首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3-Mercaptopyruvate sulfurtransferase (E.C. 2.8.1.2; MST) is an enzyme believed to function in the endogenous cyanide (CN) detoxification system because it is capable of transferring sulfur from 3-mercaptopyruvate (3-MP) to CN, forming the less toxic thiocyanate (SCN). To date, 3-MP is the only known sulfur-donor substrate for MST. In an effort to increase the understanding of what chemical properties of 3-MP affect its utilization as a substrate, in vitro enzyme kinetic studies of MST were conducted using two mercaptic acids that are structurally related to 3-MP. Neither of these compounds was able to serve as a sulfur-donor substrate for MST. Inhibitor studies determined that 3-mercaptopropionic acid did not affect the Km of MST for 3-MP but did decrease Vmax and, thus, was determined to be a noncompetitive inhibitor. Alternatively, 2-mercaptopropionic acid 2-MPA decreased Km and Vmax and was determined to be an uncompetitive inhibitor of MST with respect to 3-MP. These data indicate that the α-keto group of 3-MP is necessary for its utilization as a substrate, and the inhibitor studies suggest that the position of the sulfur may also affect the binding of these compounds to the enzyme. These observations increase the understanding of what factors can affect the utilization of a compound as a sulfur-donor substrate for MST and may aid in the development of alternative sulfur-donor substrates for MST. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
A bacterial strain capable of utilizing 2-methylphenanthrene (2-MP) as its sole source of carbon and energy for growth was isolated from creosote contaminated soil. The isolate was identified as a strain of Sphingomonas sp. and was designated strain JS5. Utilization of 2-MP by strain JS5 was demonstrated by an increase in bacterial biomass concomitant with a decrease of 2-MP in liquid mineral medium with this compound as sole source of carbon and energy. Growth yield indicated a 23% assimilation of 2-MP carbon. Washed-cell suspensions of strain JS5 incubated with 2-MP accumulated a major metabolite identified as 1-hydroxy-6-methyl-2-naphtoic acid, according to its UV, mass and NMR spectra, and a minor compound with HPLC R t and UV spectrum indistinguishable from 5-methylsalicylate. The identification of those metabolites, and the demonstration of 2,3-catechol dioxygenase activity in 2-MP induced cells show that the biodegradation of 2-MP by strain JS5 is initiated via dioxygenation and meta-cleavage of the non-methylated aromatic ring, and then proceeds by reactions similar to those reported for phenanthrene. Incubation of the strain with a MP-containing mixture from a pyrolytic fuel oil demonstrates that strain JS5 also acts on other methylated phenanthrenes. Received: 28 December 1998 / Received revision: 21 June 1999 / Accepted: 27 June 1999  相似文献   

3.
We have investigated the kinetics for the peroxidase-type reaction of mangano microperoxidase 8 (Mn(III)-MP8) by the time-resolved and single-wavelength stopped-flow technique. The formation of intermediate and its subsequent reaction with substrates were studied separately. Oxidation of Mn(III)-MP8 by H2O2 at pH 10.7 yields an intermediate (1) with a rate constant of 2.9 x10(4) M-1 s-1. The formation of 1 exhibits no deuterium solvent isotope effect, favoring the homolytic cleavage of the Mn(III)-MP8 bound hydroperoxide. The rate for the formation of 1 increases sharply as the pH increases and no other intermediate was detected in the entire pH range. Addition of substrate to 1 leads to the regeneration of Mn(III)-MP8. Monitoring the conversion of 1 to Mn(III)-MP8 allows the determination of the substrate reactivity. The substrate reactivity varies by more than two orders of magnitude ranging from 1.04 x 10(6) M-1 s-1 for ascorbic acid to 4.61 x 10(3) M-1s-1 for aniline. It is linearly correlated with the reduction potential for most of the substrates studied, with the easier oxidized species showing greater reactivity. The substrate reactivity drops rapidly as the pH increases. The substrate reactivity at pH 10.7 for the Mn(III)-MP8 system is smaller than that of the corresponding Fe(III)-MP8 system by 2- to 25-fold, depending on the substrate used.  相似文献   

4.
Xanthine oxidase-catalyzed hydroxylation reactions of the anticancer drug 6-mercaptopurine (6-MP) and its analog 2-mercaptopurine (2-MP) as well as 6-thioxanthine (6-TX) and 2-thioxanthine (2-TX) have been studied using UV-spectroscopy, high pressure liquid chromatography, photodiode array, and liquid chromatography-based mass spectral analysis. It is shown that 6-MP and 2-MP are oxidatively hydroxylated through different pathways. Enzymatic hydroxylation of 6-MP forms 6-thiouric acid in two steps involving 6-TX as the intermediate, whereas 2-MP is converted to 8-hydroxy-2-mercaptopurine as the expected end product in one step. Surprisingly, in contrast to the other thiopurines, enzymatic hydroxylation of 2-MP showed a unique hyperchromic effect at 264 nm as the reaction proceeded. However, when 2-TX is used as the substrate, it is hydroxylated to 2-thiouric acid. The enzymatic hydroxylation of 2-MP is considerably faster than that of 6-MP, while 6-TX and 2-TX show similar rates under identical reaction conditions. The reason why 2-MP is a better substrate than 6-MP and how the chemical nature and position of the functional groups present on the thiopurine substrates influence xanthine oxidase activity are discussed.  相似文献   

5.
The (R)-imine reductase (RIR) of Streptomyces sp. GF3587 was purified and characterized. It was found to be a NADPH-dependent enzyme, and was found to be a homodimer consisting of 32 kDa subunits. Enzymatic reduction of 10 mM 2-methyl-1-pyrroline (2-MPN) resulted in the formation of 9.8 mM (R)-2-methylpyrrolidine ((R)-2-MP) with 99% e.e. The enzyme showed not only reduction activity for 2-MPN at neutral pH (6.5–8.0), but also oxidation activity for (R)-2-MP under alkaline pH (10–11.5) conditions. It appeared to be a sulfhydryl enzyme based on the sensitivity to sulfhydryl specific inhibitors. It was very specific to 2-MPN as substrate.  相似文献   

6.
Mercaptopyruvate sulfurtransferase (MST) is a source of endogenous H2S, a gaseous signaling molecule implicated in a wide range of physiological processes. The contribution of MST versus the other two H2S generators, cystathionine β-synthase and γ-cystathionase, has been difficult to evaluate because many studies on MST have been conducted at high pH and have used varied reaction conditions. In this study, we have expressed, purified, and crystallized human MST in the presence of the substrate 3-mercaptopyruvate (3-MP). The kinetics of H2S production by MST from 3-MP was studied at pH 7.4 in the presence of various physiological persulfide acceptors: cysteine, dihydrolipoic acid, glutathione, homocysteine, and thioredoxin, and in the presence of cyanide. The crystal structure of MST reveals a mixture of the product complex containing pyruvate and an active site cysteine persulfide (Cys248-SSH) and a nonproductive intermediate in which 3-MP is covalently linked via a disulfide bond to an active site cysteine. The crystal structure analysis allows us to propose a detailed mechanism for MST in which an Asp-His-Ser catalytic triad is positioned to activate the nucleophilic cysteine residue and participate in general acid-base chemistry, whereas our kinetic analysis indicates that thioredoxin is likely to be the major physiological persulfide acceptor for MST.  相似文献   

7.
The theoretical studies on DNA with the anticancer drug 6-Mercaptopurine (6-MP) are investigated using theoretical methods to shed light on drug designing. Among the DNA base pairs considered, 6-MP is stacked with GC with the highest interaction energy of –46.19 kcal/mol. Structural parameters revealed that structure of the DNA base pairs is deviated from the planarity of the equilibrium position due to the formation of hydrogen bonds and stacking interactions with 6-MP. These deviations are verified through the systematic comparison between X–H bond contraction and elongation and the associated blue shift and red shift values by both NBO analysis and vibrational analysis. Bent’s rule is verified for the C–H bond contraction in the 6-MP interacted base pairs. The AIM results disclose that the higher values of electron density (ρ) and Laplacian of electron density (?2ρ) indicate the increased overlap between the orbitals that represent the strong interaction and positive values of the total electron density show the closed-shell interaction. The relative sensitivity of the chemical shift values for the DNA base pairs with 6-MP is investigated to confirm the hydrogen bond strength. Molecular dynamics simulation studies of G-quadruplex DNA d(TGGGGT)4 with 6-MP revealed that the incorporation of 6-MP appears to cause local distortions and destabilize the G-quadruplex DNA.  相似文献   

8.
3,4‐Dihydroxy‐2‐butanone‐4‐phosphate synthase (DHBPS) encoded by ribB gene is one of the first enzymes in riboflavin biosynthesis pathway and catalyzes the conversion of ribulose‐5‐phosphate (Ru5P) to 3,4‐dihydroxy‐2‐butanone‐4‐phosphate and formate. DHBPS is an attractive target for developing anti‐bacterial drugs as this enzyme is essential for pathogens, but absent in humans. The recombinant DHBPS enzyme of Salmonella requires magnesium ion for its activity and catalyzes the formation of 3,4‐dihydroxy‐2‐butanone‐4‐phosphate from Ru5P at a rate of 199 nmol min?1 mg?1 with Km value of 116 μM at 37°C. Further, we have determined the crystal structures of Salmonella DHBPS in complex with sulfate, Ru5P and sulfate‐zinc ion at a resolution of 2.80, 2.52, and 1.86 Å, respectively. Analysis of these crystal structures reveals that the acidic loop (residues 34–39) responsible for the acid‐base catalysis is disordered in the absence of substrate or metal ion at the active site. Upon binding either substrate or sulfate and metal ions, the acidic loop becomes stabilized, adopts a closed conformation and interacts with the substrate. Our structure for the first time reveals that binding of substrate Ru5P alone is sufficient for the stabilization of the acidic active site loop into a closed conformation. In addition, the Glu38 residue from the acidic active site loop undergoes a conformational change upon Ru5P binding, which helps in positioning the second metal ion that stabilizes the Ru5P and the reaction intermediates. This is the first structural report of DHBPS in complex with either substrate or metal ion from any eubacteria. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Long-term immunosuppressive therapy of mice with 6-mercaptopurine (6-MP) for 2 and/or 3 weeks results in partial lethality, decrease of total leukocyte count, of serum lysozyme level and in bacteremia. The adverse effect of 6-MP treatment could not be prevented by lysozyme administration; immunization withEscherichia coli O86 antigen further increased the lethality of 6-MP in mice. The results itress the potential danger of immunization with bacterial antigens during immunosuppressive therapy.  相似文献   

10.

Increasing evidences indicate that the enteric nervous system (ENS) and enteric glial cells (EGC) play important regulatory roles in intestinal inflammation. Mercaptopurine (6-MP) is a cytostatic compound clinically used for the treatment of inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn’s disease. However, potential impacts of 6-MP on ENS response to inflammation have not been evaluated yet. In this study, we aimed to gain deeper insights into the profile of inflammatory mediators expressed by the ENS and on the potential anti-inflammatory impact of 6-MP in this context. Genome-wide expression analyses were performed on ENS primary cultures exposed to lipopolysaccharide (LPS) and 6-MP alone or in combination. Differential expression of main hits was validated by quantitative real-time PCR (qPCR) using a cell line for EGC. ENS cells expressed a broad spectrum of cytokines and chemokines of the C-X-C motif ligand (CXCL) family under inflammatory stress. Induction of Cxcl5 and Cxcl10 by inflammatory stimuli was confirmed in EGC. Inflammation-induced protein secretion of TNF-α and Cxcl5 was partly inhibited by 6-MP in ENS primary cultures but not in EGC. Further work is required to identify the cellular mechanisms involved in this regulation. These findings extend our knowledge of the anti-inflammatory properties of 6-MP related to the ENS and in particular of the EGC-response to inflammatory stimuli.

  相似文献   

11.
β‐Glucosylglycerol (βGG) has potential applications as a moisturizing agent in cosmetic products. A stereochemically selective method of its synthesis is kinetically controlled enzymatic transglucosylation from a suitable donor substrate to glycerol as acceptor. Here, the thermostable β‐glycosidase CelB from Pyrococcus furiosus was used to develop a microstructured immobilized enzyme reactor for production of βGG under conditions of continuous flow at 70°C. Using CelB covalently attached onto coated microchannel walls to give an effective enzyme activity of 30 U per total reactor working volume of 25 µL, substrate conversion and formation of transglucosylation product was monitored in dependence of glucosyl donor (2‐nitrophenyl‐β‐D ‐glucoside (oNPGlc), 3.0 or 15 mM; cellobiose, 250 mM), the concentration of glycerol (0.25–1.0 M), and the average residence time (0.2–90 s). Glycerol caused a concentration‐dependent decrease in the conversion of the glucosyl donor via hydrolysis and strongly suppressed participation of the substrate in the reaction as glucosyl acceptor. The yields of βGG were ≥80% and ≈60% based on oNPGlc and cellobiose converted, respectively, and maintained up to near exhaustion of substrate (≥80%), giving about 120 mM (30 g/L) of βGG from the reaction of cellobiose and 1 M glycerol. The structure of the transglucosylation products, 1‐O‐β‐D ‐glucopyranosyl‐rac‐glycerol (79%) and 2‐O‐β‐D ‐glucopyranosyl‐sn‐glycerol (21%), was derived from NMR analysis of the product mixture of cellobiose conversion. The microstructured reactor showed conversion characteristics similar to those for a batchwise operated stirred reactor employing soluble CelB. The advantage of miniaturization to the microfluidic format lies in the fast characterization of full reaction time courses for a range of process conditions using only a minimum amount of enzyme. Biotechnol. Bioeng. 2009;103: 865–872. © 2009 Wiley Periodicals, Inc.  相似文献   

12.
Mycolicibacterium gadium IBE100 and Mycobacterium paragordonae IBE200 are aerobic, chemoorganoheterotrophic bacteria isolated from activated sludge from a wastewater treatment plant. They use 2-methylpropene (isobutene, 2-MP) as the sole source of carbon and energy. Here, we postulate a degradation pathway of 2-methylpropene derived from whole genome sequencing, differential expression analysis and peptide-mass fingerprinting. Key genes identified are coding for a 4-component soluble diiron monooxygenase with epoxidase activity, an epoxide hydrolase, and a 2-hydroxyisobutyryl-CoA mutase. In both strains, involved genes are arranged in clusters of 61.0 and 58.5 kbp, respectively, which also contain the genes coding for parts of the aerobic pathway of adenosylcobalamin synthesis. This vitamin is essential for the carbon rearrangement reaction catalysed by the mutase. These findings provide data for the identification of potential 2-methylpropene degraders.  相似文献   

13.
In spite of the important role of angiotensin converting enzyme 2 (ACE2) in the cardiovascular system, little is known about the substrate structural requirements of the AngII–ACE2 interaction. Here we investigate how changes in angiotensin II (AngII) structure affect binding and cleavage by ACE2. A series of C3 β‐amino acid AngII analogs were generated and their secondary structure, ACE2 inhibition, and proteolytic stability assessed by circular dichroism (CD), quenched fluorescence substrate (QFS) assay, and LC‐MS analysis, respectively. The β‐amino acid‐substituted AngII analogs showed differences in secondary structure, ACE2 binding and proteolytic stability. In particular, three different subsets of structure‐activity profiles were observed corresponding to substitutions in the N‐terminus, the central region and the C‐terminal region of AngII. The results show that β‐substitution can dramatically alter the structure of AngII and changes in structure correlated with ACE2 inhibition and/or substrate cleavage. β‐amino acid substitution in the N‐terminal region of AngII caused little change in structure or substrate cleavage, while substitution in the central region of AngII lead to increased β‐turn structure and enhanced substrate cleavage. β‐amino acid substitution in the C‐terminal region significantly diminished both secondary structure and proteolytic processing by ACE2. The β‐AngII analogs with enhanced or decreased proteolytic stability have potential application for therapeutic intervention in cardiovascular disease. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The mechanisms of action of 9-(tetrahydro-2-furyl)-6-mercaptopurine (THFMP) have been studied in Chinese hamster ovary (CHO) cells in tissue culture. THFMP is relatively unstable in physiological buffers, being facilely converted to 6-mercaptopurine (6-MP) even in the absence of cells. Consequently, THFMP undergoes metabolic conversions characteristic of 6-MP, namely formation of 6-thioIMP and incorporation into DNA as 6-thioguanine (6-TG) nucleotide. A number of purines are capable of preventing the toxicity of THFMP in wild-type cells in a manner similar to that of 6-MP. However, exogenous purines and pyrimidines did not prevent the toxicity of THFMP to cells deficient in the enzyme, hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8; HGPRTase). Cells lacking HGPRTase were 20–40-fold resistant to 6-TG and 6-MP but were only 2–4-fold resistant to THFMP. Furthermore, the time-course for killing CHO cells deficient in HGPRTase was different from that in wild-type cells containing the enzyme. There was no apparent effect of THFMP on the utilization of precursors for DNA, RNA or protein synthesis in the enzyme-deficient mutant cell line. The results suggest that THFMP is converted non-enzymatically to 6-MP and shares its mechanisms of action in wild-type cells containing HGPRTase, i.e., inhibition of de novo purine biosynthesis and incorporation into DNA as 6-TG nucleotide. However, the mechanism of action of THFMP in cells lacking HGPRTase is probably unique and is presently unknown.  相似文献   

15.
2‐Phenylethanol is a widely used aroma compound with rose‐like fragrance and L ‐homophenylalanine is a building block of angiotensin‐converting enzyme (ACE) inhibitor. 2‐phenylethanol and L ‐homophenylalanine were synthesized simultaneously with high yield from 2‐oxo‐4‐phenylbutyric acid and L ‐phenylalanine, respectively. A recombinant Escherichia coli harboring a coupled reaction pathway comprising of aromatic transaminase, phenylpyruvate decarboxylase, carbonyl reductase, and glucose dehydrogenase (GDH) was constructed. In the coupled reaction pathway, the transaminase reaction was coupled with the Ehrlich pathway of yeast; (1) a phenylpyruvate decarboxylase (YDR380W) as the enzyme to generate the substrate for the carbonyl reductase from phenylpyruvate (i.e., byproduct of the transaminase reaction) and to shift the reaction equilibrium of the transaminase reaction, and (2) a carbonyl reductase (YGL157W) to produce the 2‐phenylethanol. Selecting the right carbonyl reductase showing the highest activity on phenylacetaldehyde with narrow substrate specificity was the key to success of the constructing the coupling reaction. In addition, NADPH regeneration was achieved by incorporating the GDH from Bacillus subtilis in the coupled reaction pathway. Based on 40 mM of L ‐phenylalanine used, about 96% final product conversion yield of 2‐phenylethanol was achieved using the recombinant E. coli. Biotechnol. Bioeng. 2009;102: 1323–1329. © 2008 Wiley Periodicals, Inc.  相似文献   

16.
Addition of chitosan or H2O2 caused destruction of nuclei of epidermal cells (EC) in the epidermis isolated from pea leaves. Phenol, a substrate of the apoplastic peroxidase-oxidase, in concentrations of 10−10–10−6 M prevented the destructive effect of chitosan. Phenolic compounds 2,4-dichlorophenol, catechol, and salicylic acid, phenolic uncouplers of oxidative phosphorylation pentachlorophenol and 2,4-dinitrophenol, and a non-phenolic uncoupler carbonyl cyanide m-chlorophenylhydrazone, but not tyrosine or guaiacol, displayed similar protective effects. A further increase in concentrations of the phenolic compounds abolished their protective effects against chitosan. Malate, a substrate of the apoplastic malate dehydrogenase, replenished the pool of apoplastic NADH that is a substrate of peroxidase-oxidase, prevented the chitosan-induced destruction of the EC nuclei, and removed the deleterious effect of the increased concentration of phenol (0.1 mM). Methylene Blue, benzoquinone, and N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) capable of supporting the optimal catalytic action of peroxidase-oxidase cancelled the destructive effect of chitosan on the EC nuclei. The NADH-oxidizing combination of TMPD with ferricyanide promoted the chitosan-induced destruction of the nuclei. The data suggest that the apoplastic peroxidase-oxidase is involved in the antioxidant protection of EC against chitosan and H2O2.  相似文献   

17.
Cystathionine β‐synthase (CBS) catalyzes the formation of l ‐cystathionine from l ‐serine and l ‐homocysteine. The resulting l ‐cystathionine is decomposed into l ‐cysteine, ammonia, and α‐ketobutylic acid by cystathionine γ‐lyase (CGL). This reverse transsulfuration pathway, which is catalyzed by both enzymes, mainly occurs in eukaryotic cells. The eukaryotic CBS and CGL have recently been recognized as major physiological enzymes for the generation of hydrogen sulfide (H2S). In some bacteria, including the plant‐derived lactic acid bacterium Lactobacillus plantarum, the CBS‐ and CGL‐encoding genes form a cluster in their genomes. Inactivation of these enzymes has been reported to suppress H2S production in bacteria; interestingly, it has been shown that H2S suppression increases their susceptibility to various antibiotics. In the present study, we characterized the enzymatic properties of the L. plantarum CBS, whose amino acid sequence displays a similarity with those of O‐acetyl‐l ‐serine sulfhydrylase (OASS) that catalyzes the generation of l ‐cysteine from O‐acetyl‐l ‐serine (l ‐OAS) and H2S. The L. plantarum CBS shows l ‐OAS‐ and l ‐cysteine‐dependent CBS activities together with OASS activity. Especially, it catalyzes the formation of H2S in the presence of l ‐cysteine and l ‐homocysteine, together with the formation of l ‐cystathionine. The high affinity toward l ‐cysteine as a first substrate and tendency to use l ‐homocysteine as a second substrate might be associated with its enzymatic ability to generate H2S. Crystallographic and mutational analyses of CBS indicate that the Ala70 and Glu223 residues at the substrate binding pocket are important for the H2S‐generating activity.  相似文献   

18.
We confirmed that NADPH-dependent anaerobic amaranch reduction in rat liver microsomes is compatible with the interaction of the dye with Fe(III) heme of cytochrome P-450 as the type II substrate. This process is rate-limiting in the whole reaction. High positive correlation (r = 0.949) between the values of Vmax for reaction of NADPH-dependent anaerobic amaranch reduction and the relative content low spin forms of cytochrome P-450 determined by ESR in microsomes from liver of control and induced by PB, BP, IS and 4-MP rats was observed. Relative content of low spin forms of cytochrome P-450 determined by ESR was increased according to BP less than PB less than control less than IS approximately 4-MP; Vmax values increased according to BP less than PB less than control less than IS less than 4-MP. Thus, reaction of NADPH-dependent anaerobic amaranch reduction may be used for determination of low spin forms of cytochrome P-450 at physiological conditions.  相似文献   

19.
Beauvericin (BEA) is a cyclic hexadepsipeptide mycotoxin with notable phytotoxic and insecticidal activities. Fusarium redolens Dzf2 is a highly BEA-producing fungus isolated from a medicinal plant. The aim of the current study was to develop a simple and valid kinetic model for F. redolens Dzf2 mycelial growth and the optimal fed-batch operation for efficient BEA production. A modified Monod model with substrate (glucose) and product (BEA) inhibition was constructed based on the culture characteristics of F. redolens Dzf2 mycelia in a liquid medium. Model parameters were derived by simulation of the experimental data from batch culture. The model fitted closely with the experimental data over 20–50 g l−1 glucose concentration range in batch fermentation. The kinetic model together with the stoichiometric relationships for biomass, substrate and product was applied to predict the optimal feeding scheme for fed-batch fermentation, leading to 54% higher BEA yield (299 mg l−1) than in the batch culture (194 mg l−1). The modified Monod model incorporating substrate and product inhibition was proven adequate for describing the growth kinetics of F. redolens Dzf2 mycelial culture at suitable but not excessive initial glucose levels in batch and fed-batch cultures.  相似文献   

20.
The toxicity of azetidine‐2‐carboxylic acid (A2C), a structural analogue of L‐proline, results from its incorporation into proteins due to misrecognition by prolyl‐tRNA synthetase (ProRS). The growth of Arabidopsis thaliana seedling roots is more sensitive to inhibition by A2C than is cotyledon growth. Arabidopsis contains two ProRS isozymes. AtProRS‐Org (At5g52520) is localized in chloroplasts/mitochondria, and AtProRS‐Cyt (At3g62120) is cytosolic. AtProRS‐Cyt mRNA is more highly expressed in roots than in cotyledons. Arabidopsis ProRS isoforms were expressed as His‐tagged recombinant proteins in Escherichia coli. Both enzymes were functionally active in ATP‐PPi exchange and aminoacylation assays, and showed similar Km for L‐proline. A major difference was observed in the substrate specificity of the two enzymes. AtProRS‐Cyt showed nearly identical substrate specificity for L‐proline and A2C, but for AtProRS‐Org the specificity constant was 77.6 times higher for L‐proline than A2C, suggesting that A2C‐sensitivity may result from lower amino acid specificity of AtProRS‐Cyt. Molecular modelling and simulation results indicate that this specificity difference between the AtProRS isoforms may result from altered modes of substrate binding. Similar kinetic results were obtained with the ProRSs from Zea mays, suggesting that the difference in substrate specificity is a conserved feature of ProRS isoforms from plants that do not accumulate A2C and are sensitive to A2C toxicity. The discovery of the mode of action of A2C toxicity could lead to development of biorational weed management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号