首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been hypothesized that plants compete actively by allocating more resources to competitive organs and activities in response to neighbours, and this can reduce population performance, such as yield in crops. Root proliferation and reduced aboveground growth in response to the presence of roots of a neighbouring plant in experiments with vs. without root dividers between pairs of plants has been reported in several studies, but this result has been criticized as a possible artefact resulting from differences in soil volume available to roots in the two treatments. To address this possible confounding effect, we conducted a pot experiment with a traditional landrace and a modern cultivar of wheat (Triticum aestivum). Pairs of spring wheat plants were grown in pots with two types of root dividers (a) film, which completely divides the soil into two volumes, and (b) fine nylon net, through which roots cannot grow but chemical cues can move. We hypothesized that the root proliferation in response to root interactions would reduce aboveground growth. Wheat plants produced significantly more belowground and less aboveground biomass when interacting through the net dividers than when roots were completely separated. This effect was smaller, but still significant, in the modern cultivar. Our results confirm neighbour-induced root proliferation resulting in a so-called “tragedy of the commons” in an important crop species. The results also suggest that this response has decreased over the course of crop breeding, due to inadvertent “group selection”, and that there is further potential to increase yields by reducing or eliminating this response.  相似文献   

2.
J Xie  L Tang  Z Wang  G Xu  Y Li 《PloS one》2012,7(7):e41502
In resource-poor environments, adjustment in plant biomass allocation implies a complex interplay between environmental signals and plant development rather than a delay in plant development alone. To understand how environmental factors influence biomass allocation or the developing phenotype, it is necessary to distinguish the biomass allocations resulting from environmental gradients or ontogenetic drift. Here, we compared the development trajectories of cotton plants (Gossypium herbaceum L.), which were grown in two contrasting soil textures during a 60-d period. Those results distinguished the biomass allocation pattern resulting from ontogenetic drift and the response to soil texture. The soil texture significantly changed the biomass allocation to leaves and roots, but not to stems. Soil texture also significantly changed the development trajectories of leaf and root traits, but did not change the scaling relationship between basal stem diameter and plant height. Results of nested ANOVAs of consecutive plant-size categories in both soil textures showed that soil gradients explained an average of 63.64-70.49% of the variation of biomass allocation to leaves and roots. Ontogenetic drift explained 77.47% of the variation in biomass allocation to stems. The results suggested that the environmental factors governed the biomass allocation to roots and leaves, and ontogenetic drift governed the biomass allocation to stems. The results demonstrated that biomass allocation to metabolically active organs (e.g., roots and leaves) was mainly governed by environmental factors, and that biomass allocation to metabolically non-active organs (e.g., stems) was mainly governed by ontogenetic drift. We concluded that differentiating the causes of development trajectories of plant traits was important to the understanding of plant response to environmental gradients.  相似文献   

3.
Facilitation, both by inter‐ and intra‐specific neighbours, is known to be an important process in structuring plant communities. However, only a small number of experiments have been reported on facilitation in plant invasions, especially between invasive con‐specific individuals. Here, we focus on how con‐specific neighbours of the invasive alien plant alligator weed affect the tolerance of alligator weed to herbivory by the introduced biological control agent, Agasicles hygrophila. We conducted greenhouse and garden experiments in which invasive plant density and herbivory intensity (artificial clipping and real herbivory) were manipulated. In the greenhouse experiment, artificial clipping significantly reduced plant biomass when plants were grown individually, but when con‐specific neighbours were present in the same pot, biomass was not significantly different from control plants. Similarly, when compared to control plants, plants that were subjected to herbivory by A. hygrophila produced more biomass when grown with two con‐specific neighbours than when grown alone. Real herbivory also resulted in an increased number of vegetative buds, and again when two con‐specific neighbours were present this effect was increased (a 55.3% increase in buds when there was no neighbour, but a 111.6% increase in buds when two con‐specific neighbours were present). In the garden experiment, in which plants were grown at high density (6 plants per pot), alligator weed fully recovered from defoliation caused by insects at levels from 20–30% to 100%. Our results indicate that the con‐specific association may increase the compensatory ability to cope with intense damage in this invasive plant.  相似文献   

4.
Aims Resource allocation in plants can be strongly affected by competition. Besides plant–plant interactions, terrestrial plants compete with the soil bacterial community over nutrients. Since the bacterial communities cannot synthesize their own energy sources, they are dependent on external carbon sources. Unlike the effect of overall amounts of carbon (added to the soil) on plant performance, the effect of fine scale temporal variation in soil carbon inputs on the bacterial biomass and its cascading effects on plant growth are largely unknown. We hypothesize that continuous carbon supply (small temporal variance) will result in a relatively constant bacterial biomass that will effectively compete with plants for nutrients. On the other hand, carbon pulses (large temporal variance) are expected to cause oscillations in bacterial biomass, enabling plants temporal escape from competition and possibly enabling increased growth. We thus predicted that continuous carbon supply would increase root allocation at the expense of decreased reproductive output. We also expected this effect to be noticeable only when sufficient nutrients were present in the soil.Methods Wheat plants were grown for 64 days in pots containing either sterilized or inoculated soils, with or without slow-release fertilizer, subjected to one of the following six carbon treatments: daily (1.5mg glucose), every other day (3mg glucose), 4 days (6mg glucose), 8 days (12mg glucose), 16 days (24mg glucose) and no carbon control.Important findings Remarkably, carbon pulses (every 2–16 days) led to increased reproductive allocation at the expense of decreased root allocation in plants growing in inoculated soils. Consistent with our prediction, these effects were noticeable only when sufficient nutrients were present in the soil. Furthermore, soil inoculation in plants subjected to low nutrient availability resulted in decreased total plant biomass. We interpret this to mean that when the amount of available nutrients is low, these nutrients are mainly used by the bacterial community. Our results show that temporal variation in soil carbon inputs may play an important role in aboveground–belowground interactions, affecting plant resource allocation.  相似文献   

5.
Ecologically significant symbiotic associations are frequently studied in isolation, but such studies of two-way interactions cannot always predict the responses of organisms in a community setting. To explore this issue, we adopt a community approach to examine the role of plant–microbial and insect–microbial symbioses in modulating a plant–herbivore interaction. Potato plants were grown under glass in controlled conditions and subjected to feeding from the potato aphid Macrosiphum euphorbiae. By comparing plant growth in sterile, uncultivated and cultivated soils and the performance of M. euphorbiae clones with and without the facultative endosymbiont Hamiltonella defensa, we provide evidence for complex indirect interactions between insect– and plant–microbial systems. Plant biomass responded positively to the live soil treatments, on average increasing by 15% relative to sterile soil, while aphid feeding produced shifts (increases in stem biomass and reductions in stolon biomass) in plant resource allocation irrespective of soil treatment. Aphid fecundity also responded to soil treatment with aphids on sterile soil exhibiting higher fecundities than those in the uncultivated treatment. The relative allocation of biomass to roots was reduced in the presence of aphids harbouring H. defensa compared with plants inoculated with H. defensa-free aphids and aphid-free control plants. This study provides evidence for the potential of plant and insect symbionts to shift the dynamics of plant–herbivore interactions.  相似文献   

6.
Urea as a promotive coupler of plant-herbivore interactions   总被引:1,自引:0,他引:1  
Summary Growth responses of Kyllinga nervosa Steud., a sedge from the Serengeti short-grass plains, were examined in a factorial experiment which included clipped and unclipped plants, and nitrogen supplied as either urea or ammonium nitrate. Results were expressed in relation to three transfer processes: flow to grazers, flow to producers and flow to reproduction. Clipping increased biomass and nitrogen flow to grazers by significantly increasing nitrogen uptake, aboveground nitrogen flow, and the weights of and proportional allocation to green leaf production. This was at the expense of flow to vegetative and sexual reproduction, since the weights and proportional investments in roots, crowns and reproductive structures were reduced. Urea nutrition increased flow to grazers and plant reproduction through increases in green leaf weight, flower weight, allocation to green leaves, flowers and stems, and aboveground: belowground biomass ratios. Stimulation of aboveground productivity by urea was a consequence of increased tillering rates.Interactive responses of clipping and nitrogen source regulated plant growth, thus controlling flow to each transfer process. Combined effects of clipping and urea resulted in compensatory production of both green leaves and flowers, and maximized biomass and nitrogen flow to grazers. Both urea and clipping tightened herbivore-producer recycling by significantly reducing litter nitrogen and carbon masses. In contrast, when plants were unclipped and grown on NH4NO3, biomass allocation and weights of roots and crowns were increased at the expense of aboveground tissues, thus increasing flow to primary producers. Plant growth responses to experimental treatment combinations simulating nutritional status of grazed and ungrazed field plants indicate that urea represents a potential importance beyond it nitrogen contribution by introducing a positive feedback to herbivores.  相似文献   

7.
Although many empirical experiments have shown that increasing degradation results in lower aboveground biomass (AGB), our knowledge of the magnitude of belowground biomass (BGB) for individual plants is a prerequisite for accurately revealing the biomass trade‐off in degraded grasslands. Here, by linking the AGB and BGB of individual plants, species in the community, and soil properties, we explored the biomass partitioning patterns in different plant functional groups (grasses of Stipa capillacea and forbs of Anaphalis xylorhiza). Our results indicated that 81% and 60% of the biomass trade‐off variations could be explained by environmental factors affecting grasses and forbs, respectively. The change in community species diversity dominated the biomass trade‐off via either direct or indirect effects on soil properties and biomass. However, the community species diversity imparted divergent effects on the biomass trade‐off for grasses (scored at −0.72) and forbs (scored at 0.59). Our findings suggest that plant communities have evolved two contrasting strategies of biomass allocation patterns in degraded grasslands. These are the “conservative” strategy in grasses, in which plants with larger BGB trade‐off depends on gigantic roots for soil resources, and the “opportunistic” strategy in forbs, in which plants can adapt to degraded lands using high variation and optimal biomass allocation.  相似文献   

8.

Background and Aims

Although being tall is advantageous in light competition, plant height growth is often similar among dominant plants in crowded stands (height convergence). Previous theoretical studies have suggested that plants should not overtop neighbours because greater allocation to supporting tissues is necessary in taller plants, which in turn lowers leaf mass fraction and thus carbon gain. However, this model assumes that a competitor has the same potential of height growth as their neighbours, which does not necessarily account for the fact that height convergence occurs even among individuals with various biomass.

Methods

Stands of individually potted plants of Chenopodium album were established, where target plants were lifted to overtop neighbours or lowered to be overtopped. Lifted plants were expected to keep overtopping because they intercept more light without increased allocation to stems, or to regulate their height to similar levels of neighbours, saving biomass allocation to the supporting organ. Lowered plants were expected to be suppressed due to the low light availability or to increase height growth so as to have similar height to the neighbours.

Key Results

Lifted plants reduced height growth in spite of the fact that they received higher irradiance than others. Lowered plants, on the other hand, increased the rate of stem elongation despite the reduced irradiance. Consequently, lifted and lowered plants converged to the same height. In contrast to the expectation, lifted plants did not increase allocation to leaf mass despite the decreased stem length. Rather, they allocated more biomass to roots, which might contribute to improvement of mechanical stability or water status. It is suggested that decreased leaf mass fraction is not the sole cost of overtopping neighbours. Wind blowing, which may enhance transpiration and drag force, might constrain growth of overtopping plants.

Conclusions

The results show that plants in crowded stands regulate their height growth to maintain similar height to neighbours even when they have potential advantages in height growth. This might contribute to avoidance of stresses caused by wind blowing.  相似文献   

9.
Plant species can respond to small scale soil nutrient heterogeneityby proliferating roots or increasing nutrient uptake kineticsin nutrient-rich patches. Because root response to heterogeneitydiffers among species, it has been suggested that the distributionof soil resources could influence the outcome of interspecificcompetition. However, studies testing how plants respond toheterogeneity in the presence of neighbours are lacking. Inthis study, individuals of two species,Phytolacca americanaL.andAmbrosia artemisiifoliaL. were grown individually and incombination in soils with either a homogeneous or heterogeneousnutrient distribution. Above-ground biomass of individuallygrown plants of both species was greater when fertilizer waslocated in a single patch than when the same amount of fertilizerwas distributed evenly throughout the soil. Additionally, bothspecies proliferated roots in high-nutrient patches.A. artemisiifoliaexhibitedlarger root:shoot ratios, increased nitrogen depletion fromnutrient patches, and a higher growth rate thanP. americana,suggestingA. artemisiifoliais better suited to find and rapidlyexploit nutrient patches. In contrast to individually grownplants, soil nutrient distribution had no effect on final above-groundplant biomass for either species when grown with neighbours,even though roots were still concentrated in high nutrient patches.This study demonstrates that increased growth of isolated plantsas a consequence of localized soil nutrients is not necessarilyan indication that heterogeneity will affect interspecific encounters.In fact, despite a significant below-ground response, soil nutrientheterogeneity was inconsequential to above-ground performancewhen plants were grown with neighbours.Copyright 1999 Annalsof Botany Company Phytolacca americana, pokeweed,Ambrosia artemisiifolia, ragweed, nutrient heterogeneity, root proliferation, plasticity, foraging, nutrient patches.  相似文献   

10.
Biomass allocation is an important plant trait that responds plastically to environmental heterogeneities. However, the effects on this trait of pollutants owing to human activities remain largely unknown. In this study, we investigated the response of biomass allocation of Phragmites australis to petroleum pollution by a 13CO2 pulse-labelling technique. Our data show that plant biomass significantly decreased under petroleum pollution, but the root–shoot ratio for both plant biomass and 13C increased with increasing petroleum concentration, suggesting that plants could increase biomass allocation to roots in petroleum-polluted soil. Furthermore, assimilated 13C was found to be significantly higher in soil, microbial biomass and soil respiration after soils were polluted by petroleum. These results suggested that the carbon released from roots is rapidly turned over by soil microbes under petroleum pollution. This study found that plants can modulate biomass allocation in response to petroleum pollution.  相似文献   

11.
Aim A consistent set of root characteristics for herbaceous plants growing in water‐limited environments has been developed based on compilations of global root databases, but an overall analysis of why these characteristics occur is still missing. The central question in this study is whether an ecohydrological model which assumes that rooting strategies reflect maximization of transpiration can predict the variations in rooting strategies of plants in dry environments. Location Arid ecosystems across the globe. Methods A model was used to explore interactions between plant biomass, root–shoot allocation, root distribution, rainfall, soil type and water use by plants. Results Model analyses showed that the predicted shifts in rooting depth and root–shoot allocation due to changes in rainfall, soil type and plant biomass were quite similar to observed shifts. The model predicted that soil type, annual rainfall and plant biomass each had strong effects on the rooting strategies that optimize transpiration, but also that these factors have strong interactive effects. The process by which plants compete for water availability (soil evaporation or drainage) especially affected the depth distribution of roots in the soil, whereas the availability of rainfall mainly affected the optimal root–shoot allocation strategy. Main conclusions The empirically observed key patterns in rooting characteristics of herbaceous plant species in arid environments could be explained in this theoretical study by using the concept of hydrological optimality, represented here by the maximization of transpiration.  相似文献   

12.
Allocation, plasticity and allometry in plants   总被引:35,自引:0,他引:35  
Allocation is one of the central concepts in modern ecology, providing the basis for different strategies. Allocation in plants has been conceptualized as a proportional or ratio-driven process (‘partitioning’). In this view, a plant has a given amount of resources at any point in time and it allocates these resources to different structures. But many plant ecological processes are better understood in terms of growth and size than in terms of time. In an allometric perspective, allocation is seen as a size-dependent process: allometry is the quantitative relationship between growth and allocation. Therefore most questions of allocation should be posed allometrically, not as ratios or proportions. Plants evolve allometric patterns in response to numerous selection pressures and constraints, and these patterns explain many behaviours of plant populations.

In the allometric view, plasticity in allocation can be understood as a change in a plant's allometric trajectory in response to the environment. Some allocation patterns show relatively fixed allometric trajectories, varying in different environments primarily in the speed at which the trajectory is travelled, whereas other allocation patterns show great flexibility in their behaviour at a given size. Because plant growth is often indeterminate and its rate highly influenced by environmental conditions, ‘plasticity in size’ is not a meaningful concept. We need a new way to classify, describe and analyze plant allocation and plasticity because the concepts ‘trait’ and ‘plasticity’ are too broad. Three degrees of plasticity can be distinguished: (1) allometric growth (‘apparent plasticity’), (2) modular proliferation and local physiological adaptation, and (3) integrated plastic responses. Plasticity, which has evolved because it increases individual fitness, can be a disadvantage in plant production systems, where we want to optimize population, not individual, performance.  相似文献   


13.
Arbuscular mycorrhizal (AM) C-costs in grapevines were investigated. Dormant vines rely on stored C for initial growth. Therefore AM colonisation costs would compete with plant growth for available C reserves. One-year-old grapevines, colonised with Glomus etunicatum (Becker and Gerdemann), were cultivated under glasshouse conditions. The C-economy and P utilisation of the symbiosis were sequentially analysed. AM colonisation, during the 0–67 day growth period, used more stem C relative to root C, which resulted in lower shoot growth. The decline in AM colonisation during the period of 67–119 days coincided with stem C replenishment and higher shoot growth. Construction costs of AM plants and root C allocation increased with root P uptake. The efficiency of P utilisation was lower in AM roots. The reliance of AM colonisation on stem C declined with a decrease in colonisation, providing more C for the refilling of stem carbohydrate reserves and shoot growth. Once established, the AM symbiosis increased P uptake at the expense of refilling of root C reserves. Although higher root C allocation increased plant construction costs, AM roots were more efficient at P utilisation.  相似文献   

14.
Berberis darwinii (Berberidaceae) is a serious environmental weed in New Zealand, capable of invading a range of different light environments from grazed pasture to intact forest. According to optimal partitioning models, some plants optimise growth under different environmental conditions by shifting biomass allocation among tissue types (e.g. roots, shoots) to maximise the capture of limiting resources (e.g. water, light). We examined patterns of growth, biomass allocation, and seedling survival in Berberis darwinii to determine whether any of these factors might be contributing to invasion success. Growth and biomass allocation parameters were measured on seedlings grown for 7 months in five natural light environments in the field. Survival was high in the sunniest sites, and low in the shadiest sites. Seedlings grown in full sun were an order of magnitude taller and heavier, had five times as many leaves, and proportionally more biomass allocated to leaves than seedlings grown in other light environments. In the shade, leaves were bigger and thinner, and leaf area as a proportion of total plant biomass increased, but the proportion of above- to below-ground biomass was similar across all light and soil moisture environments. In summary, although leaf traits were plastic, patterns of biomass allocation did not vary according to optimal partitioning models, and were not correlated with patterns of seedling survival. Implications for the management of this invasive species are discussed.  相似文献   

15.
《Plant Ecology & Diversity》2013,6(2-3):265-268
Background: Theory predicts that plants can reduce their fitness in the presence of neighbours by allocating resources to root growth, in order to pre-empt resource capture. A number of studies that have tested this idea have done so by using experiments where neighbour presence is confounded with soil volume.

Aims : To avoid confounding effects of neighbour presence and soil volume we adjusted these variables independently from one another.

Methods: We grew Andropogon gerardii with and without neighbours, holding soil volume available to each plant constant, and compared plant performance with a treatment where both neighbour presence and soil volume were varied. We also grew plants with a quarter of the soil volume but four times the nutrient concentration to determine if changes in plant growth in response to soil volume are caused by access different levels of soil resources.

Results: We found no evidence that plants adjust root growth to the presence of neighbour roots alone. We did, however, find a significant reduction in plant growth when soil volume was reduced. The reduction was overcome by increasing nutrient concentrations in the growth media.

Conclusions: Our results suggest the effects of soil volume on plant growth are mainly due to changes in nutrient availability.  相似文献   

16.
Summary We tested the prediction that plants grown in elevated CO2 environments are better able to compensate for biomass lost to herbivory than plants grown in ambient CO2 environments. The herbaceous perennial Plantago lanceolata (Plantaginaceae) was grown in either near ambient (380 ppm) or enriched (700 ppm) CO2 atmospheres, and then after 4 weeks, plants experienced either 1) no defoliation; 2) every fourth leaf removed by cutting; or 3) every other leaf removed by cutting. Plants were harvested at week 13 (9 weeks after simulated herbivory treatments). Vegetative and reproductive weights were compared, and seeds were counted, weighed, and germinated to assess viability.Plants grown in enriched CO2 environments had significantly greater shoot weights, leaf areas, and root weights, yet had significantly lower reproductive weights (i.e. stalks + spikes + seeds) and produced fewer seeds, than plants grown in ambient CO2 environments. Relative biomass allocation patterns further illustrated differences in plants grown in ambient CO2 environments. Relative biomass allocation patterns further illustrated differences in plant responses to enriched CO2 atmospheres: enriched CO2-grown plants only allocated 10% of their carbon resources to reproduction whereas ambient CO2-grown plants allocated over 20%. Effects of simulated herbivory on plant performance were much less dramatic than those induced by enriched CO2 atmospheres. Leaf area removal did not reduce shoot weights or reproductive weights of plants in either CO2 treatment relative to control plants. However, plants from both CO2 treatments experienced reductions in root weights with leaf area removal, indicating that plants compensated for lost above-ground tissues, and maintained comparable levels of reproductive output and seed viability, at the expense of root growth.  相似文献   

17.
Víctor O. Sadras 《Oecologia》1996,106(4):432-439
Damaged cotton plants in which reproductive organs were manually removed to simulate shedding induced by Helicoverpa spp. (Lepidoptera) were compared with undamaged controls grown under contrasting availability of resources. Plant growth and partitioning were analysed and fruit mass was taken as a measure of compensation. Under high availability of resources (low plant density, high fertility) damaged plants had a large potential compensatory capacity due to increased vegetative growth that enhanced their ability to assimilate carbon and nitrogen with respect to undamaged controls. These plants shifted from vegetative to reproductive growth when they were allowed to set fruit in the recovery period. Actual compensation was complete, however, only when the duration and conditions of the recovery period were favourable. Under multiple stresses (high plant density, low fertility, low temperature), damage triggered a marked increase in the allocation of biomass to roots which was not reversed when plants were allowed to set fruit. The apparent shift in the allocation pattern of damaged plants under stress-which matches well the survival strategy described for many perennials-probably restricted compensatory fruit growth.  相似文献   

18.
The allocation of resources among roots and shoots represents the largest flux of resources within a plant and therefore should have been selected to maximize benefits to plants. Yet, it is unclear why some species like temperate grasses have such high root length density (RLD). Either the slow rate of diffusion of inorganic N in soils or interplant competition could explain the high RLD of temperate grasses. Using a fine-scale model of nutrient dynamics in the soil and plant growth, a cost–benefit approach was used to assess optimal allocation rates for plants that accounted for value of both carbon and nitrogen. In the absence of interplant competition, resource benefits are maximized with very little root length except in extremely dry soils for ammonium. In the presence of a competitor, optimal allocation of N to roots is much greater and increases as ability of competitors to produce root length increase. Competition for inorganic nitrogen generates a classic aspect of the tragedy of the commons, the “race for fish”, where plants must allocate more resources to acquisition of the limiting resource than is optimal for plants in the absence of competition. As such, nutrient competition needs to be directly addressed when understanding plant- and ecosystem-level resource fluxes as well as the evolution of root systems.  相似文献   

19.
The effect of mutual shading on the root/shoot ratio and on the number of nodal roots of maize was studied. Plants of two varieties (Dea and LG2281) were grown in individual pots of 9 L, at three plant densities: 7.5, 11 and 15 plants m–2. A control experiment was carried out in order to study if root growth was affected by the small size of the pots. Maize plants (cv Dea) were grown at a low plant density (7.5 plants m–2) in pots of two different volumes (9 and 25 L respectively). In both experiments plants were watered every two hours with a nutrient solution. Some plants were sampled at five dates in the main experiment and the following data were recorded: foliar stage; root, stem and leaf dry weight; number of root primordia and number of emerged roots per phytomer. The final sampling date occurred at silking.Results of the control experiment showed that the root biomass was lower in small pots but the number of nodal roots per phytomer was not affected.Results of the main experiment showed that the total plant biomass and the root/shoot ratio were lower at high plant density. The number of emerged roots was strongly reduced on the upper phytomer (P8). This reduction was mainly due to a lower percentage of root primordia which elongated. A proposed interpretation is that the number of roots which emerge on upper phytomers is controlled by carbohydrate availability.  相似文献   

20.
Models for sex allocation assume that increased expenditure of resources on male function decreases the resources available for female function. Under some circumstances, a negative genetic correlation between investment in stamens and investment in ovules or seeds is expected. Moreover, if fitness returns for investment in male and female function are different with respect to size, sex allocation theory predicts size‐specific gender changes. We studied sex allocation and genetic variation for investment in stamens, ovules and seeds at both the flower and the plant level in a Dutch population of the wind‐pollinated and predominantly outcrossing Plantago coronopus. Data on biomass of floral structures, stamens, ovules, seedset and seedweight were used to calculate the average proportion of reproductive allocation invested in male function. Genetic variation and (genetic) correlations were estimated from the greenhouse‐grown progeny of maternal families, raised at two nutrient levels. The proportion of reproductive biomass invested in male function was high at flowering (0.86 at both nutrient levels) and much lower at fruiting (0.30 and 0.40 for the high and low nutrient treatment, respectively). Androecium and gynoecium mass exhibited moderately high levels of genetic variance, with broad‐sense heritabilities varying from 0.35 to 0.56. For seedweight no genetic variation was detected. Significant among‐family variation was also detected for the proportion of resources invested in male function at flowering, but not at fruiting. Phenotypic and broad‐sense genetic correlations between androecium and gynoecium mass were positive. Even after adjusting for plant size, as a measure of resource acquisition, maternal families that invested more biomass in the androecium also invested more in the gynoecium. This is consistent with the hypothesis that genetic variation for resource acquisition may in part be responsible for the overall lack of a negative correlation between male and female function. Larger plants had a more female‐biased allocation pattern, brought about by an increase in seedset and seedweight, whereas stamen biomass did not differ between small and large plants. These results are discussed in relation to size‐dependent sex allocation theory (SDS). Our results indicate that the studied population harboured substantial genetic variation for reproductive characters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号