首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth hormone (GH) has a significant influence on cognitive performance in humans and other mammals. To understand the influence of altered GH action on cognition, we assessed spatial learning and memory using a Barnes maze (BM) comparing twelve-month old, male, bovine GH (bGH) and GH receptor antagonist (GHA) transgenic mice and their corresponding wild type (WT) littermates. During the acquisition training period in the BM, bGH mice showed increased latency, traveled longer path lengths and made more errors to reach the target than WT mice, indicating significantly poorer learning. Short-term memory (STM) and long-term memory (LTM) trials showed significantly suppressed memory retention in bGH mice when compared to the WT group. Conversely, GHA mice showed significantly better learning parameters (latency, path length and errors) and increased use of an efficient search strategy than WT mice. Our study indicates a negative impact of GH excess and a beneficial effect of the inhibition of GH action on spatial learning and memory and, therefore, cognitive performance in male mice. Further research to elucidate GH's role in brain function will facilitate identifying therapeutic applications of GH or GHA for neuropathological and neurodegenerative conditions.  相似文献   

2.
PEPCK/bGH transgenic mice have very high blood levels of foreign GH, and prominent reproductive disturbances, especially in females. To obtain a deeper insight into the causes of these abnormalities, pituitaries of PEPCK/bGH transgenics were studied by immunocytochemistry, electron microscopy and in situ hybridization (ISH) techniques. Pituitary weights were significantly reduced (P < 0.05) in transgenic males, while in transgenic females they were increased without reaching significance compared to nontransgenic controls. In both sexes, GH cells were inhibited, as previously described in other lines of GH transgenic mice. In females, PRL cells were increased by 37% compared to controls. Ultrastructurally, the lactotrophs had characteristics of stimulation and PRL mRNA was increased by 35%. In males the increase in the number of PRL immunoreactive cells was not significant, the PRL mRNA signal did not differ from controls, and there were no changes in their ultrastructure. Only in females ACTH cells were significantly reduced (P < 0.05) in number and unchanged in males; however, POMC mRNA signal was increased in both genders and reached significance (P < 0.05) in males. In females, but not in males, the percentage of LH cells was lower than in control mice. In conclusion, the high blood bGH levels induced sex related changes in transgenic mice from the present line. The infertility of PEPCK/bGH transgenic females may be attributed to lactotroph hyperplasia and marked reduction in number of gonadotrophs.  相似文献   

3.
Although growth hormone (GH) exerts various direct and indirect stimulatory effects on gonadal development and function, excessive levels of GH in acromegalic patients and in transgenic animals are often associated with reproductive disorders. We have examined reproductive performance of transgenic female mice expressing the following hybrid genes: mouse metallothionein-1 (MT)/human placental GH variant (hGH.V), MT/bovine GH(bGH), and phosphoenolpyruvate carboxykinase (PEPCK)/bGH. This allowed us to evaluate the effects of chronic GH excess in three animal models and to obtain some information on the significance of the lactogenic activity of the foreign GH (hGH.V vs. bGH) and on the developmental stage of transgene expression (MT vs. PEPCK). Transgenic animals from each line had elevated plasma insulin-like growth factor-I levels and greatly increased adult body weight. Plasma bGH levels were significantly higher in PEPCK/bGH than in MT/bGH transgenic mice. Approximately 20% of transgenic MT/hGH.V and MT/bGH females and over 60% of transgenic PEPCK/bGH females were infertile. Transgenic females that did reproduce ovulated either a normal or increased number of eggs but exhibited a variety of reproductive disorders including increased interval between pairing with a male and conception, increased interval between litters, reduced number of litters, reduced fetal growth, increased pre- and postnatal mortality, and alterations in sex ratio. Among adult offspring of these females, the proportion of transgenic animals was significantly less than the expected 50%. While some characteristics (e.g., fetal crown-rump length and weight on Day 14 of pregnancy) were affected to a comparable extent in transgenic females from all three lines, MT/hGH.V and PEPCK/bGH females were, in general, more severely affected than the MT/bGH animals. Sterility of PEPCK/bGH females appeared to be due to luteal failure since treatment with progesterone led to pregnancy. Greatly increased intervals between successive litters appeared to be due to failure to mate during postpartum estrus and to sterile matings during this period. Reduced fetal size and weight may have been due to chronic glucocorticoid excess because comparable changes could be induced in normal females by injections of dexamethasone during pregnancy, and plasma corticosterone levels were previously shown to be elevated in transgenic mice from each of these lines. Comparison of these results with data obtained from matings of normal female mice to transgenic males from the same lines suggests that reduced fetal growth is due primarily to maternal genotype, while reduced "transmission" of the hybrid genes is not, and presumably reflects increased mortality of transgenic progeny at various stages of development.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Previous work from our laboratory provided evidence for increased plasma corticosterone levels in mice transgenic for human and bovine growth hormone (GH). Corticosterone was elevated in both sexes, under both basal and ether-induced stress conditions. The objectives of the present study were to investigate thein vitro adrenal sensitivity to ACTH, GH and/or IGF-I in normal and bGH transgenic mice, to examine plasma corticosterone levels at different times of the day, and to determine plasma levels of ACTH in these animals. For the measurement of plasma corticosterone and ACTH levels, transgenic and normal siblings were housed 2 per cage and decapitated simultaneously within 20 seconds of the first disturbance of the cage. The corticosterone production byin vitro adrenal incubations did not differ between adrenals from normal and transgenic mice at the basal level or in the presence of different doses of ACTH. Growth hormone or IGF-I did not have any effect on corticosterone productionin vitro when given alone, and did not modify the effects of ACTH on the accumulation of corticosterone in the media. Plasma corticosterone concentrations were higher in transgenic than in normal animals in both morning and evening. Plasma concentrations of ACTH in animals killed in the morning were sharply increased in transgenic males as compared with their normal siblings. The results indicate that increased circulating levels of corticosterone in transgenic mice are not due to a potentiation of ACTH actions by GH or IGF-I, but rather to a chronic increase in plasma ACTH levels. The increase in ACTH is presumably a reflection of GH actions in the hypothalamic-pituitary system.  相似文献   

5.
The somatotropic and lactotropic receptors were studied in liver microsomal preparations from transgenic mice carrying the human growth hormone (hGH) or bovine growth hormone (bGH) gene fused to mouse metallothionein-I (MT) or phosphoenolpyruvate carboxykinase promoter/regulator (PEPCK). Specificity studies indicated that, similarly to normal mice, liver microsomes from the transgenic animals possess a mixed population of somatotropic and lactotropic binding sites. In transgenic animals of both sexes, the binding capacity of somatotropic receptors was significantly increased without corresponding changes in affinity. Expression of the MT-hGH hybrid gene was associated with the induction of somatotropic receptors which was approximately twice as great as that measured in animals expressing the MT-bGH hybrid gene. The binding capacity of lactotropic receptors in liver microsomes (quantitated, by the use, of labelled ovine prolactin) was increased 2–3 fold in transgenic females and approximately 10-fold in transgenic males as compared to the respective normal controls. We conclude that lifelong excess of GH up-regulates hepatic GH and prolactin receptors, and that lactogenic activity of GH is not essential for induction of prolactin receptors in the liver of transgenic mice.  相似文献   

6.
It is known that growth hormone (GH) plays an important role in growth and development.Additionally, emerging evidence suggest that it also influences hypothalamic-pituitary-gonadal function. We have found that GH from different species has different effects in mice. In rodents, human GH (hGH) binds to both GH and prolactin (PRL) receptors; it has both somatotrophic and lactotrophic effects. Since PRL has a profound effect on neuroendocrine function, the results obtained from hGH treatment or from transgenic animals expressing the hGH gene reflect PRL-like effects of this hormone. However, bovine GH (bGH) is purely somatogenic and therefore the effects of bGH represent the function of the natural GH produced in rodents. Furthermore, our studies in mice and rats have shown that not all effects of GH are stimulatory and the duration of exposure of the hypothalamo-hypophyseal-gonadal system to GH might influence the secretions of gonadotropins and gonadal steroids. In humans, excess productions of GH in acromegaly and GH resistance in Laron syndrome adversely affect reproduction. Similarly, it has been demonstrated that in transgenic mice expressing various GH genes, in insulin-like growth factor-I (IGF-I) gene-knockout mice, in GH receptor gene-disrupted (GHR-KO) mice, and in Ames dwarf mice the onset of puberty and/or fertility is altered. Therefore, excess or subnormal secretion of GH can affect reproduction. We have shown that the hypothalamic-pituitary functions are affected in transgenic mice expressing the GH genes, Ames dwarf mice and in GH receptor gene knockout mice. The majority of the GH effects are mediated via IGF-I and the aforementioned effects may be due to the GH-induced IGF-I secretion or due to the absence of this peptide production. It is important to realize that the syntheses and actions of IGF binding proteins are controlled by IGF-I. Furthermore, some IGF binding proteins can inhibit IGF-I action. Therefore, the concentrations of IGF binding proteins and the ratio of these binding proteins and IGF-I within the body might play a pivotal role in modulating IGF-I effects on the neuroendocrine-gonadal system.  相似文献   

7.
8.
To characterize long-term actions and interactions of growth hormone (GH) and insulin-like growth factor-II (IGF-II) on postnatal body and organ growth, hemizygous phosphoenolpyruvate carboxykinase (PEPCK)-human IGF-II transgenic mice were crossed with hemizygous PEPCK-bovine GH transgenic mice. The latter are characterized by two-fold increased serum levels of IGF-I and exhibit markedly increased body, skeletal and organ growth. Four different genetic groups were obtained: mice harbouring the IGF-II transgene (I), the bGH transgene (B), or both transgenes (IB), and non- transgenic controls (C). These groups of mice have previously been studied for circulating IGF-I levels (Wolf et al., 1995a), whereas the present study deals with body and organ growth. Growth curves (week 3 to 12) were estimated by regression with linear and quadratic components of age on body weight and exhibited significantly (p < 0.001) greater linear coefficients in B and IB than in I and C mice. The linear coefficients of male I and C mice were significantly (p < 0.001) greater than those of their female counterparts, whereas this sex-related difference was absent in the bGH transgenic groups. The weights of internal organs as well as the weights of abdominal fat, skin and carcass were recorded from 3.5- to 8- month-old mice. In addition, organ weight-to-body weight-ratios (relative organ weights) were calculated. Except for the weight of abdominal fat, absolute organ weights were as a rule significantly greater in B and IB than in I and C mice. IGF-II overproduction as a tendency increased the weights of kidneys, adrenal glands, pancreas and uterus both in the absence and presence of the bGH transgene. Analysis of relative organ weights demonstrated significant (p < 0.05) effects of elevated IGF- II on the relative growth of kidneys (males and females) and adrenal glands (females), confirming our previous report on organ growth of PEPCK-IGF-II transgenic mice. In females, IGF-II and GH overproduction were additive in stimulating the growth of spleen and uterus, providing evidence for tissue-specific postnatal growth promoting effects by IGF-II in the presence of elevated IGF-I  相似文献   

9.
Bovine GH (bGH) analogs with single amino acid substitutions at positions 117 (bGH-E117L), 119 (bGH-G119R), and 122 (bGH-A122D) were generated. These analogs bind to mouse liver membrane preparations with affinities similar to native bGH. However, transgenic mice which express the analogs demonstrate different phenotypes ranging from dwarfism to gigantism. For example, expression of bGH or bGH-E117L result in large transgenic mice. In contrast, transgenic mice with a growth phenotype similar to nontransgenic animals result from expression of bGH-A122D. Surprisingly, transgenic mice with relatively high serum levels of bGH-G119R possessed a dwarf phenotype. Together these results suggest that Gly 119 and Ala 122 are involved in growth-promoting activity of GH.  相似文献   

10.
Pharmacokinetics of radioiodinated human growth hormone (hGH) and ovine growth hormone (oGH) were studied in normal mice and in transgenic mice carrying the bovine growth hormone (bGH) gene fused to phosphoenolpyruvate carboxykinase promoter/regulator (PEPCK-bGH). Multiexponential plasma decay curves were obtained in both normal and transgenic mice after a125I-oGH injection and pharmacokinetic parameters were estimated by fitting blood concentration data to a three compartment model. The half-life for the rapid compartment was shorter in transgenic than in normal mice (t1/2:1.2±0.3 vs. 2.2±0.5 min). The slow compartment had a t1/2 of 160±23 min for transgenic and 70±8 min for normal mice while the middle compartment had a t1/2 of approximately 10 min for both groups of mice. The mean residence times were 167±24 and 55±5 min for transgenic and normal mice, respectively. Specific liver uptake of radioactivity after injection of125I-oGH or125I-hGH was found in both groups of animals. Specificity studies indicated that, similarly to normal mice, livers of transgenic mice possess a mixed population of somatotropic and lactogenic receptors. Uptake of labelled hGH by the liver was dose-dependent and the doses that prevented 50% of liver uptake (ED50%) were 8 and 165 g per 50 g body weight for normal and transgenic mice, respectively. Thesein vivo results confirm and extend previousin vitro findings that a life-long excess of bGH increases hepatic somatotropic and lactogenic receptors. Since elevation in growth hormone (GH) receptors was reported to be associated with an increase in GH binding protein (GHBP), we suspect that both the increase in the mean residence time and the reduction in specific uptake of GH in the livers of transgenic mice may be the result of an increase in GHBP levels.  相似文献   

11.
 Pituitary somatotrophs are suppressed in mice transgenic for human (h) or bovine (b) growth hormone (GH) genes fused with metallothionein (MT) or phosphoenolpyruvate carboxykinase (PEPCK) promoters. Previous morphologic studies revealed that lactotrophs are inhibited in hGH transgenic lines probably due to prolactin-like effects of hGH whereas in female bGH transgenics, the lactotrophs are stimulated. In the present study, estrogen receptor (ERα) mRNA was studied by autoradiographic in situ hybridization (ISH), ERα protein by immunocytochemistry, and dopamine subtype 2 receptor (D2R) mRNA by ISH. In MT/ and PEPCK/hGH transgenic mice, silver grains signaling ERα mRNA were significantly decreased compared to controls; the reduction was stronger in males (8.6 and 37%) than in females (4.6 and 11%). The decrease in the number of ERα-immunoreactive nuclei followed the same pattern (13.3 and 6% in males vs 3.2 and 5.2% in females). In MT/hGH mice the D2R mRNA signal was significantly increased in males (6 and 15.4%) and females (16%). In MT/bGH transgenics, ERα mRNA and ERα-immunoreactive nuclei were significantly increased (25 and 6%) only in males; D2R mRNA was more decreased in females (23%) than in males (15%). In conclusion, the opposite changes in ERα and D2R gene expressions are correlated with lactotroph inhibition in hGH transgenic mice and their stimulation in bGH transgenic mice. The changes in ERα expression were stronger in males, whereas those of D2R were more pronounced in females. Accepted: 16 November 1998  相似文献   

12.
Age-associated changes in hypothalamic catalase activity and level, and Cu/Zn superoxide dismutase (Cu/Zn SOD) activity were examined in Ames dwarf mice with growth hormone (GH) deficiency and prolonged lifespan, in PEPCK-hGH transgenic mice with overexpression of GH and reduced lifespan, and compared to values measured in normal controls. Hypothalami from young (3-4 months), middle-aged (9-10 months), and old (19-23 months) male mice were examined using spectrophotometric assay and Western blot. In dwarf mice, Cu/Zn SOD and catalase activities declined with age, and were higher than the corresponding normal values in young and middle-aged groups. Catalase levels also declined with age, but were similar to values in normal controls. In GH transgenic mice, age-associated decline of both catalase and Cu/Zn SOD occurred earlier than in normal animals. Catalase levels and activities in transgenic animals were similar to controls, whereas Cu/Zn SOD activity was higher in transgenics than in normal mice. The present results suggest that dwarf mice, during early life, have enhanced hypothalamic free radical defenses, which may contribute to their extended lifespan. However, from the present results in GH transgenic mice, it is impossible to conclude whether early decline of hypothalamic catalase and Cu/Zn SOD in these animals represents a correlate of accelerated aging, or contributes to their reduced lifespan.  相似文献   

13.
In rodents, bovine (b) growth hormone (GH) binds only to GH receptors, while human (h) GH binds to both GH and PRL receptors. The phenotypic consequences of expression of bGH and hGH in transgenic mice are different and, in some cases, opposite. In the present study, site-directed in vitro mutagenesis of the bGH gene was used systematically to eliminate its differences from hGH at one, two, three or four sites suspected of conferring lactogenic activity: D11, H18, S57 and T60, respectively (corresponding to sites 12, 19, 57 and 60 of the bGH molecule). The resulting bGH analogues were expressed in cell lines and in transgenic mice. All of the seven bGH analogues produced retained their ability to bind to GH receptors and exhibited somatogenic activity in vitro and in vivo. However, none of them were able to bind to PRL receptors or to elicit detectable lactogenic response in vitro. Transgenic animals expressing any of the generated analogues were characterized by gigantism and splanchnomegaly. The effects of expression of each of the double, triple or quadruple mutants on the seminal vesicle weight resembled the effects of wild-type hGH and differed from the effects of expression of wild-type bGH. There were differences between the effects of the expression of different bGH analogues on plasma PRL levels and on the PRL response to pharmacological blockade of catecholamine synthesis. Plasma LH levels in ovariectomized females were suppressed by several of the analogues tested, an effect not seen in animals expressing wild-type bGH or hGH. Dopamine turnover in the median eminence of male mice was also altered in animals expressing different bGH analogues but not in those expressing wild-type bGH or hGH. In ovariectomized females, the effects of different bGH analogs on the turnover of dopamine and norepine phrine in the median eminence included changes resembling those detected in animals expressing hGH, as well as alterations differing from the effects of bot h bGH and hGH.The results indicate that biological actions of these bGH analogues cannot be characterized simply in terms of enhanced or reduced somatogenic or lactogenic activity and raise a possibility that different sites, domains or features of the tri-dimensional structure of GH are involved in its actions on different cellular targets  相似文献   

14.
Reproductive performance was studied in transgenic males from lines expressing and transmitting four hybrid genes: mouse metallothionein-I/human growth hormone (GH) (MT/hGH), MT/hGH placental variant (MT/hGH.V), MT/bovine GH (MT/bGH) and phosphoenolpyruvate carboxykinase/bGH (PEPCK/bGH). Each male was exposed to three normal females for 1 week and to three different normal females for another week. Females were examined for vaginal plugs and necropsied on day 14 of pregnancy. Males were killed for analysis of organ weights, numbers of testicular spermatids, numbers of epididymal sperm and measurements of plasma glucose concentration. Fertility of MT/hGH and MT/hGH.V transgenic males was significantly lower than in normal males, primarily because most males failed to impregnate any females. In females that became pregnant, the numbers of corpora lutea, total fetuses and live fetuses did not differ from those in females mated to normal (nontransgenic) males. Fetal crown-rump length on day 14 of pregnancy did not differ between litters sired by normal or by transgenic males. Weights of testes and seminal vesicles were significantly greater in all four types of transgenic male, but daily sperm production per unit weight (g-1) of testis was not affected and epididymal sperm reserves were either normal or slightly higher than normal. Plasma glucose concentrations were significantly higher in PEPCK/bGH mice than in other mice. Average or individual reproductive performance of transgenic males from the various lines did not correlate with any of the parameters examined except for significantly heavier seminal vesicles in MT/hGH and MT/hGH.V males than in normal males; these transgenic males exhibited a high incidence of infertility. Since hGH and hGH.V, but not bGH, are lactogenic in rodents, it was concluded that chronic stimulation of GH and prolactin receptors by ectopically produced human GHs in transgenic mice compromises male fertility by an unknown mechanism. Reduced fertility of transgenic males with MT/hGH or MT/hGH.V hybrid genes is due to failure to inseminate or impregnate females rather than to reduced numbers of spermatozoa or gross changes in the male reproductive system.  相似文献   

15.
In a previous publication we observed aberrant levels of the human reduced folate carrier (hRFC) in cortex from fetal Down syndrome (DS) subjects. Immunoreactivity for hRFC was increased as the only chromosome 21 gene product studied. We, therefore, analyzed mice transgenic for hRFC (TghRFC1) and wild-type (WT) mice for cognitive functions, behavior and in an observational neurological battery (FOB). Cognitive functions were evaluated by the Morris water maze (MWM), the open field (OF) was used for exploratory behavior, locomotor activity and anxiety-related behavior. The elevated plus maze (EPM) was used to confirm findings in the OF testing anxiety-related behavior and the rota rod (RR) to evaluate motor function. In the MWM TghRFC1 mice performed significantly worse (P < 0.0003) on the probe trial than WT mice. In the FOB visual placing was significantly reduced inTghRFC1 mice. In the OF TghRFC1 mice crossed twice as often (P < 0.029) and in the EPM individuals from this group showed a reduced number of exits from the closed arm (P < 0.044) compared to WT mice. TghRFC1 mice showed impaired performance on the RR, spending one-fourth of the time of WT on the revolving rod (P < 0.0003). Cognitive impairment is an obligatory symptom of DS and this deficiency corresponds to findings in the MWM of mice transgenic for hRFC. Findings of visual placing and failure on the RR may reflect impaired motor performance including muscular hypotonia in DS subjects. Increased crossings in the OF may indicate modulated anxiety-related behavior observed in patients with DS.  相似文献   

16.
Diets low in methionine extend lifespan of rodents, though through unknown mechanisms. Glycine can mitigate methionine toxicity, and a small prior study has suggested that supplemental glycine could extend lifespan of Fischer 344 rats. We therefore evaluated the effects of an 8% glycine diet on lifespan and pathology of genetically heterogeneous mice in the context of the Interventions Testing Program. Elevated glycine led to a small (4%–6%) but statistically significant lifespan increase, as well as an increase in maximum lifespan, in both males (p = 0.002) and females (p < 0.001). Pooling across sex, glycine increased lifespan at each of the three independent sites, with significance at p = 0.01, 0.053, and 0.03, respectively. Glycine‐supplemented females were lighter than controls, but there was no effect on weight in males. End‐of‐life necropsies suggested that glycine‐treated mice were less likely than controls to die of pulmonary adenocarcinoma (p = 0.03). Of the 40 varieties of incidental pathology evaluated in these mice, none were increased to a significant degree by the glycine‐supplemented diet. In parallel analyses of the same cohort, we found no benefits from TM5441 (an inhibitor of PAI‐1, the primary inhibitor of tissue and urokinase plasminogen activators), inulin (a source of soluble fiber), or aspirin at either of two doses. Our glycine results strengthen the idea that modulation of dietary amino acid levels can increase healthy lifespan in mice, and provide a foundation for further investigation of dietary effects on aging and late‐life diseases.  相似文献   

17.
Mice with disruptions of growth hormone‐releasing hormone (GHRH) or growth hormone receptor (GHR) exhibit similar phenotypes of prolonged lifespan and delayed age‐related diseases. However, these two models respond differently to calorie restriction indicating that they might carry different and/or independent mechanisms for improved longevity and healthspan. In order to elucidate these mechanisms, we generated GHRH and GHR double‐knockout mice (D‐KO). In the present study, we focused specifically on the characteristics of female D‐KO mice. The D‐KO mice have reduced body weight and enhanced insulin sensitivity compared to wild‐type (WT) controls. Growth retardation in D‐KO mice is accompanied by decreased GH expression in pituitary, decreased circulating IGF‐1, increased high‐molecular‐weight (HMW) adiponectin, and leptin hormones compared to WT controls. Generalized linear model‐based regression analysis, which controls for body weight differences between D‐KO and WT groups, shows that D‐KO mice have decreased lean mass, bone mineral density, and bone mineral content, but increased adiposity. Indirect calorimetry markers including oxygen consumption, carbon dioxide production, and energy expenditure were significantly lower in D‐KO mice relative to the controls. In comparison with WT mice, the D‐KO mice displayed reduced respiratory exchange ratio (RER) values only during the light cycle, suggesting a circadian‐related metabolic shift toward fat utilization. Interestingly, to date survival data suggest extended lifespan in D‐KO female mice.  相似文献   

18.
In this study we asked whether growth hormone (GH) and one of its key mediators, insulin-like growth factor I (IGF-I), influence spinal motoneuron size in conjunction with whole body size. We present evidence that GH has such a role, possibly without the mediation of IGF-I. Both lumbar motoneuron and body size were found to be increased relative to littermate controls in transgenic mice overexpressing GH, while body size, but not motoneuron size, was increased in mice overexpressing IGF-I. GH overexpression coordinately increased nucleolar, nuclear, and cell body size in lumbar spinal motoneurons, so that their normal size relationships were preserved in the transgenic mice. In addition, spinal cord and brain weights were significantly increased in both types of transgenic animal. We conclude that GH can regulate motoneuron, central nervous system, and body size in the same animal, and that IGF-I can mimic the effects of GH on at least two of these three parameters. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 202–212, 1997.  相似文献   

19.
Growth hormone (GH) is a polipeptide that controls the differentiation, growth and metabolism of many cell types, and is secreted from the hypophysis of all vertebrate species tested so far. Despite the overlapping evolutionary, structural, immunological and biological properties, it is well-known that GHs from distinct mammalian species have significant species-specific characteristics. The main purpose of this review is to highlight bovine GH (bGH) structural features related to its species-specific properties. Novel interest in bGH is also aroused by the advent of biotechnological methods for production of recombinant proteins. In fact recombinant bGH will have a great importance in veterinary medicine research and as a ‘high tech’ drug that needs to be monitored in zootechnical productions.  相似文献   

20.
Reactive oxygen species (ROS) are highly reactive oxygen‐containing molecules associated with aging and a broad spectrum of pathologies. We have previously shown that transgenic expression of the antioxidant enzyme catalase targeted to the mitochondria (mCAT) in mice reduces ROS, attenuates age‐related disease, and increases lifespan. However, it has been increasingly recognized that ROS also has beneficial roles in signaling, hormesis, stress response, and immunity. We therefore hypothesized that mCAT might be beneficial only when ROS approaches pathological levels in older age and might not be advantageous at a younger age when basal ROS is low. We analyzed abundance and turnover of the global proteome in hearts and livers of young (4 month) and old (20 month) mCAT and wild‐type (WT) mice. In old hearts and livers of WT mice, protein half‐lives were reduced compared to young, while in mCAT mice the reverse was observed; the longest half‐lives were seen in old mCAT mice and the shortest in young mCAT. Protein abundance of old mCAT hearts recapitulated a more youthful proteomic expression profile (P‐value < 0.01). However, young mCAT mice partially phenocopied the older wild‐type proteome (P‐value < 0.01). Age strongly interacts with mCAT, consistent with antagonistic pleiotropy in the reverse of the typical direction. These findings underscore the contrasting roles of ROS in young vs. old mice and indicate the need for better understanding of the interaction between dose and age in assessing the efficacy of therapeutic interventions in aging, including mitochondrial antioxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号