首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J S Yao  E G Strauss    J H Strauss 《Journal of virology》1996,70(11):7910-7920
During the assembly of alphaviruses, a preassembled nucleocapsid buds through the cell plasma membrane to acquire an envelope containing two virally encoded glycoproteins, E2 and E1. Using two chimeric viruses, we have studied interactions between E1, E2, and a viral peptide called 6K, which are required for budding. A chimeric Sindbis virus (SIN) in which the 6K gene had been replaced with that from Ross River virus (RR) produced wild-type levels of nucleocapsids and abundant PE2/E1 heterodimers that were processed and transported to the cell surface. However, only about 10% as much chimeric virus as wild-type virus was assembled, demonstrating that there is a sequence-specific interaction between 6K and the glycoproteins required for efficient virus assembly. In addition, the conformation of E1 in the E2/E1 heterodimer on the cell surface was different for the chimeric virus from that for the wild type, suggesting that one function of 6K is to promote proper folding of E1 in the heterodimer. A second chimeric SIN, in which both the 6K and E1 genes, as well as the 3' nontranslated region, were replaced with the corresponding regions of RR also resulted in the production of large numbers of intracellular nucleocapsids and of PE2/E1 heterodimers that were cleaved and transported to the cell surface. Budding of this chimera was severely impaired, however, and the yield of the chimera was only approximately 10(-7) of the SIN yield in a parallel infection. The conformation of the SIN E2/RR E1 heterodimer on the cell surface was different from that of the SIN E2/SIN E1 heterodimer, and no interaction between viral glycoproteins and nucleocapsids at the cell plasma membrane could be detected in the electron microscope. We suggest that proper folding of the E2/E1 heterodimer must occur before the E2 tail is positioned properly in the cytoplasm for budding and before heterodimer trimerization can occur to drive virus budding.  相似文献   

2.
Glycoprotein PE2 of Sindbis virus will form a heterodimer with glycoprotein E1 of Ross River virus that is cleaved to an E2/E1 heterodimer and transported to the cell plasma membrane, but this chimeric heterodimer fails to interact with Sindbis virus nucleocapsids, and very little budding to produce mature virus occurs upon infection with chimeric viruses. We have isolated in both Sindbis virus E2 and in Ross River virus E1 a series of suppressing mutations that adapt these two proteins to one another and allow increased levels of chimeric virus production. Two adaptive E1 changes in an ectodomain immediately adjacent to the membrane anchor and five adaptive E2 changes in a 12-residue ectodomain centered on Asp-242 have been identified. One change in Ross River virus E1 (Gln-411→Leu) and one change in Sindbis virus E2 (Asp-248→Tyr) were investigated in detail. Each change individually leads to about a 10-fold increase in virus production, and combined the two changes lead to a 100-fold increase in virus. During passage of a chimeric virus containing Ross River virus E1 and Sindbis virus E2, the E2 change was first selected, followed by the E1 change. Heterodimers containing these two adaptive mutations have a demonstrably increased degree of interaction with Sindbis virus nucleocapsids. In the parental chimera, no interaction between heterodimers and capsids was visible at the plasma membrane in electron microscopic studies, whereas alignment of nucleocapsids along the plasma membrane, indicating interaction of heterodimers with nucleocapsids, was readily seen in the adapted chimera. The significance of these findings in light of our current understanding of alphavirus budding is discussed.  相似文献   

3.
Chimeric alphaviruses in which the 6K and glycoprotein E1 moieties of Sindbis virus are replaced with those of Ross River virus grow very poorly, but upon passage, adapted variants arise that grow >100 times better. We have sequenced the entire domain encoding the E2, 6K, and E1 proteins of a number of these adapted variants and found that most acquired two amino acid changes, which had cumulative effects. In three independent passage series, amino acid 380 of E2, which is in the transmembrane domain, was mutated from the original isoleucine to serine in two instances and to valine once. We have now changed this residue to seven others by site-directed mutagenesis and tested the effects of these mutations on the growth of both the chimera [SIN(RRE1)] and of parental Sindbis. These results indicate that the transmembrane domains of glycoproteins E2 and E1 of alphaviruses interact in a sequence-dependent manner and that this interaction is required for efficient budding and assembly of infectious virions.  相似文献   

4.
5.
T C Hobman  H F Lemon    K Jewell 《Journal of virology》1997,71(10):7670-7680
Rubella virus contains three structural proteins, capsid, E2, and E1. E2 and E1 are type I membrane glycoproteins that form a heterodimer in the endoplasmic reticulum (ER) before they are transported to and retained in the Golgi complex, where virus assembly occurs. The bulk of unassembled E2 and E1 subunits are not transported to the Golgi complex. We have recently shown that E2 contains a Golgi-targeting signal that mediates retention of the E2-E1 complex (T. C. Hobman, L. Woodward, and M. G. Farquhar, Mol. Biol. Cell 6:7-20, 1995). The focus of this study was to determine if E1 glycoprotein also contains intracellular targeting information. We constructed a series of chimeric reporter proteins by fusing domains from E1 to the ectodomains of two other type I membrane proteins which are normally transported to the cell surface, vesicular stomatitis virus G protein (G) and CD8. Fusion of the E1 transmembrane and cytoplasmic regions, but not analogous domains from two control membrane proteins, to the ectodomains of G and CD8 proteins caused the resulting chimeras to be retained in the ER. Association of the ER-retained chimeras with known ER chaperone proteins was not detected. ER localization required both the transmembrane and cytoplasmic regions of E1, since neither of these domains alone was sufficient to retain the reporter proteins. Increasing the length of the E1 cytoplasmic domain by 10 amino acids completely abrogated ER retention. This finding also indicated that the chimeras were not retained as a result of misfolding. In summary, we have identified a new type of ER retention signal that may function to prevent unassembled E1 subunits and/or immature E2-E1 dimers from reaching the Golgi complex, where they could interfere with viral assembly. Accordingly, assembly of E2 and E1 would mask the signal, thereby allowing transport of the heterodimer from the ER.  相似文献   

6.
We have studied interactions between nucleocapsids and glycoproteins required for budding of alphaviruses, using Ross River virus-Sindbis virus chimeras in which the nucleocapsid protein is derived from one virus and the envelope glycoproteins are derived from the second virus. A virus containing the Ross River virus genome in which the capsid protein had been replaced with that from Sindbis virus was almost nonviable. Nucleocapsids formed in normal numbers in the infected cell, but very little virus was released from the cell. There are 11 amino acid differences between Ross River virus and Sindbis virus in their 33-residue E2 cytoplasmic domains. Site-specific mutagenesis was used to change 9 of these 11 amino acids in the chimera from the Ross River virus to the Sindbis virus sequence in an attempt to adapt the E2 of the chimera to the nucleocapsid. The resulting mutant chimera grew 4 orders of magnitude better than the parental chimeric virus. This finding provides direct evidence for a sequence-specific interaction between the nucleocapsid and the E2 cytoplasmic domain during virus budding. The mutated chimeric virus readily gave rise to large-plaque variants that grew almost as well as Ross River virus, suggesting that additional single amino acid substitutions in the structural proteins can further enhance the interactions between the disparate capsid and the glycoproteins. Unexpectedly, change of E2 residue 394 from lysine (Ross River virus) to glutamic acid (Sindbis virus) was deleterious for the chimera, suggesting that in addition to its role in nucleocapsid-E2 interactions, the N-terminal part of the E2 cytoplasmic domain may be involved in glycoprotein-glycoprotein interactions required to assemble the glycoprotein spikes. The reciprocal chimera, Sindbis virus containing the Ross River virus capsid, also grew poorly. Suppressor mutations arose readily in this chimera, producing a virus that grew moderately well and that formed larger plaques.  相似文献   

7.
Simian immunodeficiency virus SIVMne, like human immunodeficiency virus, evolves from a macrophage-tropic, non-syncytium-inducing virus at early times in infection to a T-cell-tropic, syncytium-inducing, cytopathic virus population over the course of progression to AIDS. Because the viruses isolated late in SIVMne infection of macaques include a complex mixture of variants, the viral determinants of such phenotypic changes have not been defined. To identify genetic changes that are important to virus evolution in the host, we constructed chimeric viruses by introducing variant envelope genes representative of proviruses throughout the course of infection and disease into the SIVMne parental clone (SIVMneCL8) that infected the macaque. The chimeric viruses expressed sequences encoding the surface unit of the envelope glycoprotein (Env-SU) of variants cloned between 35 and 170 weeks postinfection. The chimera with Env-SU from 35 weeks postinfection encoded only four changes in V1 compared to SIVMneCL8, whereas the chimeras encoding Env-SU from variants isolated later in infection encoded progressively more mutations both in V1 and elsewhere. Like SIVMneCL8, the chimeras were infectious for CEMx174 cells and macaque peripheral blood mononuclear cells. However, in contrast to SIVMneCL8, the chimeric viruses did not infect macaque macrophages, although each retained the ability to recognize the CCR-5 coreceptor. Thus, these data provide direct evidence that changes which evolve in Env-SU during the course of SIVMne infection do not alter CCR-5 interactions. Viruses encoding Env-SU from the latest times in infection (121 to 170 weeks postinfection), after disease was apparent, were syncytium inducing. However, these viruses were not highly cytopathic, suggesting that additional viral determinants may be required for the rapidly replicating, cytopathic phenotype of the uncloned mixed variant population. Changes in Env-SU did allow the virus to escape serum neutralizing antibodies that recognized the SIVMneCL8 parent. Moreover, the chimera encoding the Env-SU of a virus from 35 weeks postinfection, which differed from SIVMneCL8 only in V1, was not sensitive to neutralization by infected macaque sera, suggesting that V1 may define a portion of the principal neutralizing determinant for SIVMne. Together, these data suggest that SIV variants with changes in the Env-SU may be selected primarily by virtue of their ability to escape neutralizing antibody recognition.  相似文献   

8.
Rubella virus (RV) envelope glycoproteins, E2 and E1, form a heterodimeric complex that is targeted to medial/trans-Golgi cisternae. To identify the Golgi targeting signal(s) for the E2/E1 spike complex, we constructed chimeric proteins consisting of domains from RV glycoproteins and vesicular stomatitis virus (VSV) G protein. The location of the chimeric proteins in stably transfected Chinese hamster ovary cells was determined by immunofluorescence, immunoelectron microscopy, and by the extent of processing of their N-linked glycans. A trans-dominant Golgi retention signal was identified within the C-terminal region of E2. When the transmembrane (TM) and cytoplasmic (CT) domains of VSV G were replaced with those of RV E2, the hybrid protein (G-E2TMCT+) was retained in the Golgi. Transport of G-E2TMCT+ to the Golgi was rapid (t1/2 = 10-20 min). The G-E2TMCT+ protein was determined to be distal to or within the medial Golgi based on acquisition of endo H resistance but proximal to the trans-Golgi network since it lacked sialic acid. Deletion analysis revealed that only the TM domain of E2 was required for Golgi targeting. Although the cytoplasmic domain of E2 was not necessary for Golgi retention, it was required for efficient transport of VSV G-RV chimeras out of the endoplasmic reticulum. When assayed in sucrose velocity sedimentations gradients, the Golgi-retained G-E2TMCT+ protein behaved as a dimer. Unlike virtually all other Golgi targeting signals, the E2 TM domain does not contain any polar amino acids. The TM and CT domains of E1 were not required for targeting of E2 and E1 to the Golgi indicating that a heterodimer of two integral membrane proteins can be retained in the Golgi by a single retention signal.  相似文献   

9.
Yi M  Ma Y  Yates J  Lemon SM 《Journal of virology》2007,81(2):629-638
There is little understanding of mechanisms underlying the assembly and release of infectious hepatitis C virus (HCV) from cultured cells. Cells transfected with synthetic genomic RNA from a unique genotype 2a virus (JFH1) produce high titers of virus, while virus yields are much lower with a prototype genotype 1a RNA containing multiple cell culture-adaptive mutations (H77S). To characterize the basis for this difference in infectious particle production, we constructed chimeric genomes encoding the structural proteins of H77S within the background of JFH1. RNAs encoding polyproteins fused at the NS2/NS3 junction ("H-NS2/NS3-J") and at a site of natural, intergenotypic recombination within NS2 ["H-(NS2)-J"] produced infectious virus. In contrast, no virus was produced by a chimera fused at the p7-NS2 junction. Chimera H-NS2/NS3-J virus (vH-NS2/NS3-J) recovered from transfected cultures contained compensatory mutations in E1 and NS3 that were essential for the production of infectious virus, while yields of infectious vH-(NS2)-J were enhanced by mutations within p7 and NS2. These compensatory mutations were chimera specific and did not enhance viral RNA replication or polyprotein processing; thus, they likely compensate for incompatibilities between proteins of different genotypes at sites of interactions essential for virus assembly and/or release. Mutations in p7 and NS2 acted additively and increased the specific infectivity of vH-(NS2)-J particles, while having less impact on the numbers of particles released. We conclude that interactions between NS2 and E1 and p7 as well as between NS2 and NS3 are essential for virus assembly and/or release and that each of these viral proteins plays an important role in this process.  相似文献   

10.
The p7 protein of hepatitis C virus (HCV) is a viroporin that is dispensable for viral genome replication but plays a critical role in virus morphogenesis. In this study, we generated a JFH1-based intergenotypic chimeric genome that encoded a heterologous genotype 1b (GT1b) p7. The parental intergenotypic chimeric genome was nonviable in human hepatoma cells, and infectious chimeric virions were produced only when cells transfected with the chimeric genomes were passaged several times. Sequence analysis of the entire polyprotein-coding region of the recovered chimeric virus revealed one predominant amino acid substitution in nonstructural protein 2 (NS2), T23N, and one in NS5B, K151R. Forward genetic analysis demonstrated that each of these mutations per se restored the infectivity of the parental chimeric genome, suggesting that interactions between p7, NS2, and NS5B were required for virion assembly/maturation. p7 and NS5B colocalized in cellular compartments, and the NS5B mutation did not affect the colocalization pattern. The NS5B K151R mutation neither increased viral RNA replication in human hepatoma cells nor altered the polymerase activity of NS5B in an in vitro assay. In conclusion, this study suggests that HCV NS5B is involved in virus morphogenesis.  相似文献   

11.
Lu CW  Roth MJ 《Journal of virology》2001,75(9):4357-4366
The function of the N terminus of the murine leukemia virus (MuLV) surface (SU) protein was examined. A series of five chimeric envelope proteins (Env) were generated in which the N terminus of amphotropic 4070A was replaced by equivalent sequences from ecotropic Moloney MuLV (M-MuLV). Viral titers of these chimeras indicate that exchange with homologous sequences could be tolerated, up to V17eco/T15ampho (crossover III). Constructs encoding the first 28 amino acids (aa) of ecotropic M-MuLV resulted in Env expression and binding to the receptor; however, the virus titer was reduced 5- to 45-fold, indicating a postbinding block. Additional exchange beyond the first 28 aa of ecotropic MuLV Env resulted in defective protein expression. These N-terminal chimeras were also introduced into the AE4 chimeric Env backbone containing the amphotropic receptor binding domain joined at the hinge region to the ecotropic SU C terminus. In this backbone, introduction of the first 17 aa of the ecotropic Env protein significantly increased the titer compared to that of its parental chimera AE4, implying a functional coordination between the N terminus of SU and the C terminus of the SU and/or transmembrane proteins. These data functionally dissect the N-terminal sequence of the MuLV Env protein and identify differential effects on receptor-mediated entry.  相似文献   

12.
The development of effective hepatitis C virus (HCV) vaccines is essential for the prevention of further HCV dissemination, especially in developing countries. Therefore the aim of this study is to establish a feasible and immunocompetent surrogate animal model of HCV infection that will help in evaluation of the protective efficacy of newly developing HCV vaccine candidates. To circumvent the narrow host range of HCV, an HCV genotype 1b‐based chimeric clone carrying E1, E2 and p6 regions from GB virus B (GBV‐B), which is closely related to HCV, was generated. The chimera between HCV and GBV‐B, named HCV/G, replicated more efficiently as compared with the HCV clone in primary marmoset hepatocytes. Furthermore, it was found that the chimera persistently replicated in a tamarin for more than 2 years after intrahepatic inoculation of the chimeric RNA. Although relatively low (<200 copies/mL), the viral RNA loads in plasma were detectable intermittently during the observation period. Of note, the chimeric RNA was found in the pellet fraction obtained by ultracentrifugation of the plasma at 73 weeks, indicating production of the chimeric virus. Our results will help establish a novel non‐human primate model for HCV infection on the basis of the HCV/G chimera in the major framework of the HCV genome.  相似文献   

13.
Oligomerization of viral envelope proteins is essential to control virus assembly and fusion. The transmembrane domains (TMDs) of hepatitis C virus envelope glycoproteins E1 and E2 have been shown to play multiple functions during the biogenesis of E1E2 heterodimer. This makes them very unique among known transmembrane sequences. In this report, we used alanine scanning insertion mutagenesis in the TMDs of E1 and E2 to examine their role in the assembly of E1E2 heterodimer. Alanine insertion within the center of the TMDs of E1 or E2 or in the N-terminal part of the TMD of E1 dramatically reduced heterodimerization, demonstrating the essential role played by these domains in the assembly of hepatitis C virus envelope glycoproteins. To better understand the alanine scanning data obtained for the TMD of E1 which contains GXXXG motifs, we analyzed by circular dichroism and nuclear magnetic resonance the three-dimensional structure of the E1-(350-370) peptide encompassing the N-terminal sequence of the TMD of E1 involved in heterodimerization. Alanine scanning results and the three-dimensional molecular model we obtained provide the first framework for a molecular level understanding of the mechanism of hepatitis C virus envelope glycoprotein heterodimerization.  相似文献   

14.
Genetic determinants of dengue type 4 virus neurovirulence for mice.   总被引:17,自引:7,他引:10       下载免费PDF全文
H Kawano  V Rostapshov  L Rosen    C J Lai 《Journal of virology》1993,67(11):6567-6575
Mouse-adapted dengue type 4 virus (DEN4) strain H241 is highly neurovirulent for mice, whereas its non-mouse-adapted parent is rarely neurovirulent. The genetic basis for the neurovirulence of the mouse-adapted mutant was studied by comparing intratypic chimeric viruses that contained the three structural protein genes from the parental virus or the neurovirulent mutant in the background sequence of nonneurovirulent DEN4 strain 814669. The chimera that contained the three structural protein genes from mouse neurovirulent DEN4 strain H241 proved to be highly neurovirulent in mice, whereas the chimera that contained the corresponding genes from its non-mouse-adapted parent was not neurovirulent. This finding indicates that most of the genetic loci for the neurovirulence of the DEN4 mutant lie within the structural protein genes. A comparison of the amino acid sequences of the parent and its mouse neurovirulent mutant proteins revealed that there were only five amino acid differences in the structural protein region, and three of these were located in the envelope (E) glycoprotein. Analysis of chimeras which contained one or two of the variant amino acids of the mutant E sequence substituting for the corresponding sequence of the parental virus identified two of these amino acid changes as important determinants of mouse neurovirulence. First, the single substitution of Ile for Thr-155 which ablated one of the two conserved glycosylation sites in parental E yielded a virus that was almost as neurovirulent as the mouse-adapted mutant. Thus, the loss of an E glycosylation site appears to play a role in DEN4 neurovirulence. Second, the substitution of Leu for Phe-401 also yielded a neurovirulent virus, but it was less neurovirulent than the glycosylation mutant. These findings indicate that at least two of the genetic loci responsible for DEN4 mouse neurovirulence map within the structural protein genes.  相似文献   

15.
The human immunodeficiency virus type 1 strain MN (HIV-1MN) principal neutralizing determinant (PND, V3 loop) was introduced into infectious molecular clones HIV-2KR and simian immunodeficiency virus mm239 (SIVmm239) by hybridization PCR, replacing the corresponding HIV-2 or SIV envelope cysteine loops with the HIV-1 coding sequence. The HIV-2 chimera (HIV-2KR-MNV3) was found to be capable of infecting a number of T-cell lymphoblastic cell lines as well as primary peripheral blood mononuclear cells. In contrast, the SIV chimera (SIV239MNV3) was not replication competent. Envelope produced by HIV-2KR-MNV3 but not the parental HIV-2KR was recognized by V3-specific and HIV-1-specific polyclonal antisera in radioimmunoprecipitation assays. HIV-2-specific antisera recognized both the chimeric and parental virus but not HIV-1MN. The chimeric HIV-2KR-MNV3 virus proved to be exquisitely susceptible to neutralization by HIV-1-specific and V3-specific antisera, suggesting the potential for use in animal models designed to test HIV-1 vaccine candidates which target the PND.  相似文献   

16.
Hepatitis E virus (HEV) replication is not well understood, mainly because the virus does not infect cultured cells efficiently. However, Huh-7 cells transfected with full-length genomes produce open reading frame 2 protein, indicative of genome replication (6). To investigate the role of 3'-terminal sequences in RNA replication, we constructed chimeric full-length genomes with divergent 3'-terminal sequences of genotypes 2 and 3 replacing that of genotype 1 and transfected them into Huh-7 cells. The production of viral proteins by these full-length chimeras was indistinguishable from that of the wild type, suggesting that replication was not impaired. In order to better quantify HEV replication in cell culture, we constructed an HEV replicon with a reporter (luciferase). Luciferase production was cap dependent and RNA-dependent RNA polymerase dependent and increased following transfection of Huh-7 cells. Replicons harboring the 3'-terminal intergenotypic chimera sequences were also assayed for luciferase production. In spite of the large sequence differences among the 3' termini of the viruses, replication of the chimeric replicons was surprisingly similar to that of the parental replicon. However, a single unique nucleotide change within a predicted stem structure at the 3' terminus substantially reduced the efficiency of replication: RNA replication was partially restored by a covariant mutation. Similar patterns of replication were obtained when full-length genomes were inoculated into rhesus macaques, suggesting that the in vitro system could be used to predict the effect of 3'-terminal mutations in vivo. Incorporation of the 3'-terminal sequences of the swine strain of HEV into the genotype 1 human strain did not enable the human strain to infect swine.  相似文献   

17.
The 80 trimeric, glycoprotein spikes that cover the surface of alphavirus particles are required for mediating viral entry into a host cell. Spike assembly is a regulated process that requires interactions between five structural proteins, E3, E2, 6K and its translational frameshift product TF, and E1. E3 is a small, ∼65-amino-acid glycoprotein that has two known functions: E3 serves as the signal sequence for translocation of the E3-E2-6K-E1 polyprotein into the endoplasmic reticulum (ER), and cleavage of E3 from E2 is essential for virus maturation. Nonetheless, when E3 is replaced with an ER signal sequence, spikes do not form and infectious particles are not assembled, suggesting an additional role(s) for E3 in the viral life cycle. To further investigate the role of E3 in spike assembly, we made chimeric viruses in which E3 from one alphavirus species is replaced with E3 from another species. Our results demonstrate that when E3 is interchanged between alphavirus species that belong to the same virus clade, viral titers and particle morphologies and compositions are similar to what are observed for the parental virus. In contrast, for chimeras in which E3 is derived from a different clade than the parental virus, we observed reduced titers and the formation of particles with atypical morphologies and protein compositions. We further characterized the E3 chimeras using a combination of structure-function and revertant analyses. This work revealed two specific interactions between E3 and its cognate E2 glycoprotein that are important for regulating spike assembly.  相似文献   

18.
Hepatitis C virus (HCV) glycoproteins E1 and E2 assemble to form a noncovalent heterodimer which, in the cell, accumulates in the endoplasmic reticulum (ER). Contrary to what is observed for proteins with a KDEL or a KKXX ER-targeting signal, the ER localization of the HCV glycoprotein complex is due to a static retention in this compartment rather than to its retrieval from the cis-Golgi region. A static retention in the ER is also observed when E2 is expressed in the absence of E1 or for a chimeric protein containing the ectodomain of CD4 in fusion with the transmembrane domain (TMD) of E2. Although they do not exclude the presence of an intracellular localization signal in E1, these data do suggest that the TMD of E2 is an ER retention signal for HCV glycoprotein complex. In this study chimeric proteins containing the ectodomain of CD4 or CD8 fused to the C-terminal hydrophobic sequence of E1 were shown to be localized in the ER, indicating that the TMD of E1 is also a signal for ER localization. In addition, these chimeric proteins were not processed by Golgi enzymes, indicating that the TMD of E1 is responsible for true retention in the ER, without recycling through the Golgi apparatus. Together, these data suggest that at least two signals (TMDs of E1 and E2) are involved in ER retention of the HCV glycoprotein complex.  相似文献   

19.
We describe a novel method of random chimeragenesis based on highly frequent deletion formation in the Escherichia coli ssb-3 strain and a deletion-directed chimera selection system that uses the rpsL(+) gene as a reporter. It enables the selection of chimeras without target gene expression and can therefore be applied to cytotoxic targets. When this system was applied to phospholipase D genes from Streptomyces septatus TH-2 and Streptomyces halstedii subsp. scabies K6 (examples of cytotoxic targets), chimeragenesis occurred between short identical sequences at the corresponding position of the parental genes with large variations. Chimeragenesis was >1,000 times more frequent in the ssb-3 background than in the ssb(+) background. We called this system repeat-length-independent broad-spectrum shuffling. It enables the convenient chimeragenesis and functional study of chimeric proteins. In fact, we found two amino acid residues related to the thermostability of phospholipase D (Phe426 and Thr433) by comparing thermostability among the chimeric enzymes obtained.  相似文献   

20.
The transmembrane (TM) domains of hepatitis C virus (HCV) envelope glycoproteins E1 and E2 have been shown to play multiple roles during the biogenesis of the E1E2 heterodimer. By using alanine scanning insertion mutagenesis within the TM domains of HCV envelope glycoproteins, we have previously shown that the central regions of these domains as well as the N-terminal part of the TM domain of E1 are involved in heterodimerization. Here, we used a tryptophan replacement scan of these regions to identify individual residues that participate in those interactions. Our mutagenesis study identified at least four residues involved in heterodimerization: Gly 354, Gly 358, Lys 370, and Asp 728. Interestingly, Gly 354 and Gly 358 belong to a GXXXG oligomerization motif. Our tryptophan mutants were also used to generate retrovirus-based, HCV-pseudotyped particles (HCVpp) in order to analyze the effects of these mutations on virus entry. Surprisingly, two mutants consistently displayed higher infectivity compared to that of the wild type. In contrast, HCVpp infectivity was strongly affected for many mutants, despite normal E1E2 heterodimerization and normal levels of incorporation of HCV glycoproteins into HCVpp. The characterization of some of these HCVpp mutants in the recently developed in vitro fusion assay using fluorescent-labeled liposomes indicated that mutations reducing HCVpp infectivity without altering E1E2 heterodimerization affected the fusion properties of HCV envelope glycoproteins. In conclusion, this mutational analysis identified residues involved in E1E2 heterodimerization and revealed that the TM domains of HCV envelope glycoproteins play a major role in the fusion properties of these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号