首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported that sodium butyrate (SB), a histone deacetylase inhibitor, robustly increased pyridoxine-induced cell proliferation and neuroblast differentiation in the dentate gyrus of the adult mouse. In this study, we investigated the effects of treatment with SB combined with pyridoxine on cell proliferation and neuroblast differentiation in the dentate gyrus of a mouse model of aging induced by d-galactose (d-gal). d-gal was administered to 20-week-old male mice (d-gal mice) for 10 weeks to induce changes that resemble natural aging in animals. Seven weeks after d-gal (100 mg/kg) treatment, vehicle (physiological saline; d-gal-vehicle mice) and SB (300 mg/kg) combined with pyridoxine (Pyr; 350 mg/kg) were administered to the mice (d-gal-Pyr-SB mice) for 3 weeks. Escape latency under water maze in the d-gal mice was longer than that in the control mice. In the d-gal-Pyr-SB mice, escape latency was similar to that in the control mice. In the d-gal mice, many cells in the granule cell layer of the dentate gyrus showed pyknosis and condensation of the cytoplasm. However, in the d-gal-Pyr-SB mice, such cellular changes were rarely found. Furthermore, the d-gal mice showed a great reduction in cell proliferation (Ki67-positive cells) and neuroblast differentiation (doublecortin-positive neuroblasts) in the dentate gyrus compared to control mice. However, in the d-gal-Pyr-SB mice, cell proliferation and neuroblast differentiation were markedly increased in the dentate gyrus. Furthermore, the administration of pyridoxine with sodium butyrate significantly increased Ser133-phosphorylated cyclic AMP response element binding protein in the dentate gyrus. These results indicate that the combination treatment of Pyr with SB in d-gal mice ameliorated the d-gal-induced reduction in cell proliferation, neuroblast differentiation, and memory deficits.  相似文献   

2.
We investigated the effects of pyridoxine (vitamin B6) on cell death, cell proliferation, neuroblast differentiation, and the GABAergic system in the mouse dentate gyrus. We administered pyridoxine (350 mg/kg intraperitoneally) to 8 week old mice twice a day for 14 days and sacrificed them at 10 weeks of age. Pyridoxine treatment did not induce neuronal death or activate microglia in the dentate gyrus, while glial fibrillary acidic protein (GFAP)-positive cells were significantly increased in the subgranular zone of the dentate gyrus. The increase in GFAP-positive cells was confirmed to be due to proliferating cells based on double immunofluorescence staining. GFAP-positive cells, which were also labeled with Ki67, a marker for cell proliferation, and doublecortin, a marker for neuroblast differentiation, were significantly increased in the pyridoxine-treated group compared to those in the vehicle-treated group. Pyridoxine treatment also increased the protein levels of glutamic acid decarboxylase (GAD) 67, an enzyme for GABA synthesis, and pyridoxal 5′-phosphate (PNP) oxidase, an enzyme for pyridoxal phosphate synthesis, in the dentate gyrus. These results suggest that pyridoxine treatment distinctly increases cell proliferation, neuroblast differentiation, and upregulated the GABAergic system, as revealed by the increases of GAD67 and PNP oxidase in the mouse dentate gyrus.  相似文献   

3.
In a previous study, we reported that the administration of pyridoxine (vitamin B6) to mice for 3 weeks significantly increased cell proliferation and neuroblast differentiation in the dentate gyrus without any neuronal damage. In the present study, we investigated the restorative potentials of pyridoxine on ischemic damage in the hippocampal CA1 region of Mongolian gerbils. Gerbils were subjected to 5 min of transient ischemia, and surgical operation success was assessed by ophthalmoscope during occlusion of common carotid arteries and spontaneous motor activity at 1 day after ischemia/reperfusion. Pyridoxine (350 mg/kg) or its vehicle (physiological saline) was intraperineally administered to ischemic gerbils twice a day starting 4 days after ischemia/reperfusion for 30 or 60 days. The repeated administration of pyridoxine for 30 and 60 days significantly increased doublecortin-immunoreactive neuroblasts in the dentate gyrus and increased NeuN-immunoreactive mature neurons and βIII-tubulin-immunoreactive dendrites in the hippocampal CA1 region. Furthermore, brain-derived neurotrophic factor (BDNF) protein levels were significantly increased in pyridoxine-treated groups compared to those in the vehicle-treated groups. These results suggest that chronic administration of pyridoxine enhances neuroblast differentiation in the dentate gyrus and induces new mature neurons in the hippocampal CA1 region by up-regulating BDNF expression in hippocampal homogenates.  相似文献   

4.
BackgroundIn the present study, we investigated the effects of pyridoxine on hippocampal functions and changes in protein profiles based on the proteomic approach.MethodsEight-week-old mice received intraperitoneal injections of physiological saline (vehicle) or 350 mg/kg pyridoxine twice a day for 21 days.ResultsPhosphoglycerate mutase 1 was up-regulated, while CB1 cannabinoid receptor-interacting protein 1 (CRIP1) was down-regulated, in the pyridoxine-treated group. Additionally, the serotonin and tyrosine hydroxylase was increased in the hippocampus of the pyridoxine-treated group than in that of the vehicle-treated group. Furthermore, discrimination indices based on the novel object recognition test were significantly higher in the pyridoxine-treated group than in the vehicle-treated group. Administration of CRIP1a siRNA significantly increases the discrimination index as well as cell proliferation and neuroblast differentiation in the dentate gyrus. In addition, the administration of rimonabant, a CB1 cannabinoid receptor antagonist, for 3 weeks significantly decreased the novel object recognition memory, the tyrosine hydroxylase level, the amount of cell proliferation, and neuroblast differentiation in the dentate gyrus. Treatment with pyridoxine significantly increased novel object recognition memory, but slightly ameliorated rimonabant-induced reduction in serotonin, the tyrosine hydroxylase level, the amount of cell proliferation, and neuroblast differentiation in the dentate gyrus.ConclusionThese results suggest that pyridoxine promotes hippocampal functions by increasing serotonin and tyrosine hydroylase immunoreactivity in the hippocampus. This positive effect may be associated with CRIP1a and CB1 cannabinoid receptor function.General significanceVitamin-B6 enhances hippocampal functions and this is closely associated with CRIP1a and CB1 cannabinoid receptors.  相似文献   

5.
It has been demonstrated that melatonin plays important roles in memory improvement and promotes neurogenesis in experimental animals. We examined effects of melatonin on cognitive deficits, neuronal damage, cell proliferation, neuroblast differentiation and neuronal maturation in the mouse dentate gyrus after cotreatment of scopolamine (anticholinergic agent) and melatonin. Scopolamine (1 mg/kg) and melatonin (10 mg/kg) were intraperitoneally injected for 2 and/or 4 weeks to 8-week-old mice. Scopolamine treatment induced significant cognitive deficits 2 and 4 weeks after scopolamine treatment, however, cotreatment of scopolamine and melatonin significantly improved spatial learning and short-term memory impairments. Two and 4 weeks after scopolamine treatment, neurons were not damaged/dead in the dentate gyrus, in addition, no neuronal damage/death was shown after cotreatment of scopolamine and melatonin. Ki67 (a marker for cell proliferation)- and doublecortin (a marker for neuroblast differentiation)-positive cells were significantly decreased in the dentate gyrus 2 and 4 weeks after scopolamine treatment, however, cotreatment of scopolamine and melatonin significantly increased Ki67- and doublecortin-positive cells compared with scopolamine-treated group. However, double immunofluorescence for NeuN/BrdU, which indicates newly-generated mature neurons, did not show double-labeled cells (adult neurogenesis) in the dentate gyrus 2 and 4 weeks after cotreatment of scopolamine and melatonin. Our results suggest that melatonin treatment recovers scopolamine-induced spatial learning and short-term memory impairments and restores or increases scopolamine-induced decrease of cell proliferation and neuroblast differentiation, but does not lead to adult neurogenesis (maturation of neurons) in the mouse dentate gyrus following scopolamine treatment.  相似文献   

6.
Cyclooxygenase-2 (COX-2) function has been implicated in a number of physiological processes, including inflammatory responses, synaptic transmission, and synaptic plasticity in the brain. However, the specific role of COX-2 in exercise-induced neurogenesis is still debatable. Here, we assessed the role of COX-2 in exercise-induced plasticity by comparing COX-2 knockout mice to wild-type control littermates. We investigated the number of neural stem cells, and the degree of cell proliferation and neuronal differentiation in COX-2 knockout and its wild-type mice that either exercised or remained inactive. Wild-type and COX-2 knockout mice were put on a treadmill and were either sedentary or were forced to run 1 h/day for five consecutive days at a pace of 10–12 m/min for 5 weeks. Loss of COX-2 expression in the knockout mice was confirmed with two measures: (1) COX immunolabeling in the hippocampus, and (2) the identification of abnormal kidney development using hematoxylin and eosin staining, including subcapsular glomerular hypoplasia and hypertrophy of the deeper cortical glomeruli. Compared to wild-type mice, COX-2 knockout mice exhibited a significant reduction in the neural stem cells (nestin-positive cells), cell proliferation (Ki67-positive cells), and neuroblast differentiation (doublecortin-positive cells). In contrast, exercise significantly increased the neural stem cells, cell proliferation, and neuroblast differentiation in both the wild-type and COX-2 knockout mice although the NeuN-immunoreactive neurons were similar in all groups. Expression of phosphorylated cAMP-response element binding protein was decreased in knockout mice. Exercise increased its expression in the subgranular zone of the dentate gyrus in both wild-type and knockout mice. These results suggest that the COX-2 pathway is one of important factors on neural stem cells, cell proliferation and neuroblast differentiation in sedentary mice. The ability of exercise to increase these types of neural plasticity, regardless of COX-2 signaling, suggests that the effects of exercise on neural stem cells, cell proliferation, and neuroblast differentiation are induced via a pathway that is independent of COX-2.  相似文献   

7.
Newly generated neurons in the dentate gyrus differentiate into mature granule cells. In the present study, we observed the effects of adrenalectomy (ADX) and corticosterone replacement therapy (CRT) on cell death, cell proliferation and neuroblast differentiation in the subgranular zone of the hippocampal dentate gyrus (SZDG). For this, the animals received vehicle or CRT after ADX, and were sacrificed 5 or 42 days later. Plasma corticosterone levels were very low in the adrenalectomized groups, whereas CRT after ADX significant increased serum corticosterone levels at 42 days, not 5 days, after ADX. ADX induced some neuronal damage in the dentate gyrus at 5 days post-ADX. CRT did not significantly reduce the neuronal damage at 5 days post-ADX; however, neuronal damage was not shown at 42 post-ADX with CRT. Ki67 (a marker for cell proliferation) and doublecortin (DCX, a marker for neuronal differentiation) immunoreaction was detected in the SZDG. ADX transiently increased cell proliferation and neuroblast differentiation 5 days after ADX, not 42 days, after ADX, and the CRT 42 days after ADX prominently decreased cell proliferation and neuroblast differentiation in the dentate gyrus. These results suggest that adrenal corticosteroid hormone is not essential for cell proliferation and neuroblast differentiation in long-term period after ADX.  相似文献   

8.
Past research suggested that androgens may play a role in the regulation of adult neurogenesis within the dentate gyrus. We tested this hypothesis by manipulating androgen levels in male rats. Castrated or sham castrated male rats were injected with 5-Bromo-2'deoxyuridine (BrdU). BrdU-labeled cells in the dentate gryus were visualized and phenotyped (neural or glial) using immunohistochemistry. Castrated males showed a significant decrease in 30-day cell survival within the dentate gyrus but there was no significant change in cell proliferation relative to control males, indicating that androgens positively affect cell survival, but not cell proliferation. To examine the role of testosterone on hippocampal cell survival, males were injected with testosterone s.c. for 30 days starting the day after BrdU injection. Higher doses (0.5 and 1.0 mg/kg) but not a lower dose (0.25 mg/kg) of testosterone resulted in a significant increase in neurogenesis relative to controls. We next tested the role of testosterone's two major metabolites, dihydrotestosterone (DHT), and estradiol, upon neurogenesis. Thirty days of injections of DHT (0.25 and 0.50 mg/kg) but not estradiol (0.010 and 0.020 mg/kg) resulted in a significant increase in hippocampal neurogenesis. These results suggest that testosterone enhances hippocampal neurogenesis via increased cell survival in the dentate gyrus through an androgen-dependent mechanism.  相似文献   

9.
Frataxin plays important roles in the mitochondrial respiratory chain and in the differentiation of neurons during early development. In this study, we observed the effects of frataxin on cell proliferation and neuroblast differentiation in the mouse hippocampal dentate gyrus. For this, we constructed an expression vector, PEP-1, that was fused with frataxin to create a PEP-1-frataxin fusion protein that easily penetrated frataxin into the blood-brain barrier. Three mg/kg PEP-1-frataxin was intraperitoneally administered to mice once a day for 2 weeks. The administration of PEP-1 alone did not result in any significant changes in the number of Ki67-positive cells and doublecortin (DCX)-immunoreactive neuroblasts in the mouse dentate gyrus. However, the administration of PEP-1-frataxin significantly increased the number of Ki67-positive cells and DCX-immunoreactive neuroblasts in the mouse dentate gyrus. In addition, PEP-1-frataxin significantly reduced 4-hydroxynonenal protein levels and malondialdehyde formation, while Cu, Zn-superoxide dismutase protein levels were maintained. These results suggest that frataxin effectively increased cell proliferation and neuroblast differentiation by decreasing lipid peroxidation in the dentate gyrus.  相似文献   

10.
Oxidative stress initiates age-related reduction in hippocampal neurogenesis and the use of antioxidants has been proposed as an effective strategy to prevent or attenuate the reduction of neurogenesis in the hippocampus. In the present study, we investigated the effects of Cu,Zn-superoxide dismutase (SOD1) and/or peroxiredoxin-2 (PRX2) on cell proliferation and neuroblast differentiation in the dentate gyrus in a model of d-galactose-induced aging model. For this study, we constructed an expression vector, PEP-1, fused PEP-1 with SOD1 or PRX2, and generated PEP-1-SOD1 and PEP-1-PRX2 fusion protein. The aging model was induced by subcutaneous injection of d-galactose (100 mg/kg) to 6-week-old male mice for 10 weeks. PEP-1, PEP-1-SOD1 and/or PEP-1-PRX2 fusion protein was intraperitoneally administered to these mice at 13-week-old once a day for 3 weeks and sacrificed at 30 min after the last administrations. The administration of PEP-1-SOD1 and/or PEP-1-PRX2 significantly improved d-galactose-induced deficits on the escape latency, swimming speeds, platform crossings, spatial preference for the target quadrant in Morris water maze test. In addition, the administration of PEP-1-SOD1 and/or PEP-1-PRX2 ameliorated d-galactose-induced reductions of cell proliferation and neuroblast differentiation in the dentate gyrus and significantly reduced d-galactose-induced lipid peroxidation in the hippocampus. These effects were more prominent in the PEP-1-SOD1-treated group with PEP-1-PRX2. These results suggest that a SOD1 and/or PRX2 supplement to aged mice could improve the memory deficits, cell proliferation and neuroblast differentiation in the dentate gyrus of d-galactose induced aged mice by reducing lipid peroxidation.  相似文献   

11.
Lemon balm, leaves of Melissa officinalis L., has been used for anti-anxiety and spasmolytics. We observed the extract of Melissa officinalis L. (MOE) on cell proliferation and neuroblast differentiation in the hippocampal dentate gyrus (DG) of middle-aged mice (12 months of age) using Ki67 and doublecortin (DCX), respectively. We also observed changes in corticosterone, GAD67 and GABA-transaminase (GABA-T) to check their possible mechanisms related to neurogenesis. We administered 50 or 200 mg/kg MOE to the animals once a day for 3 weeks. For labeling of newly generated cells, we also administered 5-bromodeoxyuridine (BrdU) twice a day for 3 days from the day of the first MOE treatment. Administration of 50 or 200 mg/kg MOE dose-dependently increased Ki67 positive nuclei to 244.1 and 763.9% of the vehicle-treated group, respectively. In addition, 50 or 200 mg/kg MOE significantly increased DCX positive neuroblasts with well-developed (tertiary) dendrites. Furthermore, MOE administration significantly increased BrdU/calbindin D-28 k double labeled cells (integrated neurons into granule cells in the DG) to 245.2% of the vehicle-treated group. On the other hand, administration of MOE reduced corticosterone levels in serum and decreased GABA-T levels in the DG homogenates. These results suggest that MOE increases cell proliferation, neuroblast differentiation and integration into granule cells by decreasing serum corticosterone levels as well as by increasing GABA levels in the mouse DG.  相似文献   

12.
Although Wnt7a has been implicated in axon guidance and synapse formation, investigations of its role in the early steps of neurogenesis have just begun. We show here that Wnt7a is essential for neural stem cell self-renewal and neural progenitor cell cycle progression in adult mouse brains. Loss of Wnt7a expression dramatically reduced the neural stem cell population and increased the rate of cell cycle exit in neural progenitors in the hippocampal dentate gyrus of adult mice. Furthermore, Wnt7a is important for neuronal differentiation and maturation. Loss of Wnt7a expression led to a substantial decrease in the number of newborn neurons in the hippocampal dentate gyrus. Wnt7a−/− dentate granule neurons exhibited dramatically impaired dendritic development. Moreover, Wnt7a activated β-catenin and its downstream target genes to regulate neural stem cell proliferation and differentiation. Wnt7a stimulated neural stem cell proliferation by activating the β-catenin–cyclin D1 pathway and promoted neuronal differentiation and maturation by inducing the β-catenin–neurogenin 2 pathway. Thus, Wnt7a exercised critical control over multiple steps of neurogenesis by regulating genes involved in both cell cycle control and neuronal differentiation.  相似文献   

13.
In this study, we observed the effects of metformin, one of the most widely prescribed drugs for the treatment of type 2 diabetes, on cell proliferation and neuroblast differentiation in the subgranular zone of the hippocampal dentate gyrus (SZDG) in Zucker diabetic fatty (ZDF) rats, which are a model for type 2 diabetes. For this, metformin was administered orally once a day to 14-week-old ZDF rats for 2 weeks and the animals were sacrificed at 16 weeks of age. During this period, blood glucose levels were higher in the vehicle-treated ZDF rats than in the Zucker lean control (ZLC) rats. Metformin treatment significantly decreased the blood glucose levels from 15.5 weeks of age. In the SZDG, Ki67 (a marker for cell proliferation)- and doublecortin (DCX, a marker for differentiated neuroblasts)-immunoreactive cells were much lower in the vehicle-treated ZDF rats than in the ZLC rats. In the metformin-treated ZDF group, Ki67- and DCX-immunoreactive cells were significantly increased in the SZDG compared to those in the vehicle-treated ZDF group. These results suggest that diabetes significantly reduces cell proliferation and neuroblast differentiation in the SZDG and that metformin treatment normalizes the reduction of cell proliferation and neuroblast differentiation in the SZDG in diabetic rats.  相似文献   

14.
We investigated the effects of a high-fat diet (HFD) and the subsequent treatment of metformin (met) and glimepiride (glim), which are widely prescribed for type 2 diabetes, on cell proliferation and neuroblast differentiation using Ki67 and doublecortin (DCX) immunohistochemistry, respectively. Animals were fed low-fat diet (LFD) or HFD for 8 weeks. After 5 weeks of the HFD treatment, met alone or met + glim was administered orally once a day for 3 weeks. Body weight and food intake were much higher in the HFD + vehicle-treated group than the LFD-treated group. The administration of met or met + glim to the HFD-treated group resulted in a decrease in weight gain and food intake. Ki67-immunoreactive (+) nuclei, DCX+ neuroblasts and brain-derived neurotrophic factor (BDNF) protein levels were markedly decreased in the dentate gyrus (DG) of the HFD + vehicle-treated group compared to the LFD-treated group. The administration of met or met + glim to the HFD-treated group prevented the reduction of Ki67+ nuclei, DCX+ neuroblasts, BDNF levels in the DG. The intraventricular injection of K252a (a BDNF receptor blocker) to the HFD-treated group treated met or met + glim distinctively lowered the reduction of cell proliferation and neuroblast differentiation induced by HFD. These results suggest that a HFD significantly reduces cell proliferation and neuroblast differentiation by reducing BDNF levels and these effects are ameliorated by treatment with met or met + glim.  相似文献   

15.
In the healthy adult brain, neurogenesis normally occurs in the subventricular zone (SVZ) and hippocampal dentate gyrus (DG). Cerebral ischemia enhances neurogenesis in neurogenic and non-neurogenic regions of the ischemic brain of adult rodents. This study demonstrated that post-insult treatment with a histone deacetylase inhibitor, sodium butyrate (SB), stimulated the incorporation of bromo-2'-deoxyuridine (BrdU) in the SVZ, DG, striatum, and frontal cortex in the ischemic brain of rats subjected to permanent cerebral ischemia. SB treatment also increased the number of cells expressing polysialic acid–neural cell adhesion molecule, nestin, glial fibrillary acidic protein, phospho-cAMP response element-binding protein (CREB), and brain-derived neurotrophic factor (BDNF) in various brain regions after cerebral ischemia. Furthermore, extensive co-localization of BrdU and polysialic acid–neural cell adhesion molecule was observed in multiple regions after ischemia, and SB treatment up-regulated protein levels of BDNF, phospho-CREB, and glial fibrillary acidic protein. Intraventricular injection of K252a, a tyrosine kinase B receptor antagonist, markedly reduced SB-induced cell proliferation detected by BrdU and Ki67 in the ipsilateral SVZ, DG, and other brain regions, blocked SB-induced nestin expression and CREB activation, and attenuated the long-lasting behavioral benefits of SB. Together, these results suggest that histone deacetylase inhibitor-induced cell proliferation, migration and differentiation require BDNF–tyrosine kinase B signaling and may contribute to long-term beneficial effects of SB after ischemic injury.  相似文献   

16.
Mice mutant for the presynaptic protein Bassoon develop epileptic seizures and an altered pattern of neuronal activity that is accompanied by abnormal enlargement of several brain structures, with the strongest size increase in hippocampus and cortex. Using manganese-enhanced magnetic resonance imaging, an abnormal brain enlargement was found, which is first detected in the hippocampus 1 month after birth and amounts to an almost 40% size increase of this structure after 3 months. Stereological quantification of cell numbers revealed that enlargement of the dentate gyrus and the hippocampus proper is associated with larger numbers of principal neurons and of astrocytes. In search for the underlying mechanisms, an approximately 3-fold higher proportion of proliferation and survival of new-born cells in the dentate gyrus was found to go hand in hand with similarly larger numbers of doublecortin-positive cells and reduced numbers of apoptotic cells in the dentate gyrus and the hippocampus proper. Enlargement of the hippocampus and of other forebrain structures was accompanied by increased levels of brain-derived neurotrophic factor (BDNF). These data show that hippocampal overgrowth in Bassoon-mutant mice arises from a dysregulation of neurogenesis and apoptosis that might be associated with unbalanced BDNF levels.  相似文献   

17.
To determine the role of brain-derived neurotrophic factor (BDNF) in the enhancement of hippocampal neurogenesis resulting from dietary restriction (DR), heterozygous BDNF knockout (BDNF +/-) mice and wild-type mice were maintained for 3 months on DR or ad libitum (AL) diets. Mice were then injected with bromodeoxyuridine (BrdU) and killed either 1 day or 4 weeks later. Levels of BDNF protein in neurons throughout the hippocampus were decreased in BDNF +/- mice, but were increased by DR in wild-type mice and to a lesser amount in BDNF +/- mice. One day after BrdU injection the number of BrdU-labeled cells in the dentate gyrus of the hippocampus was significantly decreased in BDNF +/- mice maintained on the AL diet, suggesting that BDNF signaling is important for proliferation of neural stem cells. DR had no effect on the proliferation of neural stem cells in wild-type or BDNF +/- mice. Four weeks after BrdU injection, numbers of surviving labeled cells were decreased in BDNF +/- mice maintained on either AL or DR diets. DR significantly improved survival of newly generated cells in wild-type mice, and also improved their survival in BDNF +/- mice, albeit to a lesser extent. The majority of BrdU-labeled cells in the dentate gyrus exhibited a neuronal phenotype at the 4-week time point. The reduced neurogenesis in BDNF +/- mice was associated with a significant reduction in the volume of the dentate gyrus. These findings suggest that BDNF plays an important role in the regulation of the basal level of neurogenesis in dentate gyrus of adult mice, and that by promoting the survival of newly generated neurons BDNF contributes to the enhancement of neurogenesis induced by DR.  相似文献   

18.
There are several known neurogenic areas including subventricular zone and subgranular layer in the dentate gyrus of the hippocampus. Both germinal centers exhibit an age-dependent decline in cell proliferation and neurogenesis, which may be associated with age-related decline in brain function. We recently identified the subcallosal zone (SCZ) as a novel neural stem cell niche with a potential to spontaneously produce new neuroblasts. We examined whether SCZ neurogenesis is also regulated by the age of mice. The number of newly generated neuroblasts was reduced in the SCZ with age, and only marginal number of DCX-labeled neuroblasts was found in 6-month-old SCZ, which is most likely due to reduced proliferation of progenitor cells and loss of neural stem cells (NSCs). This age-dependent changes in the SCZ occurred earlier than that of other neurogenic brain regions. The neurosphere assay in vitro confirmed the depletion of NSCs within the SCZ of young adults. However, marked induction of neuroblast production in the SCZ was seen in 6-month-old mice after traumatic brain injury. Taken together, these results indicate that a rapid decline in SCZ neurogenesis in mice is due to depletion of NSCs and reduced capacity to produce neuroblasts.  相似文献   

19.
In this study, we synthesized [1-(4-(benzo[d][1,3]dioxol-5-ylmethyl)piperazin-1-yl)-5-(1,2-dithiolan-3-yl)pentan-1-one, HBU-39], a (α)-lipoic acid derivative, and found this compound strongly inhibited butyrylcholinesterase (BuChE) in an in vitro experiment. We also examined the effects of HBU-39 on cell proliferation and neuroblast differentiation using the specific markers Ki67 and doublecortin (DCX), respectively, in the hippocampal dentate gyrus of a rat model of scopolamine-induced amnesia. For this, scopolamine was subcutaneously administered for 28 days by an ALzet osmotic minipump (44 mg/mL delivered at 2.5 μL/h). HBU-39 (1 mg/kg per day) and galantamine (an acetylcholinesterase inhibitor used as a control; 5 mg/kg per day) were intraperitoneally administered for 28 days. The administration of scopolamine significantly decreased the mean number of Ki67- and DCX-immunoreactive cells in the dentate gyrus. However, treatment with both HBU-39 and galantamine significantly ameliorated the reductions in cell proliferation and neuroblast differentiation. In particular, the mean number of Ki67- and DCX-immunoreactive cells was prominently abundant in the HBU-treated group compared to that in the galantamine-treated group. These results suggest that the BuChE inhibitor, HBU-39, can ameliorate the scopolamine-induced reductions of cell proliferation and neuroblast differentiation, and HBU-39 may be applicable to amnesia patients to promote memory functions.  相似文献   

20.
Neurogenesis in the dentate gyrus of adult rodents is elicited by transient global ischemia. Cyclooxygenase (COX) -2, a rate-limiting enzyme for prostanoid synthesis, is also induced by ischemia. We recently found that the administration of a non-selective COX inhibitor to ischemic animals suppressed cell proliferation in the subgranular zone (SGZ) at the dentate gyrus of the hippocampus. To clarify whether prostaglandin E2 (PGE2) synthesis by COX's is involved in neurogenesis, sulprostone, an analogue of PGE2, was injected into the rat hippocampus. Sulprostone injection increased the number of 5-bromo-2'-deoxyuridine (BrdU)-positive cells in the SGZ. BrdU-positive cells also expressed polysialylated isoforms of neural cell adhesion molecule and neuronal nuclear antigen. These results suggest that PGE2 plays an important role in the proliferation of cells in the SGZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号