liver and kidney MS was 57% and 38% lower in ZD than PF (P < 0.001), respectively. Hepatic and renal BHMT mRNA levels were not altered in ZD compared to controls. The aforementioned measurements were not significantly different between ZS and ZC groups, except Zn levels. These results demonstrated that homocysteine homeostasis appeared to be disturbed by Zn deficiency but not Zn supplementation, and elevated serum homocysteine might be due to reduced expression of MS during Zn deficiency.  相似文献   

4.
The aim of the study was to investigate the effect of zinc depletion on the susceptibility of Wistar rat low-density lipoproteins (LDL) to peroxidation and their uptake by macrophages, before and after in vitro oxidation. The rats were fed for 7 wk a Zn-adequate diet (100 ppm) ad libitum (AL), a Zn-deficient diet (0.2 ppm) ad libitum (ZD), or a Zn-adequate diet according to the pair-feeding method (PF). Zinc status was determined and, for each group, blood was pooled, and LDL were isolated and labeled with125Iodine. An aliquot of each LDL sample was oxidized using FeII 10 μM/ascorbate 250 μM. Oxidized and nonoxidized (native) LDL were incubated with P 388 D1 macrophages, and their rates of uptake and degradation by macrophages were measured. Before oxidation, LDL uptake and degradation were not modified by the diet, suggesting that Zn deficiency did not modify rat LDL in vivo. After oxidation, both LDL uptake and degradation were significantly enhanced in the three groups. Nevertheless, we did not observe a significant effect of Zn deficiency. This observation suggests that, in our experimental conditions, Zn deficiency did not modify LDL catabolism.  相似文献   

5.
The present study was conducted to measure ob mRNA abundance in the zinc-deficient (ZD) rats and the secretion of leptin from adipose tissue obtained from ZD, zinc-adequate (ZA), and pair-fed (PF) rats. It was found that ob mRNA abundance was greatest (P < 0.05) in adipose tissue obtained from ZA and PF rats. Ob mRNA abundance was similar in PF and ZD rats. To study leptin secretion from adipose tissue in a cell culture model, a method was developed to use excised epididymal adipose tissue from ZD, ZA, and PF rats. Tissue was incubated in Opti-modified Eagle's medium (MEM) cell culture medium in which concentrations of zinc and insulin were manipulated. It was observed that leptin secretion was higher (P < 0.05) in adipose tissue obtained from ZA than ZD and PF rats. Secretion of leptin was higher in adipose tissue of PF than ZD rats (P < 0.05). Surprisingly, media zinc content in this ex vivo model tended to suppress secretion of leptin. This suppression seems to be zinc specific and might be caused by the sequestration of insulin in the culture medium. Our results indicate that the reduction in serum leptin observed in ZD rats is likely caused by not only a reduction in body fat, but also by a decrease in leptin synthesis and secretion per gram of adipose tissue. Taking these results into account along with a prior study (1), it is possible that even a marginal zinc deficiency could affect leptin secretion and serum leptin concentrations. Impaired leptin secretion caused by zinc deficiency might be one factor contributing to hypogonadism observed in zinc deficiency.  相似文献   

6.
7.
The effect of zinc deficiency on the direct-growth effect of growth hormone (GH) on tibia growth in hypophysectomized rats was studied. There were three dietary groups. Zinc deficient (ZD) group (0.9 mg/kg diet), control (C) group (66 mg/kg diet) and zinc adequate pair fed (PF) group (66 mg zinc/kg diet). All rats in each group received local infusion of recombinant human-growth hormone (hGH) (1 Μg/d), except for half of the animals in the control group, which were sham-treated, receiving vehicle infusion only. The substances were infused continuously for 13 d by osmotic minipumps through a catheter implanted into the right femoral artery. Food intake was lower and body weight loss was greater in ZD, and PF animals compared with C animals (p < 0.001). Tissuezinc concentration and plasma alkaline-phosphatase activity were decreased (p < 0.05) by dietary-zinc deficiency. GH infusion increased the tibial-epiphyseal width of the treated right limb, but not of the noninfused left limb in C and PF animals. However, in ZD rats, no difference was found between the infused and the noninfused limbs. These results demonstrate that zinc deficiency inhibits the direct-growth effect of GH on long-bone growth.  相似文献   

8.
The influence ofzinc status on the levels of p53, as well as downstream targetsof p53 in cell repair and survival, was examined in human aorticendothelial cells (HAECs). A serum-reduced low-zinc medium (ZD) wasused to deplete zinc over one passage. Other treatments includedzinc-normal control (ZN), zinc-adequate (ZA), and zinc-supplemented (ZS) treatment with 3.0, 16.0, and 32.0 µM zinc, respectively. Cellular zinc levels in the ZD cells were 64% of ZN controls; levelsin the ZA cells were not different, but levels in ZS cells weresignificantly higher (40%) than in ZN cells. No difference in p53 mRNAabundance was detected among all treatments; however, p53 nuclearprotein levels were >100% higher in the ZD and ZS cells and almost200% higher in the ZA cells than in ZN controls. In addition, p21 mRNAabundance, a downstream target of p53 protein, was increased in the ZScells compared with both the ZN control and ZD cells. In the ZS cells,bax and mcl-1 were also ~50% higher compared with ZN controls,whereas bcl-2 mRNA was increased compared with ZA cells. Moreover,caspase-3 activity of ZD cells was not different from that of ZNcontrols but was reduced to 83 and 69% of ZN controls in ZA and ZScells, respectively. Thus p53 protein and p53 downstream target genesappeared to be modulated by intracellular zinc status in HAECs.

  相似文献   

9.
BackgroundZinc (Zn)is an essential trace element for spermatogenesis and its deficiency causes abnormal spermatogenesis.ObjectiveThe present study was conducted to examine the mechanisms by which Zn-deficient diet impairs sperm morphology and its reversibility.Methods30 SPF grade male Kunming (KM) mice were randomly divided into three groups, 10 mice per group. Zn-normal diet group (ZN group) was given Zn-normal diet(Zn content= 30 mg/kg)for 8 weeks. Zn-deficienct diet group (ZD group) was given Zn-deficienct diet(Zn content< 1 mg/kg)for 8 weeks. Zn-deficient and Zn-normal diet group(ZDN group)was given 4 weeks Zn-deficienct diet followed by 4 weeks Zn-normal diet. After 8 weeks, the overnight fasted mice were sacrificed, and blood and organs were collected for further analysis.ResultsThe experimental results showed that Zn-deficienct diet leads to increased abnormal morphology sperm and testicular oxidative stress.The rate of abnormal morphology sperm, chromomycin A3(CMA3), DNA fragmentation index (DFI), malondialdehyde (MDA) were significantly increased, and a-kinase anchor protein 4(AKAP4), dynein axonemal heavy chain 1(DNAH1), sperm associated antigen 6(SPAG6), cilia and flagella associated protein 44(CFAP44), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), nuclear factor erythroid 2-related factor (NRF2), NAD(P)H:quinone oxidoreductase 1(NQO1)and heme oxygenase 1(HO1) were significantly decreased in the ZD group mice. While the changes in above indicators caused by Zn-deficient diet were significantly alleviated in the ZDN group.ConclusionIt was concluded that Zn-deficient diet causes abnormal morphology sperm and testicular oxidative stress in male mice. Abnormal morphology sperm caused by Zn-deficient diet are reversible, and Zn-normal diet can alleviate them.  相似文献   

10.
Dietary zinc deficiency decreases plasma concentrations of vitamin E   总被引:1,自引:0,他引:1  
Experiments were conducted to examine the effects of dietary zinc (Zn) upon plasma vitamin E (E) concentrations to test the hypothesis that there may be a significant dietary interaction between these two nutrients. Weanling female Sprague-Dawley rats were fed diets that were (i) Zn-deficient (less than 0.9 micrograms Zn/g diet) ad libitum; (ii) Zn-adequate (50.9 micrograms Zn/g diet), pair-fed to the Zn-deficient group; and (iii) Zn-adequate (50.9 micrograms Zn/g diet) ad libitum. Plasma E in Zn-deficient animals (4.02 +/- 1.20 micrograms/ml) was significantly reduced (P less than or equal to 0.05) compared with results in both Zn-adequate pair-fed (9.21 +/- 0.70 micrograms/ml) and Zn-adequate ad libitum-fed (9.47 +/- 0.90 micrograms/ml) animals. Zn deficiency in this model system also resulted in significant (P less than or equal to 0.05) reductions in femur and plasma Zn concentrations as well as in plasma retinol, plasma triglyceride, and plasma cholesterol concentrations. Plasma albumin and total plasma protein concentrations were normal in Zn-deficient animals. With dietary Zn deficiency, the decrease in plasma E appeared to be out of proportion to associated decreases in plasma triglyceride and plasma cholesterol concentrations. Since E is associated with plasma lipoproteins, these data suggest that lipid and/or E malabsorption may be a consequence of Zn deficiency. In response to increased dietary intake of E, increments of plasma E were lower in Zn-depleted than in Zn-adequate, pair-fed animals. These findings suggest that dietary Zn deficiency possibly may increase the nutritional requirement for E necessary to maintain adequate plasma concentrations.  相似文献   

11.
Approximately 12% of Americans do not consume the recommended level of zinc and could be at risk for marginal zinc deficiency. Zinc functions in antioxidant defense and DNA repair and could be important for prostate health. We hypothesized that marginal zinc deficiency sensitizes the prostate to oxidative stress and DNA damage. Rats were fed a zinc-adequate (ZA; 30 mg Zn/kg) or marginally zinc-deficient (MZD; 5–6 mg Zn/kg) diet for 6 weeks. MZD increased p53 and PARP expression but no change in 8-hydroxy-2′-deoxyguanosine levels was detected. To examine the susceptibility to exogenous oxidative stress, rats fed a ZA or MZD diet were assigned to exercising (EXE) or sedentary (SED) groups for 9 weeks. MZD or EXE alone did not affect oxidative DNA damage in the prostate; however, combined MZD + EXE increased DNA damage in the dorsolateral lobe. PARP and p53 expression was not further induced with MZD + EXE, suggesting that MZD interferes with DNA repair responses to stress. Finally, the addition of phytase to the MZD diet successfully restored zinc levels in the prostate and decreased DNA damage back to ZA levels. Overall, this study suggests that marginal zinc deficiency sensitizes the prostate to oxidative stress and demonstrates the importance of maintaining optimal zinc nutrition in physically active populations.  相似文献   

12.
Zinc deficiency (ZD) is teratogenic in rats, and fetal skeletal defects are prominent. This study identifies fetal skeletal malformations that affect calcified and non-calcified bone tissue as a result of gestational zinc deficiency in rats, and it assesses the effect of maternal ZD in fetal bone calcification. Pregnant Sprague-Dawley rats (180-250 g) were fed 1) a control diet (76.4 micrograms Zn/g diet) ad libitum (group C), 2) a zinc-deficient diet (0 microgram/g) ad libitum (group ZD), or 3) the control diet pair-fed to the ZD rats (group PF). On day 21 of gestation, laparotomies were performed. Fetuses were weighed, examined for external malformations, and stained in toto with a double-staining technique for the study of skeletal malformations. Maternal and fetal tissues were used for Zn, Mg, Ca, and P determinations. Gross external malformations were present in 97% of the ZD fetuses. No external malformations were found in fetuses from groups C and PF. Ninety-one percent of cleared ZD fetuses had multiple skeletal malformations, whereas only 3% of the fetuses of group PF had skeletal defects; no skeletal malformations were found in fetuses from group C. Some of the skeletal malformations described in the ZD fetuses, mainly affecting non-calcified bone, were not mentioned in previous reports, thus stressing the importance of using double-staining techniques. Examination of stained fetuses and counting of ossification centers revealed important calcification defects in ZD fetuses. These effects were confirmed by lower Ca and P concentrations in fetal bone with alteration of the Ca:P ratio.  相似文献   

13.
14.
Suboptimal intake of Zinc (Zn) is one of the most common worldwide nutritional problems. The aim of this study is to provide new evidence on the relation between moderate Zn restriction, and cytoprotective functions in airway epithelium. We analyzed the effect of moderate Zn deficiency (ZD) on the expression of several pro and anti-apoptotic proteins and cytoprotective factors (Hsp27 and Hsp 70i), as well as the effect of restoring Zn during the refeeding period. Adult male rats were divided into three groups: Zn-adequate control group, Zn-deficient group and Zn-refed group. Our previous findings showed an important oxidative and nitrosative stress during ZD, this situation is accompanied by inflammation and alterations in the expression of matrix extracellular proteins. We observed a strong immunopositive area of anti and pro-apoptotics proteins in ZD groups. The mRNA levels of Nrf-2, Bax and Bad were increased in ZD, while in ZD refed group its levels were similar to the control values. The increased expression of Nrf-2 is likely to be critical for protection of lung under inflammatory process triggered during ZD. Hsp27 and Hsp 70i showed an increase of immunostaining area but they were not significant. During the supplementation period, heat-shock proteins increased significantly. In conclusion, our results provide further evidence of the pathways involved in cytoprotection and apoptosis caused by ZD. Additional studies are required in order to investigate whether Hsp27 and Hsp70 are consistently associated with cellular stress and inflammation in lung. There may be a beneficial role for improved Zn nutrition or Zn supplements early in lung pathology.  相似文献   

15.
Phytic acid forms insoluble complexes with nutritionally essential minerals, including zinc (Zn). Animal studies show that addition of microbial phytase (P) to low-Zn diets improves Zn status and bone strength. The present study determined the effects of phytase supplementation on bone mineral density (BMD), body composition and voluntary running activity of male rats fed a high phytic acid, low-Zn diet. In a factorial design, rats were assigned to ZnLO (5 mg/kg diet), ZnLO+P (ZnLO diet with 1500 U phytase/kg) or ZnAD (30 mg/kg diet) groups and were divided into voluntary exercise (EX) or sedentary (SED) groups, for 9 weeks. SED rats were significantly heavier from the second week, and no catch-up growth occurred in EX rats. Feed intakes were not different between groups throughout the study. ZnLO animals had decreased food efficiency ratios compared to both phytase-supplemented (ZnLO+P) and Zn-adequate (ZnAD) animals (P<.01 compared to ZnLO). The ZnLO+P and ZnAD rats ran 56–75 km more total distance than ZnLO rats (P<.05), with the ZnLO+P rats running more kilometers per week than the ZnLO rats by Week 6. In vivo DEXA analyses indicate that rats fed phytase-supplemented diets had higher lean body mass (LBM) than those fed ZnLO diets; and that rats fed the Zn-adequate diets had the highest LBM. Body fat (%) was significantly lower in EX rats and was both Zn- and phytase insensitive. Rats fed phytase-supplemented diets had higher bone mineral content (BMC), bone area (BA) and BMD than rats fed ZnLO diets; and in rats fed ZnAD diets these indices were the highest. The dietary effects on BMC, BA and BMD were independent of activity level.We conclude that consuming supplemental dietary phytase or dietary Zn additively enhances Zn status to increase BMD, LBM and voluntary physical activity in rats fed a low-Zn diet. While the findings confirm that bone health is vulnerable to disruption by moderate Zn deficiency in rats, this new data suggests that if dietary Zn is limiting, supplemental phytase may have beneficial effects on LBM and performance activity.  相似文献   

16.
Different zinc (Zn) compounds have unique properties that may influence the amount of Zn absorbed particularly in the presence of phytic acid (PA), a common food component that binds Zn and decreases its bioavailability. In this study, 30-day-old male rats (n = 12/diet group) were fed diets supplemented with PA (0.8%) and low levels (8 mg Zn/kg diet) of inorganic (Zn oxide, Zn sulphate) or chelated (Zn gluconate, Zn acetate, Zn citrate, EDTA disodium Zn, Zn orotate) Zn compounds for 5 weeks. Two control groups were fed diets supplemented with low or normal (30 mg Zn/kg diet) Zn (as Zn oxide) without added PA. Control rats fed the low Zn oxide diet showed depressed Zn status. Addition of PA to this diet exacerbated the Zn deficiency in rats. Growth (body weight gain and femur length) and Zn concentrations in plasma and tissues were similar in rats fed Zn oxide, Zn sulphate, Zn gluconate, Zn acetate, Zn citrate or Zn orotate. Rats fed EDTA disodium Zn showed enhanced growth compared to rats fed Zn oxide or Zn gluconate and had higher Zn concentrations in plasma and femur compared to rats fed all other Zn compounds. Only the haematological profile of rats fed EDTA disodium Zn did not differ from control rats fed normal Zn. These data indicate that in rats fed a high PA diet, bioavailability of commonly used inorganic or chelated Zn compounds does not differ appreciably, but Zn supplied as an EDTA disodium salt has superior bioavailability.  相似文献   

17.
Zinc plays important roles in numerous cellular activities and physiological functions. Intracellular zinc levels are strictly maintained by zinc homeostatic mechanisms. Zinc concentrations in the prostate are the highest of all soft tissues and could be important for prostate health. However, the mechanisms by which the prostate maintains high zinc levels are still unclear. In addition, the response of the prostate to alterations in dietary zinc is unknown. The current study explored cellular zinc levels and zinc transporter expression profiles in the lobes of the prostate during dietary marginal zinc depletion. Rats were given either zinc-adequate (ZA, 30 mg Zn/kg) or marginal zinc-deficient (MZD, 5 mg Zn/kg) diet for 9 weeks. In addition, a subgroup of the MZD rats was supplemented with phytase (1,500 unit/kg diet) to improve zinc bioavailability. We found that both zinc concentrations and ZnT2 expression in the prostate dorsolateral lobes were substantially higher than in the ventral lobes (P < 0.05). Marginal zinc depletion significantly decreased ZnT2 expression in the dorsolateral lobes (P < 0.05), and phytase supplementation had a trend to increase ZnT2 expression. In addition, of all measured zinc transporters, only ZnT2 mRNA abundance was significantly correlated to the zinc concentrations in the dorsolateral lobe. No correlations were found between zinc transporter expression and zinc concentrations in the ventral lobes. These results indicate that ZnT2 may play a significant role in the maintenance of zinc homeostasis in the prostate.  相似文献   

18.
WangFD BianW 《Cell research》2001,11(2):135-141
INTRODUCTIONZinc is essential for normal brain development,evidenced by the fact that zinc deficiency in lactating mothers is characterized by a high incidence ofneuroanatomical maiformatinns and functional abnormalities in suckling offspring[1-3]. By colltrast,relatively little is known about the relationship be{tween maternal zinc nutrition and fetal brain development[2, 4, 5]. Dvergsten et al[6-81 investigated theeffects of maternal zinc deficiency on postnatal development of the rat ce…  相似文献   

19.
Zinc deficiency induces a striking reduction of food intake in animals. To elucidate the mechanisms for this effect, two studies were connectedly conducted to determine the effects of peripheral administration of zinc on food intake in rats fed the zinc-adequate or zinc-deficient diets for a 3-week period. In study 1, two groups of male Sprague-Dawley rats were provided diets made either adequate (ZA; 38.89 mg/kg) or deficient (ZD; 3.30 mg/kg) in zinc. In study 2, after feeding for 3 weeks, both ZA and ZD groups received intraperitoneal (IP) injection of zinc solution with three levels (0.5, 1.0, and 2.0 mug zinc/g body weight, respectively) and cumulative food intake at 0.5, 1, 2, 4, and 24 h, and plasma hormones concentrations were measured. The results in study 1 showed rats fed the ZD diets revealed symptoms of zinc deficiency, such as sparse and coarse hair, poor appetite, susceptibility to surroundings, lethargy, and small movements. Zinc concentrations in serum, femur, and skeletal muscle of rats fed the ZD diets declined by 26.58% (P < 0.01), 27.32% (P < 0.01), and 24.22% (P < 0.05), respectively, as compared with ZA control group. These findings demonstrated that rat models with zinc deficiency and zinc adequacy had been fully established. The results in study 2 showed that IP administration of zinc in both ZA and ZD rats did not influence food intake at each time points (P > 0.05), although zinc deficiency suppressed food intake. Plasma neuropeptide Y (NPY) was higher, but insulin and glucagon were lower in response to zinc deficiency or zinc administration by contrast with their respective controls (P < 0.05). Leptin, T3, and T4 concentrations were uniformly decreased (P < 0.05) in rats fed the ZD diets in contrast to ZA diets; however, no differences (P > 0.05) were observed during zinc injection. Calcitonin gene-related peptide was unaffected (P > 0.05) by either zinc deficiency or zinc administration. The present studies suggested that zinc administration did not affect short-term food intake in rats even in the zinc-deficient ones; the reduced food intake induced by zinc deficiency was fprobably associated with the depression in thyroid hormones. The results also indicated that NPY and insulin varied conversely during the control of food intake.  相似文献   

20.
The influence of Zn on the expression of the apolipoprotein A-I(apoA-I) gene in Hep G2 cells was examined. Zn depletion was achievedwith a low-Zn (ZD) medium prepared from Zn-free growth medium(Opti), a ZD medium containing Chelex 100-extracted fetal bovine serum (CHE), and a medium containing chelator1,10-phenanthroline (OP). Compared with those for their respectivecontrols, cellular Zn levels were reduced by 55, 48, and 46% andapoA-I mRNA abundances were reduced by 20, 29, and 28% in Opti, CHE,and OP systems, respectively, after one passage in ZD media or 24 h inOP medium. To establish the specificity of Zn treatment, groups of ZDcells were treated with their respective control media for the last 24 h (ZDA) or normal cells were cultured with OP medium supplemented withZn (OP-Zn). ZDA treatments partially normalized cellular Zn levels inthe Opti system and restored or elevated apoA-I mRNA levels in the Optior CHE system, respectively. Similarly, the OP-Zn treatment restoredthe cellular Zn and apoA-I mRNA levels. Furthermore, one passage ofculture with Zn-supplemented media in both the Opti and CHE systemsresulted in higher cellular Zn and apoA-I mRNA levels than those forcontrols. Most significantly, short-term high-Zn induction to normalcells markedly elevated the cellular Zn (3-fold) and apoA-I mRNA(5-fold) levels. Data derived from this study strongly suggest that theexpression of apoA-I is regulated by cellular Zn status.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号