首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ezrin is localized to the apical membrane of parietal cells and couples the cAMP-dependent protein kinase (PKA) activation cascade to the regulated HCl secretion in gastric parietal cells. Our recent studies demonstrate the functional relevance of PKA-mediated phosphorylation of ezrin in parietal cell secretion [R. Zhou, X. Cao, C. Watson, Y. Miao, Z. Guo, J.G. Forte, X. Yao, Characterization of protein kinase A-mediated phosphorylation of ezrin in gastric parietal cell activation, J. Biol. Chem. 278 (2003) 35651]. Here we show that activation of PKA protects ezrin from calpain I-mediated proteolysis without alteration of calpain I activation and fodrin breakdown. To determine whether phosphorylation of Ser66 by PKA affects the insensitivity to the calpain I-mediated cleavage, recombinant proteins of ezrin, both wild type and S66A/D mutants, were incubated with the purified calpain I. Indeed, phosphorylation-like S66D mutant ezrin is resistant to calpain I-mediated proteolysis while wild type and S66A mutant were sensitive. In fact, expression of phosphorylation-like S66D, but not S66A, mutant in parietal cells confers its resistance to calpain I-mediated proteolysis. Taken together, these results indicate that phosphorylation of ezrin by PKA modulates its sensitivity to calpain I cleavage.  相似文献   

2.
The digestive function of the stomach depends on acidification of the gastric lumen. Acid secretion into the lumen is triggered by activation of the PKA cascade, which ultimately results in the insertion of gastric H,K-ATPases into the apical plasma membranes of parietal cells. A coupling protein is ezrin, whose phosphorylation at Ser-66 by PKA is required for parietal cell activation. However, little is known regarding the molecular mechanism(s) by which this signaling pathway operates in gastric acid secretion. Here we show that PKA cooperates with MST4 to orchestrate histamine-elicited acid secretion by phosphorylating ezrin at Ser-66 and Thr-567. Histamine stimulation activates PKA, which phosphorylates MST4 at Thr-178 and then promotes MST4 kinase activity. Interestingly, activated MST4 then phosphorylates ezrin prephosphorylated by PKA. Importantly, MST4 is important for acid secretion in parietal cells because either suppression of MST4 or overexpression of non-phosphorylatable MST4 prevents the apical membrane reorganization and proton pump translocation elicited by histamine stimulation. In addition, overexpressing MST4 phosphorylation-deficient ezrin results in an inhibition of gastric acid secretion. Taken together, these results define a novel molecular mechanism linking the PKA-MST4-ezrin signaling cascade to polarized epithelial secretion in gastric parietal cells.  相似文献   

3.
The digestive function of the stomach depends on acidification of the gastric lumen. Acid secretion into the lumen is triggered by activation of a cAMP-dependent protein kinase (PKA) cascade, which ultimately results in the insertion of gastric H,K-ATPases into the apical plasma membranes of parietal cells. A coupling protein is ezrin whose phosphorylation at Ser-66 by PKA is required for parietal cell activation. However, little is known regarding the molecular mechanism(s) by which ezrin operates in gastric acid secretion. Here we show that phosphorylation of Ser-66 induces a conformational change of ezrin that enables its association with syntaxin 3 (Stx3) and provides a spatial cue for H,K-ATPase trafficking. This conformation-dependent association is specific for Stx3, and the binding interface is mapped to the N-terminal region. Biochemical analyses show that inhibition of ezrin phosphorylation at Ser-66 prevents ezrin-Stx3 association and insertion of H,K-ATPase into the apical plasma membrane of parietal cells. Using atomic force microscopic analyses, our study revealed that phosphorylation of Ser-66 induces unfolding of ezrin molecule to allow Stx3 binding to its N terminus. Given the essential role of Stx3 in polarized secretion, our study presents the first evidence in which phosphorylation-induced conformational rearrangement of the ezrin molecule provides a spatial cue for polarized membrane trafficking in epithelial cells.  相似文献   

4.
The ezrin-radixin-moesin proteins provide a regulated linkage between membrane proteins and the cortical cytoskeleton and also participate in signal transduction pathways. Ezrin is localized to the apical membrane of parietal cells and couples the protein kinase A activation cascade to the regulated HCl secretion. Our recent proteomic study revealed a protein complex of ezrin-ACAP4-ARF6 essential for volatile membrane remodeling (Fang, Z., Miao, Y., Ding, X., Deng, H., Liu, S., Wang, F., Zhou, R., Watson, C., Fu, C., Hu, Q., Lillard, J. W., Jr., Powell, M., Chen, Y., Forte, J. G., and Yao, X. (2006) Mol. Cell Proteomics 5, 1437–1449). However, knowledge of whether ACAP4 physically interacts with ezrin and how their interaction is integrated into membrane-cytoskeletal remodeling has remained elusive. Here we provide the first evidence that ezrin interacts with ACAP4 in a protein kinase A-mediated phosphorylation-dependent manner through the N-terminal 400 amino acids of ACAP4. ACAP4 locates in the cytoplasmic membrane in resting parietal cells but translocates to the apical plasma membrane upon histamine stimulation. ACAP4 was precipitated with ezrin from secreting but not resting parietal cell lysates, suggesting a phospho-regulated interaction. Indeed, this interaction is abolished by phosphatase treatment and validated by an in vitro reconstitution assay using phospho-mimicking ezrinS66D. Importantly, ezrin specifies the apical distribution of ACAP4 in secreting parietal cells because either suppression of ezrin or overexpression of non-phosphorylatable ezrin prevents the apical localization of ACAP4. In addition, overexpressing GTPase-activating protein-deficient ACAP4 results in an inhibition of apical membrane-cytoskeletal remodeling and gastric acid secretion. Taken together, these results define a novel molecular mechanism linking ACAP4-ezrin interaction to polarized epithelial secretion.  相似文献   

5.
Vasopressin controls water excretion through regulation of aquaporin-2 (AQP2) trafficking in renal collecting duct cells. Using mass spectrometry, we previously demonstrated four phosphorylated serines (Ser(256), Ser(261), Ser(264), and Ser(269)) in the carboxyl-terminal tail of rat AQP2. Here, we used phospho-specific antibodies and protein mass spectrometry to investigate the roles of vasopressin and cyclic AMP in the regulation of phosphorylation at Ser(269) and addressed the role of this site in AQP2 trafficking. The V2 receptor-specific vasopressin analog dDAVP increased Ser(P)(269)-AQP2 abundance more than 10-fold, but at a rate much slower than the corresponding increase in Ser(256) phosphorylation. Vasopressin-mediated changes in phosphorylation at both sites were mimicked by cAMP addition and inhibited by protein kinase A (PKA) antagonists. In vitro kinase assays, however, demonstrated that PKA phosphorylates Ser(256), but not Ser(269). Phosphorylation of AQP2 at Ser(269) did not occur when Ser(256) was replaced by an unphosphorylatable amino acid, as seen in both S256L-AQP2 mutant mice and in Madin-Darby canine kidney cells expressing an S256A mutant, suggesting that Ser(269) phosphorylation depends upon prior phosphorylation at Ser(256). Immunogold electron microscopy localized Ser(P)(269)-AQP2 solely in the apical plasma membrane of rat collecting duct cells, in contrast to the other three phospho-forms (found in both apical plasma membrane and intracellular vesicles). Madin-Darby canine kidney cells expressing an S269D "phosphomimic" AQP2 mutant showed constitutive localization at the plasma membrane. The data support a model in which vasopressin-mediated phosphorylation of AQP2 at Ser(269):(a) depends on prior PKA-mediated phosphorylation of Ser(256) and (b) enhances apical plasma membrane retention of AQP2.  相似文献   

6.
The platelet receptor for von Willebrand factor (VWF), glycoprotein (GP) Ib-IX, mediates initial platelet adhesion and activation. It is known that the cytoplasmic domain of GPIbbeta is phosphorylated at Ser(166) by cAMP-dependent protein kinase (PKA). To understand the physiological role of GPIbbeta phosphorylation, a GPIb-IX mutant replacing Ser(166) of GPIbbeta with alanine (S166A) and a deletion mutant lacking residues 166-181 of GPIbbeta (Delta165) were constructed. These mutants, expressed in Chinese hamster ovary (CHO) cells, showed an enhanced VWF-binding function compared with wild type GPIb-IX. Treatment of CHO cells expressing wild type GPIb-IX with a PKA inhibitor, PKI, reduced Ser(166) phosphorylation and also enhanced VWF binding to GPIb-IX. Furthermore, cells expressing S166A or Delta165 mutants showed a significantly enhanced adhesion to immobilized VWF under flow conditions. Consistent with the studies in CHO cells, treatment of platelets with PKI enhanced VWF binding to platelets. In contrast, a PKA stimulator, forskolin, reduced VWF binding and VWF-induced platelet agglutination, which was reversed by PKI. Thus, PKA-mediated phosphorylation of GPIbbeta at Ser(166) negatively regulates VWF binding to GPIb-IX and is one of the mechanisms by which PKA mediates platelet inhibition.  相似文献   

7.
Stimulation of gastric acid secretion in parietal cells involves the translocation of the proton pump (H,K-ATPase) from cytoplasmic tubulovesicles to the apical membrane to form long, F-actin-containing, microvilli. Following secretion, the pump is endocytosed back into tubulovesicles. The parietal cell therefore offers a system for the study of regulated membrane recycling, with temporally separated endocytic and exocytic steps. During cAMP-mediated stimulation, an 80 kDa peripheral membrane protein becomes phosphorylated on serine residues. This protein is a major component, together with actin and the pump, of the isolated apical membrane from stimulated cells, but not the resting tubulovesicular membrane. Here we show that the gastric 80 kDa phosphoprotein is closely related or identical to ezrin, a protein whose phosphorylation on serine and tyrosine residues was recently implicated in the induction by growth factors of cell surface structures on cultured cells [Bretscher, A. (1989) J. Cell Biol., 108, 921-930]. Light and electron microscopy reveal that ezrin is associated with the actin filaments of the microvilli of stimulated cells, but not with the filaments in the terminal web. In addition, a significant amount of ezrin is present in the basolateral membrane infoldings of both resting and stimulated cells. Extraction studies show that ezrin is a cytoskeletal protein in unstimulated and stimulated cells, and its association with the cytoskeleton is more stable in stimulated cells. These studies indicate that ezrin is a membrane cytoskeletal linker that may play a key role in the control of the assembly of secretory apical microvilli in parietal cells and ultimately in the regulation of acid secretion. Taken together with the earlier studies, we suggest that ezrin might be a general substrate for kinases involved in the regulation of actin-containing cell surface structures.  相似文献   

8.
Vasodilator-stimulated phosphoprotein (VASP), an important substrate of PKA, plays a critical role in remodeling of actin cytoskeleton and actin-based cell motility. However, how PKA accurately transfers extracellular signals to VASP and then how phosphorylation of VASP regulates endothelial cell migration have not been clearly defined. Protein kinase A anchoring proteins (AKAPs) are considered to regulate intracellular-specific signal targeting of PKA via AKAP-mediated PKA anchoring. Thus, our study investigated the relationship among AKAP anchoring of PKA, PKA activity, and VASP phosphorylation, which is to clarify the exact role of VASP and its upstream regulatory mechanism in PKA-dependent migration. Our results show that chemotactic factor PDGF activated PKA, increased phosphorylation of VASP at Ser157, and enhanced ECV304 endothelial cell migration. However, phosphorylation site-directed mutation of VASP at Ser157 attenuated the chemotactic effect of PDGF on endothelial cells, suggesting phosphorylation of VASP at Ser157 promotes PKA-mediated endothelial cell migration. Furthermore, disrupting PKA anchoring to AKAP or PKA activity significantly attenuated the PKA activity, VASP phosphorylation, and subsequent cell migration. Meanwhile, disrupting PKA anchoring to AKAP abolished PDGF-induced lamellipodia formation and special VASP accumulation at leading edge of lamellipodia. These results indicate that PKA activation and PKA-mediated substrate responses in VASP phosphorylation and localization depend on PKA anchoring via AKAP in PDGF-induced endothelial cell migration. In conclusion, AKAP anchoring of PKA is an essential upstream event in regulation of PKA-mediated VASP phosphorylation and subsequent endothelial cell migration, which contributes to explore new methods for controlling endothelial cell migration related diseases and angiogenesis.  相似文献   

9.
The ERM (ezrin/radixin/moesin) proteins provide a regulated linkage between membrane proteins and the cortical cytoskeleton and also participate in signal transduction pathways. Ezrin is localized to the apical membrane of parietal cells and couples the protein kinase A activation cascade to regulated HCl secretion in gastric parietal cells. Here, we show that the integrity of ezrin is essential for parietal cell activation and provide the first evidence that ezrin interacts with PALS1, an evolutionarily conserved PDZ and SH3 domain-containing protein. Our biochemical study verifies that ezrin binds to PALS1 via its N terminus and is co-localized with PALS1 to the apical membrane of gastric parietal cells. Furthermore, our study shows that PALS1 is essential for the apical localization of ezrin, as either suppression of PALS1 protein accumulation or deletion of the PALS1-binding domain of ezrin eliminated the apical localization of ezrin. Finally, our study demonstrates the essential role of ezrin-PALS1 interaction in the apical membrane remodeling associated with parietal cell secretion. Taken together, these results define a novel molecular mechanism linking ezrin to the conserved apical polarity complexes and their roles in polarized epithelial secretion of gastric parietal cells.  相似文献   

10.
While classically viewed as a prototypic G(s) and adenylyl cyclase-coupled G protein-coupled receptor, recent studies have indicated that some aspects of beta(2)-adrenergic receptor (beta(2)-AR) signaling are inhibited by pertussis toxin, indicating that they are mediated by G(i)/G(o) proteins. These signals include activation of ERK MAPKs and Akt activation, as well as hypertrophic and anti-apoptotic pathways in cardiac myocytes. Studies in cultured cells have suggested the hypothesis that protein kinase A (PKA)-mediated phosphorylation of the beta(2)-AR regulates its coupling specificity with respect to G(s) and G(i). Using a Chinese hamster ovary cell system, we show that mutant beta(2)-ARs with Ala substituted for Ser at consensus PKA sites stimulate robust cyclic AMP accumulation (G(s)) but are unable to activate ERK (G(i)). In contrast, Ser --> Asp mutants are dramatically impaired in their ability to activate adenylyl cyclase but are significantly more active than wild type receptor in activating ERK. Activation of adenylyl cyclase by wild type and Ser --> Ala mutant receptors is not altered by pertussis toxin, whereas adenylyl cyclase stimulated through the Ser --> Asp mutant is enhanced. Activation of ERK by wild type and Ser --> Asp receptors is inhibited by pertussis toxin. To further rigorously test the hypothesis, we utilized a completely reconstituted system of purified recombinant wild type and PKA phosphorylation site mutant beta(2)-ARs and heterotrimeric G(s) and G(i). G protein coupling was measured by receptor-mediated stimulation of GTPgammaS binding to the G protein. PKA-mediated phosphorylation of the beta(2)-AR significantly decreased its ability to couple to G(s), while simultaneously dramatically increasing its ability to couple to G(i). These results are reproduced when a purified recombinant Ser --> Asp mutant beta(2)-AR is tested, whereas the Ser --> Ala receptor resembles the unphosphorylated wild type. These results provide strong experimental support for the idea that PKA-mediated phosphorylation of the beta(2)-adrenergic receptor switches its predominant coupling from G(s) to G(i).  相似文献   

11.
A digitally-enhanced videomicroscopy study of rabbit gastric parietal cells in primary culture was performed using alternate observations with differential interference contrast and fluorescence optics of cells mounted and perfused on a temperature-controlled microscope stage. The effect of histamine, a physiological effector of acid secretion, was followed. Isolated parietal cells possess an internal apical vacuole, which kept the cell in a pseudopolarized state. This apical vacuole is a site of acid secretion. This was demonstrated by the direct visualization of the uptake of the fluorescent weak base 9-amino acridine and of the concomitant enormous swelling of the acid vacuole which reached an estimated size of 3-7 times the normal cell volume. This morphological change of shape and acidification of apical vacuoles was fully reversible and cells could respond to successive stimulations. A quantitative study of these events provided a value of the acid accumulation index for each single cell in response to histamine. Individual cell response varied within a factor of 7. The cellular localization of the proton pump complex responsible for acid secretion and of the major components of the secretory microvilli, actin and ezrin, a histamine-dependent phosphorylation target of protein kinase A, were detected by indirect immunofluorescence microscopy in resting and stimulated cells. Both actin and ezrin colocalized at the apical vacuole membrane in resting and stimulated cells, whereas the proton pump shifted from an intracytoplasmic pool to the apical vacuole membrane upon stimulation.  相似文献   

12.
The cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial Cl(-) channel whose activity is controlled by cAMP-dependent protein kinase (PKA)-mediated phosphorylation. We found that CFTR immunoprecipitates from Calu-3 airway cells contain endogenous PKA, which is capable of phosphorylating CFTR. This phosphorylation is stimulated by cAMP and inhibited by the PKA inhibitory peptide. The endogenous PKA that co-precipitates with CFTR could also phosphorylate the PKA substrate peptide, Leu-Arg-Arg-Ala-Ser-Leu-Gly (kemptide). Both the catalytic and type II regulatory subunits of PKA are identified by immunoblotting CFTR immunoprecipitates, demonstrating that the endogenous kinase associated with CFTR is PKA, type II (PKA II). Phosphorylation reactions mediated by CFTR-associated PKA II are inhibited by Ht31 peptide but not by the control peptide Ht31P, indicating that a protein kinase A anchoring protein (AKAP) is responsible for the association between PKA and CFTR. Ezrin may function as this AKAP, since it is expressed in Calu-3 and T84 epithelia, ezrin binds RII in overlay assays, and RII is immunoprecipitated with ezrin from Calu-3 cells. Whole-cell patch clamp of Calu-3 cells shows that Ht31 peptide reduces cAMP-stimulated CFTR Cl(-) current, but Ht31P does not. Taken together, these data demonstrate that PKA II is linked physically and functionally to CFTR by an AKAP interaction, and they suggest that ezrin serves as an AKAP for PKA-mediated phosphorylation of CFTR.  相似文献   

13.
 Acid secretion in gastric parietal cells is preceded by a dramatic increase in surface area of the apical membrane compartment, due to fusion of the H+/K+-ATPase-containing tubulovesicles. The resulting canaliculi must be fixed for a period of minutes by cytoskeletal elements to sustain acid secretion. Using immunofluorescence microscopy, the cytoskeletal linker molecule, ezrin, localizes to the apical canalicular membrane of parietal cells. Antibodies against ezrin precipitate H+/K+-ATPase and β-actin. In addition to its apical localization, ezrin is found to be colocalized at the basolateral compartment with synapse-associated protein (SAP) 97. Immunoprecipitation confirms a direct binding of SAP 97 and ezrin. We conclude that ezrin is fixed to the basolateral compartment by SAP 97. Upon stimulation of acid secretion, ezrin moves to the apical surface where it might stabilize the canalicular microvilli by connecting to β-actin and H+/K+-ATPase, thereby sustaining acid secretion. Accepted: 14 January 1999  相似文献   

14.
CGI-58/ABHD5 coactivates adipose triglyceride lipase (ATGL). In adipocytes, CGI-58 binds to perilipin 1A on lipid droplets under basal conditions, preventing interaction with ATGL. Upon activation of protein kinase A (PKA), perilipin 1A is phosphorylated and CGI-58 rapidly disperses into the cytoplasm, enabling lipase coactivation. Because the amino acid sequence of murine CGI-58 has a predicted PKA consensus sequence of RKYS239S240, we hypothesized that phosphorylation of CGI-58 is involved in this process. We show that Ser239 of murine CGI-58 is a substrate for PKA using phosphoamino acid analysis, MS, and immuno­blotting approaches to study phosphorylation of recombinant CGI-58 and endogenous CGI-58 of adipose tissue. Phosphorylation of CGI-58 neither increased nor impaired coactivation of ATGL in vitro. Moreover, Ser239 was not required for CGI-58 function to increase triacylglycerol turnover in human neutral lipid storage disorder fibroblasts that lack endogenous CGI-58. Both CGI-58 and S239A/S240A-mutated CGI-58 localized to perilipin 1A-coated lipid droplets in cells. When PKA was activated, WT CGI-58 dispersed into the cytoplasm, whereas substantial S239A/S240A-mutated CGI-58 remained on lipid droplets. Perilipin phosphorylation also contributed to CGI-58 dispersion. PKA-mediated phosphorylation of CGI-58 is required for dispersion of CGI-58 from perilipin 1A-coated lipid droplets, thereby increasing CGI-58 availability for ATGL coactivation.  相似文献   

15.
Helicobacter pylori persistently colonize the human stomach and have been linked to atrophic gastritis and gastric carcinoma. Although it is well known that H. pylori infection can result in hypochlorhydria, the molecular mechanisms underlying this phenomenon remain poorly understood. Here we show that VacA permeabilizes the apical membrane of gastric parietal cells and induces hypochlorhydria. The functional consequences of VacA infection on parietal cell physiology were studied using freshly isolated rabbit gastric glands and cultured parietal cells. Secretory activity of parietal cells was judged by an aminopyrine uptake assay and confocal microscopic examination. VacA permeabilization induces an influx of extracellular calcium, followed by activation of calpain and subsequent proteolysis of ezrin at Met(469)-Thr(470), which results in the liberation of ezrin from the apical membrane of the parietal cells. VacA treatment inhibits acid secretion by preventing the recruitment of H,K-ATPase-containing tubulovesicles to the apical membrane of gastric parietal cells. Electron microscopic examination revealed that VacA treatment disrupts the radial arrangement of actin filaments in apical microvilli due to the loss of ezrin integrity in parietal cells. Significantly, expression of calpain-resistant ezrin restored the functional activity of parietal cells in the presence of VacA. Proteolysis of ezrin in VacA-infected parietal cells is a novel mechanism underlying H. pylori-induced inhibition of acid secretion. Our results indicate that VacA disrupts the apical membrane-cytoskeletal interactions in gastric parietal cells and thereby causes hypochlorhydria.  相似文献   

16.
Small conductance, Ca2+-activated voltage-independent potassium channels (SK channels) are widely expressed in diverse tissues; however, little is known about the molecular regulation of SK channel subunits. Direct alteration of ion channel subunits by kinases is a candidate mechanism for functional modulation of these channels. We find that activation of cyclic AMP-dependent protein kinase (PKA) with forskolin (50 microm) causes a dramatic decrease in surface localization of the SK2 channel subunit expressed in COS7 cells due to direct phosphorylation of the SK2 channel subunit. PKA phosphorylation studies using the intracellular domains of the SK2 channel subunit expressed as glutathione S-transferase fusion protein constructs showed that both the amino-terminal and carboxyl-terminal regions are PKA substrates in vitro. Mutational analysis identified a single PKA phosphorylation site within the amino-terminal of the SK2 subunit at serine 136. Mutagenesis and mass spectrometry studies identified four PKA phosphorylation sites: Ser465 (minor site) and three amino acid residues Ser568, Ser569, and Ser570 (major sites) within the carboxyl-terminal region. A mutated SK2 channel subunit, with the three contiguous serines mutated to alanines to block phosphorylation at these sites, shows no decrease in surface expression after PKA stimulation. Thus, our findings suggest that PKA phosphorylation of these three sites is necessary for PKA-mediated reorganization of SK2 surface expression.  相似文献   

17.
In its dormant state, the membrane cytoskeletal linker protein ezrin takes on a NH2 terminal-to-COOH terminal (N-C) binding conformation. In vitro evidence suggests that eliminating the N-C binding conformation by Thr567 phosphorylation leads to ezrin activation. Here, we found for resting gastric parietal cells that the levels of ezrin phosphorylation on Thr567 are low and can be increased to a small extent (40%) by stimulating secretion via the cAMP pathway. Treatment of cells with protein phosphatase inhibitors led to a rapid, dramatic increase in Thr567 phosphorylation by 400% over resting levels, prompting the hypothesis that ezrin activity is regulated by turnover of phosphorylation on Thr567. In vitro and in vivo fluorescence resonance energy transfer analysis demonstrated that Thr567 phosphorylation opens the N-C interaction. However, even in the closed conformation, ezrin localizes to membranes by an exposed NH2 terminal binding site. Importantly, the opened phosphorylated form of ezrin more readily cosediments with F-actin and binds more tightly to membrane than the closed forms. Furthermore, fluorescence recovery after photobleaching analysis in live cells showed that the Thr567Asp mutant had longer recovery times than the wild type or the Thr567Ala mutant, indicating the Thr567-phosphorylated form of ezrin is tightly associated with F-actin and the membrane, restricting normal activity. These data demonstrate and emphasize the functional importance of reversible phosphorylation of ezrin on F-actin binding. A novel model is proposed whereby ezrin and closely associated kinase and phosphatase proteins represent a motor complex to maintain a dynamic relationship between the varying membrane surface area and filamentous actin length. ezrin/radixin/moesin protein; motor complex; gastric parietal cell; fluorescence resonance energy transfer; fluorescence recovery after photobleaching  相似文献   

18.
Apactin is an 80-kDa type I membrane glycoprotein derived from pro-Muclin, a precursor that also gives rise to the zymogen granule protein Muclin. Previous work showed that apactin is efficiently removed from the regulated secretory pathway and targeted to the actin-rich apical plasma membrane of the pancreatic acinar cell. The cytosolic tail (C-Tail) of apactin consists of 16 amino acids, has Thr casein kinase II and Ser protein kinase C phosphorylation sites, and a C-terminal PDZ-binding domain. Secretory stimulation of acinar cells causes a decrease in Thr phosphorylation and an increase in Ser phosphorylation of apactin. Fusion peptides of the C-Tail domain pulldown actin, ezrin, and EBP50/NHERF in a phosphorylation-dependent manner. HIV TAT-C-Tail fusion peptides were used as dominant negative constructs on living pancreatic cells to study effects on the actin cytoskeleton. During secretory stimulation, TAT-C-Tail-Thr/Asp phosphomimetic peptide caused an increase in actin-coated zymogen granules at the apical surface, while TAT-C-Tail-S/D phosphomimetic peptide caused a broadening of the actin cytoskeleton. These data indicate that stimulation-mediated Thr dephosphorylation allows decreased association of apactin with EBP50/NHERF and fosters actin remodeling to coat zymogen granules. Stimulation-mediated Ser phosphorylation increases apactin association with the actin cytoskeleton, maintaining tight bundling of actin microfilaments at the apical surface. Thus, apactin is involved in remodeling the apical cytoskeleton during regulated exocytosis in a manner controlled by phosphorylation of the apactin C-Tail.  相似文献   

19.
Phosphorylation of BAD, a pro-apoptotic member of the Bcl-2 protein family, on either Ser112 or Ser136 is thought to be necessary and sufficient for growth factors to promote cell survival. Here we report that Ser155, a site phosphorylated by protein kinase A (PKA), also contributes to cell survival. Ser112 is thought to be the critical PKA target, but we found that BAD fusion proteins containing Ala at Ser112 (S112A) or Ser136 (S136A) or at both positions (S112/136A) were still heavily phosphorylated by PKA in an in vitro kinase assay. BAD became insensitive to phosphorylation by PKA only when both Ser112 and Ser136, or all three serines (S112/136/155) were mutated to alanine. In HEK293 cells, BAD fusion proteins mutated at Ser155 were refractory to phosphorylation induced by elevation of cyclic AMP(cAMP) levels. Phosphorylation of the S112/136A mutant was >90% inhibited by H89, a PKA inhibitor. The S155A mutant induced more apoptosis than the wild-type protein in serum-maintained CHO-K1 cells, and apoptosis induced by the S112/136A mutant was potentiated by serum withdrawal. These data suggest that Ser155 is a major site of phosphorylation by PKA and serum-induced kinases. Like Ser112 and Ser136, phosphorylation of Ser155 contributes to the cancellation of the pro-apoptotic function of BAD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号