首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Atlantic cod, Gadus morhua, respond to starvation first by mobilising hepatic lipids, then muscle and hepatic glycogen and finally muscle proteins. The dual role of proteins as functional elements and energetic reserves should lead to a temporal hierarchy of mobilisation where the nature of a function dictates its conservation during starvation. We examined (1) whether lysosomal and anti-oxidant enzymes in liver and white muscle are spared during prolonged starvation, (2) whether the responses of these enzymes in muscle vary longitudinally. Hepatic contents of lysosomal proteases decreased with starvation, whereas those of catalase (CAT) increased and lysosomal enzymes of carbohydrate metabolism and glutathione S-transferase (GST) did not change. In white muscle, starvation decreased the specific activity of lysosomal enzymes of carbohydrate degradation and doubled that of cathepsin D (CaD). The activity of anti-oxidant enzymes and acid phosphatase in muscle was unchanged with starvation. In white muscle neither lysosomal enzymes nor anti-oxidant enzymes varied significantly with sampling position. In cod muscle, antioxidant enzymes, CaD and acid phosphatase are spared during a period of starvation that decreases lysosomal enzymes of carbohydrate metabolism and decreases glycolytic enzyme activities. In cod liver, the anti-oxidant enzymes, CAT and GST, were also spared during starvation.  相似文献   

2.
Summary The in-vivo uptake of exogenously applied horseradish peroxidase and the activities of the lysosomal enzymes acid phosphatase and cathepsin D were studied histochemically and/or biochemically in innervated and 2–14 day-denervated tibialis anterior muscles of the mouse. The biochemically determined uptake of horseradish peroxidase showed a large increase already 4 days after denervation. The activities of the lysosomal enzymes increased in a more gradual fashion, and only cathepsin D showed an increase in activity when expressed as total activity per muscle. Histochemically horseradish peroxidase was found to be localized in muscle fibres in characteristic spindle-shaped segments after denervation. The main increase in the number of such segments per transverse section of the muscle occurred between 3 and 6 days after denervation. In serial sections these segments frequently showed positive staining also for acid phosphatase.It is concluded that exogenously applied horseradish peroxidase is taken up into the lysosomal system, which after denervation becomes organized into characteristic spindle-shaped segments in the muscle fibres. The endocytic activity of muscle fibres increases early after denervation. This is followed by a more gradual increase in activity of lysosomal enzymes and finally by an organization of the lysosomal system into characteristic spindle-shaped segments. The results are compatible with the working hypothesis that increased endocytosis may initiate lysosomal activation in denervated skeletal muscle.  相似文献   

3.
Effect of estrogen on lysosomal enzyme activities in rat heart   总被引:2,自引:0,他引:2  
The activities per microgram DNA of five lysosomal enzymes [cathepsin D, cathepsin B, beta-N-acetylglucosaminidase (beta-NAG), beta-glucuronidase, and acid phosphatase] were measured in homogenates of female and male rat (Sprague-Dawley) hearts. Female rats were studied during stages of the estrous cycle and at 3 weeks after ovariectomy. Three-week-postovariectomized female rats and intact male rats were injected subcutaneously with 17 beta-estradiol-3-benzoate. Lysosomal enzyme activities in the male rat heart were more responsive to exogenous estradiol than were activities in the female rat heart. Cathepsin B, beta-NAG, and beta-glucuronidase were increased dramatically in the male rat heart upon short-term administration of estrogen (4 days). In both female and male rat hearts, activities of two lysosomal proteinases, cathepsins B and D, were reduced significantly (approximately 50%) by extended administration of estrogen for 10 days.  相似文献   

4.
Intracellular localization and enzymatic activities of lysosomal enzymes (cathepsin B, N-acetyl-beta-glucosaminidase, and beta-glucuronidase) were studied in control rats and after induction of caerulein pancreatitis. In control rats high enzymatic activities were found in the postnuclear 1000 g fraction (purified zymogen granules). The corresponding subcellular fraction in pancreatitis animals additionally contained larger secretory vacuoles and autophagosomes and revealed a marked increase in lysosomal enzyme activities. Immunolabelling studies at the ultrastructural level for trypsinogen and cathepsin B demonstrated a colocalization of lysosomal and digestive enzymes in zymogen granules in healthy controls. After induction of pancreatitis immunolabelling still demonstrated a colocalisation of cathepsin B and trypsinogen in secretory granules and newly formed Golgi-derived secretory vacuoles. Concomitantly appearing autophagosomes were, however, only labelled for cathepsin B. It is concluded that segregation of lysosomal and digestive enzymes is incomplete in normal acinar cells resulting in a colocalization in zymogen granules. In pancreatitis colocalization in secretory granules is maintained, whereas only lysosomal enzymes were sufficiently transferred into autophagic vacuoles. No indication for impaired mechanisms of molecular sorting of lysosomal and digestive enzymes in caerulein-induced pancreatitis was found.  相似文献   

5.
We determined whether recombinant human growth hormone (rhGH) administration might modulate the enzyme degradative capacity of the muscle lysosomal system and influence muscle growth. Muscle cathepsin D, acid RNase and DNase II activities are determined in the gastrocnemius muscle of rhGH-treated post-weaning female BALB/c mice. Linear regressions were used to analyze the relationships of each enzyme with their respective substrate. GH induced a depletion-recovery response of muscle growth through a mechanism which is similar to catch-up growth. In these conditions, cathepsin D activity decreased with age in all animals (GH: 40%; saline: 79%), showing a substantial developmental decline that could reflect changes in the rate of protein breakdown. However, the degradative capacity of cathepsin D was paradoxically unmodified in rhGH-mice compared with saline mice (according to the enzyme vs. substrate linear regression slope), in spite of the increase in enzyme activity elicited by GH. This suggests that the muscle protein breakdown is not increased by GH-treatment in post-weaning mice. The enhancement of muscle protein deposition as indicated by the augmented muscle cell size (protein:DNA ratio) of rhGH-mice (increased 178% from 25 to 50 days) vs. saline, can be attributed to a higher muscle K(RNA). In contrast, acid RNase and DNase II activities directly participate in muscle RNA and DNA degradation. Both nucleases were inhibited by GH treatment (a decrease of 48% and 63%, respectively, vs. saline at 50 days). The decrease in RNase activity suggests an inverse relation between the rate of protein synthesis (high) and acid RNase activity (low), leading to spare muscle RNA for synthesizing protein during catch-up growth. Also, low DNase II activity could contribute to inhibiting of muscle DNA degradation, facilitating muscle growth. Thus, GH seems to act as a direct modulator of the degradative capacity of skeletal muscle nucleases but not of cathepsin D, influencing DNA and RNA degradation during the depletion-recovery response to GH of gastrocnemius muscle in female post-weaning mice.  相似文献   

6.
Summary Intracellular localization and enzymatic activities of lysosomal enzymes (cathepsin B,N-acetyl-β-glucosaminidase, and β-glucuronidase) were studied in control rats and after induction of caerulein pancreatitis. In control rats high enzymatic activities were found in the postnuclear 1000g fraction (purified zymogen granules). The corresponding subcellular fraction in pancreatitis animals additionally contained larger secretory vacuoles and autophagosomes and revealed a marked increase in lysosomal enzyme activities. Immunolabelling studies at the ultrastructural level for trypsinogen and cathepsin B demonstrated a colocalization of lysosomal and digestive enzymes in zymogen granules in healthy controls. After induction of pancreatitis immunolabelling still demonstrated a colocalisation of cathepsin B and trypsinogen in secretory granules and newly formed Golgi-derived secretory vacuoles. Concomitantly appearing autophagosomes were, however, only labelled for cathepsin B. It is concluded that segregation of lysosomal and digestive enzymes is incomplete in normal acinar cells resulting in a colocalization in zymogen granules. In pancreatitis colocalization in secretory granules is maintained, whereas only lysosomal enzymes were sufficiently transferred into autophagic vacuoles. No indication for impaired mechanisms of molecular sorting of lysosomal and digestive enzymes in caerulein-induced pancreatitis was found.  相似文献   

7.
Cartilage cathepsin D, cathepsin B and acid phosphatase activities decreased with maturation of Sprague-Dawley rats. Although this phenomenon may largely be due to an age-dependent decrease in cell concentration at young ages (1–8 weeks), in older (8–25 weeks) rats there appeared to be a decrease in enzyme activity per cell. The dimunition in cartilage cathepsin D activity coincided with an apparent decrease in its concentration. In addition, the inverse correlation between rat age and cartilage lysosomal enzyme activities was, at least in part, tissue specific as the pattern of liver lysosomal enzyme activities was quite different from that noted with cartilage. Interestingly, hypophysectomy greatly diminished age-related modulations in lysosomal enzyme activities suggesting that one or more pituitary hormones may be involved in the mechanism of this age-dependent phenomenon. In addition, cartilage growth rate appeared to be correlated with the level of cartilage lysosomal enzyme activities, indicating that these enzymes may be related to the biochemical mechanism of cartilage growth and development.  相似文献   

8.
The enzymatic activity of two lysosomal enzymes, acid phosphatase and cathepsin D, was determined in fetus and during post-natal development of the rat gastrocnemius muscle in comparison to the histological differentiation of this muscle. The specific activity of cathepsin D and acid phosphatase was 7 and 2.5 fold higher in the muscle during development until 20 days after birth, than that of mature muscle, respectively. A trend of gradual decrease in the activity of these enzymes was observed concomitantly with the differentiation and maturation of the muscle from mononucleated cells in the fetus to myotubes formation at day 1 after birth, followed by the formation of "young" and then striated myofibers in 10- and 20-day old neonates, respectively. However, no correlation could be found between the lysosomal enzyme activity and the developmental stages of the muscle until 20 days after birth. It is suggested that the elevated activity of lysosomal acid hydrolases may be associated with late developmental processes from young to mature myofibers in normal skeletal muscle and not only in various pathological conditions.  相似文献   

9.
We evaluated the preventive effect of caffeic acid (CA) on lysosomal enzymes in isoproterenol (ISO)‐treated myocardial infarcted rats. Male albino Wistar rats were pretreated with CA (15 mg/kg) daily for a period of 10 days. After the pretreatment period, ISO (100 mg/kg) was subcutaneously injected to rats twice at an interval of 24 h. The activity of serum creatine kinase‐MB and lactate dehydrogenase was increased significantly (P < 0.05) in ISO‐induced myocardial infarcted rats. The levels of plasma thiobarbituric acid reactive substances and lipid hydroperoxides were significantly (P < 0.05) increased, and the level of plasma‐reduced glutathione was significantly (P < 0.05) decreased in ISO‐induced myocardial infarcted rats. The activities of lysosomal enzymes (β‐glucuronidase, β‐N‐acetylglucosaminidase, β‐galactosidase, cathepsin‐B and cathepsin‐D) were increased significantly (P < 0.05) in the serum and heart of ISO‐induced myocardial infarcted rats. ISO induction also resulted in decreased stability of membranes, which was reflected by lowered activities of β‐glucuronidase and cathepsin‐D in different fractions except cytosol. Pretreatment with CA (15 mg/kg) to ISO‐treated rats significantly (P < 0.05) prevented the changes in the activities of cardiac marker enzymes, the levels of lipid peroxidation products, reduced glutathione and the activities of lysosomal enzymes in the serum, heart, and subcellular fractions. Oral treatment with CA (15 mg/kg) to normal control rats did not show any significant effect. Thus, the results of our study showed that CA prevented the lysosomal membrane damage against ISO‐induced myocardial infarction. The observed effects of CA are due to membrane‐stabilizing, antilipo peroxidative, and antioxidant effects. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:115–122, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20319  相似文献   

10.
In order to investigate an association between alcohol consumption and lysosomal cysteine protease induced pancreatic injury and preventive effect of gallic acid as dose-dependent, we determined myeloperoxidase and malondialdehyde levels, serum amylase activities and cathepsin B and L activities in the cytosolic and lysosomal fractions of pancreatic tissue in the ethanol (8?g/kg) and ethanol plus gallic acid (at different doses 50, 100 and 200?mg/kg) given rats. Absolute ethanol (8?g/kg) was given by oral gavage. Gallic acid was dissolved in the saline (2?ml/kg) and administered before 30?min the oral administration of ethanol. Pancreatic myeloperoxidase and also malondialdehyde levels and serum amylase activities were measured. Besides, histological investigations were made. Cathepsin B activities in the cytosolic fraction were decreased by gallic acid (200?mg/kg) and increased in ethanol given rats. Cytosolic/lysosomal ratio of cathepsin B and L were found to be low in the all doses of gallic acid as compared to ethanol group. Serum amylase, pancreatic myeloperoxidase activities and malondialdehyde levels in the ethanol group were higher than in the control group. These were not statistically significant for myeloperoxidase and malondialdehyde. Also, our histopathologic results indicated that ethanol administration increased pancreatic tissue injury. Gallic acid especially at 200?mg/kg improved ethanol-mediated pancreatic tissue damage.In conclusion, gallic acid treatments were decreased release of lysosomal cathepsin B and L enzymes into cytoplasmic fraction and prevented alcohol mediated pancreatic tissue injury. Preventive effect of gallic acid might be dose-dependent.  相似文献   

11.
Effect of exercise on synthesis and degradation of muscle protein.   总被引:8,自引:4,他引:4       下载免费PDF全文
Several reports have shown that amino acid utilization via oxidation and gluconeogenesis is increased during exercise. The purpose of this study was to investigate whether these changes are accompanied by alterations in protein synthesis and degradation in the muscle of exercising rats. One group of rats was made in swim for 1h and then protein synthesis and protein degradation were measured in a perfused hemicorpus preparation. Protein synthesis was decreased and protein degradation was increased in exercised rats compared with sedentary control rats. Exercise also decreased amino acid incorporation by isolated polyribosomes from muscle. Measurement of several muscle proteinase activities demonstrated that exercise had no effect on alkaline proteinase or Ca2+-activated proteinase. However, the free (unbound) cathepsin D activity was elevated in muscle of exercised rats, whereas the total activity of catepsin D was unchanged. This increase in the proportion of free cathepsin D activity suggests that lysosomal enzymes may be involved in the increased protein degradation that was observed.  相似文献   

12.
The purpose of this study was to compare the latencies of lysosomal enzymes (beta-glucuronidase, beta-N-acetylglucosaminidase, arylsulphatase and acid ribonuclease) in heart and in red and white skeletal muscle of male and female mice (Mus musculus). The unsedimentable, free activities together with releasable (Triton X-100, hypotonic shock and freeze-thawing treatments) and unreleasable, bound activities were assayed. The distribution of acid hydrolases to different fractions was strikingly heterogeneous. The most distinct differences occurred between the distributions of beta-glucuronidase and beta-N-acetylglucosaminidase. The differences between muscle types occurred in the activity levels of lysosomal enzymes, rather than in the fractional distributions. Sex-related differences were small and occurred mainly in the activity levels of heart muscle (higher in female mice). The results suggest that the heterogeneous distribution of lysosomal enzymes originates in the compartmental differences of lysosomal enzymes in muscle cells, rather than the differences in cell populations of different muscle types.  相似文献   

13.
Effects of chloroquine on lysosomes and endocytosis by liver cells in vivo.   总被引:2,自引:0,他引:2  
1. Chloroquine accumulation in rat liver after a single and repeated drug administration and lysosomal changes resembling some symptoms of lysosomal storage diseases were observed. 2. Repeated chloroquine treatment of rats resulted in increased activity of liver lysosomal enzymes acid phosphatase and beta-galactosidase and a significant enhancement of the activities of cathepsin D and cysteine proteinases were found. 3. No changes in the activity of liver macrophages (as assessed by the colloidal carbon clearance test) or in fluid-phase endocytosis of the marker 125I-polyvinyl-pyrrolidone by hepatocytes in vivo were found.  相似文献   

14.
Activities of six lysosomal enzymes in the cerebellum of jaundiced homozygous (jj) Gunn rats were examined from 5 to 20 days of life and compared with those in heterozygotes (j+). Significantly higher enzyme activities were first detected at 8 days. The jj/j+ activity ratios of all enzymes peaked at 15 days. The ratios of beta-glycerophosphatase, beta-mannosidase, and acid lipase were only 1.3-1.7, whereas those of arylsulfatase and cathepsin were 2.0 and 3.1, respectively. The most striking increase in activity was observed with beta-glucuronidase, the ratio of which was 8.4. These results indicate a selective increase in activities of certain lysosomal enzymes in the hypoplastic cerebellum of jj rats.  相似文献   

15.
Young albino rats were fedad libitum 4, 8 or 20 % (control) protein diet for 1–4 weeks. Total activities of some of the lysosomal enzymes, namely, acid phosphatase, aryl sulphatase, Β-glucuronidase and cathepsin D, were determined in resident and protease-peptone elicited peritoneal macrophages. Total cell number, protein content and the lysosomal enzyme activities were increased significantly in protease-peptone elicited macrophages; though at a lower rate in 4 % protein-fed group compared to control ones. However, the rate of induction of the tested hydrolases was selective and their response to the stimulant varied widely. Similarly, response of each enzyme to low protein diet also varied. Thus, at 4 weeks, cathepsin D and Β-glucuronidase activities, expressed per total number of elicited macrophages were reduced by 45 and 60 %, respectively, in 4 % protein-fed animals. These results indicate that the metabolic events related to lysosomal function in macrophages, are affected by dietary restriction of proteins  相似文献   

16.
Saithe (Pollachius virens L.) were starved for 66 days at 10 degrees C and activities of aryl sulfatase, acid proteinase, beta-glucuronidase, RNAase and acid phosphatase measured in homogenates prepared from fast and slow myotomal muscles. In fed fish, hydrolase activities were generally higher in slow than fast muscles. With the exception of acid proteinase activity in slow muscle, the activities of all the lysosomal enzymes increased by 70 to 100% during starvation. In general, there was a proportionally larger increase in the hydrolase activities in fast than in slow muscle. In a second experiment, fish were starved for 74 days, and refed for up to 52 days. The increases in aryl sulfatase and acid proteinase activity produced in fast muscle with starvation were found to be rapidly reversed by refeeding. Lysosomal enzyme activities in fish sampled after 10 days refeeding were not significantly different from fed controls. Membrane fractions enriched in aryl sulfatase activity were prepared from the fast muscle of 66-day starved fish. These were capable of degrading both myosin heavy chains and actin to lower molecular weight peptides at acid (pH 5.0), but not at neutral pH. The results suggest a role for lysosomal enzymes in the breakdown of myofibrillar proteins during starvation.  相似文献   

17.
Activities of lysosomal enzymes (acid phosphatase, N-acetyl-beta-D-glucosaminidase, acid lipase and cathepsin D) have been examined in a synchronized culture of mouse L-fibroblasts. Cell synchronization was achieved by the double thymidine block with a subsequent mitotic selection after colcemid treatment. Specific activities of the enzymes studied were found to be higher in S-G2 that in G1. There is a linear increase (approximate doubling) in enzyme activities per cell from G1 to M. Activity of galactosyltransferase, a marker of the Golgi apparatus, declined in mitotic cells in comparison with the interphase cells. Ultrastructural examination of L-cells revealed a reduction of the intracellular membrane system including the Golgi apparatus during mitosis. Changes in the Golgi apparatus activity have been considered as a possible regulatory point of lysosome formation. The data presented are compared with the results of morphological studies of lysosomal system in L-cells.  相似文献   

18.
We previously showed that the one-electron reduction product of nitric oxide (NO), nitroxyl (HNO), irreversibly inhibits the proteolytic activity of the model cysteine protease papain. This result led us to investigate the differential effects of the nitrogen oxides, such as nitroxyl (HNO), NO, and in situ-generated peroxynitrite on cysteine modification-sensitive cellular proteolytic enzymes. We used Angeli's salt, diethylaminenonoate (DEA/NO), and 3-morpholinosydnoniminehydrochloride (SIN-1), as donors of HNO, NO, and peroxynitrite, respectively. In this study we evaluated their inhibitory activities on the lysosomal mammalian papain homologue cathepsin B and on the cytosolic 26S proteasome in THP-1 monocyte/macrophages after LPS activation or TPA differentiation. HNO-generating Angeli's salt caused a concentration-dependent (62 +/- 4% at 316 muM) inhibition of the 26S proteasome activity, resulting in accumulation of protein-bound polyubiquitinylated proteins in LPS-activated cells, whereas neither DEA/NO nor SIN-1 showed any effect. Angeli's salt, but not DEA/NO or SIN-1, also caused (94 +/- 2% at 316 muM) inhibition of lysosomal cathepsin B activity in LPS-activated cells. Induction of macrophage differentiation did not significantly alter the inhibitory effect of HNO on lysosomal cathepsin B activity, but protected the proteasome from HNO-induced inhibition. The protection awarded by macrophage differentiation was associated with induction of the GSH synthesis rate-limiting enzyme gamma-glutamylcysteine synthetase, as well as with increased intracellular GSH. In conclusion, HNO abrogates both lysosomal and cytosolic proteolysis in THP-1 cells. Macrophage differentiation, associated with upregulation of antioxidant defenses such as increased cellular GSH, does not protect the lysosomal cysteine protease cathepsin B from inhibition.  相似文献   

19.
Two lysosomal enzymes, cathepsin D and acid phosphatase, were detected in significant amounts in the lysosome-containing subcellular fractions of rat parotid tissue and found to have dissimilar distributions in these fractions. The total levels of these enzymes were measured at various times throughout a complete secretory cycle induced synchronously by fasting rats overnight and administering isoproterenol at time zero. The results showed a 30% increase in cathepsin D activity in the glands by 10 h post-stimulation, and a 20% decrease in acid phosphatase activity 7 h after stimulation. These results suggest that there are cyclic changes in lysosomal enzymes during the secretory cycle of this gland, but that these changes are complex ones and cannot be related to specific cellular processes at this time.  相似文献   

20.
Procathepsins B and L in the hepatic endoplasmic lumen were identified as having a molecular weight of 39,000 by immunoblot analysis. The proenzymes were then purified to remove the mature enzymes by concanavalin A-Sepharose chromatography. The concanavalin A-adsorbed fractions containing the proenzymes showed no appreciable activities of cathepsins B and L. When those fractions were incubated at pH 3.0, the enzymatic activities markedly increased: the activities of cathepsins B and L after 36 h incubation were 60 and 210 times those of the controls, respectively. Immunoblot analysis showed that after 36 h incubation the proenzymes disappeared and the mature enzymes increased. Thus the proenzymes were processed to the mature enzymes under acidic conditions of pH 3.0. The marked increases of enzymatic activities and the conversion of the proenzymes to the mature forms were completely blocked with pepstatin, which is a potent inhibitor of aspartic proteases. The results strongly suggested that a processing protease for procathepsins B and L might be cathepsin D, a major lysosomal aspartic protease. Indeed, lysosomal cathepsin D could convert microsomal procathepsin B to the mature enzyme in vitro. Therefore, procathepsins B and L seem first to be synthesized as enzymatically inactive forms in endoplasmic reticulum and successively may be converted into active forms by cathepsin D in lysosomal compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号