首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
MKP-2 is a member of the dual-specificity phosphatase family that can dephosphorylate and inactivate mitogen-activated protein kinases (MAPKs). Although MKP-2 can be induced by ERK signaling, little is known about the regulation of MKP-2 at the post-translational level. Here we show that MKP-2 is phosphorylated by ERK and that such phosphorylation leads to stabilization of MKP-2 protein. Importantly, we find that MKP-2 can be phosphorylated on Ser386 and Ser391 at its C-terminus. Blockage of ERK activation results in enhanced proteasomal degradation of MKP-2 protein. Moreover, we find that phosphorylation has no effect on MKP-2 phosphatase activity. Taken together, these results illustrate an important post-translational regulation of MKP-2 protein as a feedback mechanism to control ERK activity.  相似文献   

2.
Mitogen-activated protein (MAP) kinase phosphatase-3 (MKP-3) is a dual specificity phosphatase that inactivates extracellular signal-regulated kinase (ERK) MAP kinases. This reflects tight and specific binding between ERK and the MKP-3 amino terminus with consequent phosphatase activation and dephosphorylation of the bound MAP kinase. We have used a series of p38/ERK chimeric molecules to identify domains within ERK necessary for binding and catalytic activation of MKP-3. These studies demonstrate that ERK kinase subdomains V-XI are necessary and sufficient for binding and catalytic activation of MKP-3. These domains constitute the major COOH-terminal structural lobe of ERK. p38/ERK chimeras possessing these regions display increased sensitivity to inactivation by MKP-3. These data also reveal an overlap between ERK domains interacting with MKP-3 and those known to confer substrate specificity on the ERK MAP kinase. Consistent with this, we show that peptides representing docking sites within the target substrates Elk-1 and p90(rsk) inhibit ERK-dependent activation of MKP-3. In addition, abolition of ERK-dependent phosphatase activation following mutation of a putative kinase interaction motif (KIM) within the MKP-3 NH(2) terminus suggests that key sites of contact for the ERK COOH-terminal structural lobe include residues localized between the Cdc25 homology domains (CH2) found conserved between members of the DSP gene family.  相似文献   

3.
Although the nongenomic effects of glucocorticoids have been well acknowledged, its precise intracellular signal transduction pathway remains to be elucidated. The present study using Western immunoblot and protein kinase activity assay, for the first time, showed that corticosterone (B) can induce a rapid activation of Erk1/2 mitogen-activated protein kinase (MAPK) in PC12 cells. The dose-response curve was bell shaped, with the maximal activation at 10(-9) M in 15 min. The results from immunofluorescence staining also revealed that the activated Erk1/2 MAPK was translocated from cytoplasm to nucleus of PC12 cells in 15 min. Activation of Erk1/2 MAPK by B was apparently not mediated by the classical cytosolic steroid receptors, for B-BSA can induce the phosphorylation of Erk1/2 MAPK, but the antagonist (RU38486) cannot block the phosphorylation of Erk1/2 MAPK induced by B. Phosphorylation of Erk1/2 MAPK induced by B was not affected by a tyrosine kinase inhibitor (genistein), suggesting that the pathway did not involve the tyrosine kinase activity. On the other hand, protein kinase C activator (PMA) can activate and protein kinase C inhibitor (G?6976) can block the activation of Erk1/2 MAPK induced by B. Taken together, these data clearly demonstrated that B might act via putative membrane receptor and rapidly activate Erk1/2 MAPK through protein kinase C alpha in PC12 cells.  相似文献   

4.
Extracellular signal-regulated kinases such as ERK1 [p44 mitogen-activated protein kinase (MAPK)] and ERK2 (p42 MAPK) are activated in the CNS under physiological and pathological conditions such as ischemia and epilepsy. Here, we studied the activation state of ERK1/2 in rat hippocampal slices during application of the K(+) channel blocker 4-aminopyridine (4AP, 50 micro m), a procedure that enhances synaptic transmission and leads to the appearance of epileptiform activity. Hippocampal slices superfused with 4AP-containing medium exhibited a marked activation of ERK1/2 phosphorylation that peaked within about 20 min. These effects were not accompanied by changes in the activation state of c-Jun N-terminal kinase (JNK), another member of the MAP kinase superfamily. 4AP-induced ERK1/2 activation was inhibited by the voltage-gated Na(+) channel blocker tetrodotoxin (1 micro m). We also found that application of the ERK pathway inhibitors U0126 (50 micro m) or PD98059 (100 micro m) markedly reduced 4AP-induced epileptiform synchronization, thus abolishing ictal discharges in the CA3 area. The effects induced by U0126 or PD98059 were not associated with changes in the amplitude and latency of the field potentials recorded in the CA3 area following electrical stimuli delivered in the dentate hylus. These data demonstrate that activation of ERK1/2 accompanies the appearance of epileptiform activity induced by 4AP and suggest a cause-effect relationship between the ERK pathway and epileptiform synchronization.  相似文献   

5.
The mitogen-activated protein (MAP) kinase ERK2 is an essential signal transduction molecule that mediates extracellular signaling by all polypeptide growth factors. Full activation of ERK2 requires phosphorylation at both a threonine residue (Thr(183)) conserved in most protein kinases as well as a tyrosine residue (Tyr(185)) unique to members of the mitogen-activated protein kinase family. We have characterized the kinetic role of phosphorylation at each site with respect to the overall activation mechanism, providing a complete picture of the reaction steps involved. Phosphorylation at Tyr(185) serves to configure the ATP binding site, while phosphorylation at both residues is required to stabilize binding of the protein substrate, myelin basic protein. Similar control mechanisms are employed to stabilize ATP and myelin basic protein in the phosphoryl group transfer reaction, accounting for the enormous increase in turnover rate. The mechanism of ERK2 activation is kinetically similar to that of the cell cycle control protein, cdk2/cyclinA. Phosphorylation of Tyr(185) in ERK2 and association of cyclinA with cdk2 both serve to stabilize ATP binding. Subsequent phosphorylation of both enzymes on threonine serves to stabilize binding of the phosphoacceptor substrate.  相似文献   

6.
Fibroblast growth factors (FGFs) and their receptors, regularly expressed at high levels in gliomas, are further upregulated during the transition of the tumor from low- to high-grade malignancy, and are essential for glioma progression. FGFs induce upregulation of the mitogen-activated protein kinase (MAPK) signaling cascade in cultured glioma cells, which suggests that MAPK pathway participates in the FGF-dependent glioma development. Recently, it has been shown that dobesilate, an inhibitor of FGF mitogenic activity, shows antiproliferative and proapoptotic activities in glioma cell cultures. Accordingly, it should be expected this new synthetic FGF inhibitor to affect the activation levels of MAPK. Here we report that immunocytochemical and Western blot data unequivocally show that treatment of cell cultures with dobesilate causes a significant decrease of the intracellular levels of ERK1/2 activation, one of the components of the MAPK signalling cascade. This finding supports an important role for dobesilate in glioma growth, suggesting that dobesilate should be a treatment to be born in mind for glioma management.  相似文献   

7.
Catalytic reaction pathway for the mitogen-activated protein kinase ERK2   总被引:2,自引:0,他引:2  
Prowse CN  Hagopian JC  Cobb MH  Ahn NG  Lew J 《Biochemistry》2000,39(20):6258-6266
The structural, functional, and regulatory properties of the mitogen-activated protein kinases (MAP kinases) have long attracted considerable attention owing to the critical role that these enzymes play in signal transduction. While several MAP kinase X-ray crystal structures currently exist, there is by comparison little mechanistic information available to correlate the structural data with the known biochemical properties of these molecules. We have employed steady-state kinetic and solvent viscosometric techniques to characterize the catalytic reaction pathway of the MAP kinase ERK2 with respect to the phosphorylation of a protein substrate, myelin basic protein (MBP), and a synthetic peptide substrate, ERKtide. A minor viscosity effect on k(cat) with respect to the phosphorylation of MBP was observed (k(cat) = 10 +/- 2 s(-1), k(cat)(eta) = 0.18 +/- 0.05), indicating that substrate processing occurs via slow phosphoryl group transfer (12 +/- 4 s(-1)) followed by the faster release of products (56 +/- 4 s(-1)). At an MBP concentration extrapolated to infinity, no significant viscosity effect on k(cat)/K(m(ATP)) was observed (k(cat)/K(m(ATP)) = 0.2 +/- 0.1 microM(-1) s(-1), k(cat)/K(m(ATP))(eta) = -0.08 +/- 0.04), consistent with rapid-equilibrium binding of the nucleotide. In contrast, at saturating ATP, a full viscosity effect on k(cat)/K(m) for MBP was apparent (k(cat)/K(m(MBP)) = 2.4 +/- 1 microM(-1) s(-1), k(cat)/K(m(MBP))(eta) = 1.0 +/- 0.1), while no viscosity effect was observed on k(cat)/K(m) for the phosphorylation of ERKtide (k(cat)/K(m(ERKtide)) = (4 +/- 2) x 10(-3) microM(-1) s(-1), k(cat)/K(m(ERKtide))(eta) = -0.02 +/- 0.02). This is consistent with the diffusion-limited binding of MBP, in contrast to the rapid-equilibrium binding of ERKtide, to form the ternary Michaelis complex. Calculated values for binding constants show that the estimated value for K(d(MBP)) (/= 1.5 mM). The dramatically higher catalytic efficiency of MBP in comparison to that of ERKtide ( approximately 600-fold difference) is largely attributable to the slow dissociation rate of MBP (/=56 s(-1)), from the ERK2 active site.  相似文献   

8.
9.
Protein tyrosine phosphatases have a central role in the maintenance of normal cellular functionality. For example, PTP1B has been implicated in insulin-resistance, obesity, and neoplasia. Mitogen-activated protein kinase phosphatase-1 (MKP-1 or DUSP1) dephosphorylates and inactivates mitogen-activated protein kinase (MAPK) substrates, such as p38, JNK, and Erk, and has been implicated in neoplasia. The lack of readily available selective small molecule inhibitors of MKP family members has severely limited interrogation of their biological role. Inspired by a previously identified inhibitor (NSC 357756) of MKP-3, we synthesized seven NSC 357756 congeners, which were evaluated for in vitro inhibition against several protein phosphatases. Remarkably, none displayed potent inhibition against MKP-3, including the desamino NSC 357756 analog NU-154. Interestingly, NU-154 inhibited human PTP1B in vitro with an IC(50) value of 24 +/- 1 microM and showed little inhibition against Cdc25B, MKP-1, and VHR phosphatases. NU-126 [2-((E)-2-(5-cyanobenzofuran-2-yl)vinyl)-1H-indole-6-carbonitrile] inhibited MKP-1 and VHR in vitro but was less active against human MKP-3, Cdc25B, and PTP1B. The inhibition of MKP-1 by NU-126 was independent of redox processes. The benzofuran substructure represents a new potential scaffold for further analog development and provides encouragement that more selective and potent inhibitors of MKP family members may be achievable.  相似文献   

10.
11.
The mitogen-activated protein kinase ERK1/2 pathway is essential in the control of cell proliferation and differentiation in most cellular systems. As such, it has been considered a potential target for antineoplastic therapy. For this purpose, we have examined the role of ERK activation in myeloid leukemia cell growth and differentiation. Using a representative set of myeloid leukemia cell lines, we show that cell proliferation was not accompanied by increases on ERK1/2 activation, and mitogenic stimulation did not enhance ERK activity. Moreover, abolition of ERK function by the inhibitor PD98059 or by a dominant inhibitory mutant ERK2 had no significant effects on proliferation. With the aid of various differentiation inducers, we found that within the same cell line, differentiation to a given lineage could occur with and without ERK1/2 activation, depending on the stimulus. Also, a differentiator could have the same effect in the presence or absence of ERK stimulation, depending on the cell line. ERK inhibition did not affect the differentiation elicited by stimuli whose effects were accompanied by ERK activation. Finally, constitutive ERK activity was also ineffective on proliferation and differentiation. Thus, our results indicate that ERK1/2 activation is not an essential requirement for leukemic cell growth and differentiation.  相似文献   

12.
The gap junction protein, Cx43, plays a pivotal role in coupling cells electrically and metabolically, and the putative phosphorylation sites that modulate its function are reflected as changes in gap junction communication. Growth factor stimulation has been correlated with a decrease in gap junction communication and a parallel activation of ERK1/2; the inhibition of epidermal growth factor (EGF)-induced Cx43 gap junction uncoupling was observed by using the MEK1/2 inhibitor, PD98059. Because 1) BMK1/ERK5, another MAPK family member also activated by growth factors, possesses a phosphorylation motif similar to ERK1/2, and 2) it has been reported that PD98059 can inhibit not only MEK1/2-ERK1/2 but also MEK5-BMK1 activation, we investigated whether BMK1 can regulate EGF-induced Cx43 gap junction uncoupling and phosphorylation, comparing this to the role of ERK1/2 on Cx43 function and phosphorylation induced by EGF. Selective activation or inactivation of ERK1/2 by using a constitutively active form or a dominant negative form of MEK1 did not regulate Cx43 gap junction coupling. In contrast, we found that BMK1, selectively activated by constitutively active MEK5alpha, induced gap junction uncoupling, and the inhibition of BMK1 activation by transfection of dominant negative BMK1 prevented EGF-induced gap junction uncoupling. Activated BMK1 selectively phosphorylates Cx43 on Ser-255 in vitro and in vivo, but not on S279/S282, which are reported as the consensus phosphorylation sites for MAPK. Furthermore, by co-immunoprecipitation, we found that BMK1 directly associates with Cx43 in vivo. These data indicate that BMK1 is more important than ERK1/2 in EGF-mediated Cx43 gap junction uncoupling by association and Cx43 Ser- 255 phosphorylation.  相似文献   

13.
Mitogen-activated protein (MAP) kinases play a pivotal role in the macrophages in the production of proinflammatory cytokines triggered by lipopolysaccharides. However, their function in the responses of macrophages to Gram-positive bacteria is poorly understood. Even less is known about the attenuation of MAP kinase signaling in macrophages exposed to Gram-positive bacteria. In the present study, we have investigated the regulation of MAP kinases and the role of MAP kinase phosphatase (MKP)-1 in the production of pro-inflammatory cytokines using murine RAW264.7 and primary peritoneal macrophages after peptidoglycan stimulation. Treatment of macrophages with peptidoglycan resulted in a transient activation of JNK, p38, and extracellular signal-regulated kinase. Most interestingly, MKP-1 expression was potently induced by peptidoglycan, and this induction was concurrent with MAP kinase dephosphorylation. Triptolide, a diterpenoid triepoxide, potently blocked the induction of MKP-1 by peptidoglycan and prolonged the activation of JNK and p38. Overexpression of MKP-1 substantially attenuated the production of tumor necrosis factor (TNF)-alpha induced by peptidoglycan, whereas knockdown of MKP-1 by small interfering RNA substantially increased the production of both TNF-alpha and interleukin-1 beta. Finally, we found that in primary murine peritoneal macrophages, MKP-1 induction following peptidoglycan stimulation also coincided with inactivation of JNK and p38. Blockade of MKP-1 induction resulted in a sustained activation of both JNK and p38 in primary macrophages. Our results reveal that MKP-1 critically regulates the expression of TNF-alpha and interleukin-1 beta in RAW264.7 cells and further suggest a central role for this phosphatase in controlling the inflammatory responses of primary macrophages to Gram-positive bacterial infection.  相似文献   

14.
The dual specificity mitogen-activated protein kinase phosphatase MKP3 has been shown to down-regulate mitogenic signaling through dephosphorylation of extracellular signal-regulated kinase (ERK). Camps et al. (Camps, M., Nichols, A., Gillieron, C., Antonsson, B., Muda, M., Chabert, C., Boschert, U., and Arkinstall, S. (1998) Science 280, 1262-1265) had demonstrated that ERK binding to the noncatalytic amino-terminal domain of MKP3 can dramatically activate the phosphatase catalytic domain. The physical basis for this activation has not been established. Here, we provide detailed biochemical evidence that ERK activates MKP3 through the stabilization of the active phosphatase conformation, inducing closure of the catalytic "general acid" loop. In the closed conformation, this loop structure can participate efficiently in general acid/base catalysis, substrate binding, and transition-state stabilization. The pH activity profiles of ERK-activated MKP3 clearly indicated the involvement of general acid catalysis, a hallmark of protein-tyrosine phosphatase catalysis. In contrast, unactivated MKP3 did not display this enzymatic group as critical for the low activity form of the enzyme. Using a combination of Br?nsted analyses, pre-steady-state and steady-state kinetics, we have isolated all catalytic steps in the reaction and have quantified the specific rate enhancement. Through protonation of the leaving group and transition-state stabilization, activated MKP3 catalyzes formation of the phosphoenzyme intermediate approximately 100-fold faster than unactivated enzyme. In addition, ERK-activated MKP3 catalyzes intermediate hydrolysis 5-6-fold more efficiently and binds ligands up to 19-fold more tightly. Consistent with ERK stabilizing the active conformation of MKP3, the chemical chaperone dimethyl sulfoxide was able to mimic this activation. A general protein-tyrosine phosphatase regulatory mechanism involving the flexible general acid loop is discussed.  相似文献   

15.
Insulin-like growth factor I (IGF-I) is a well-established mitogen in human breast cancer cells. We show here that human breast cancer MCF-7 cells, which were prevented from attaching to the substratum and were floating in medium, responded to IGF-I and initiated DNA synthesis. The addition of IGF-I to floating cells induced activation of protein kinase B (PKB)/Akt, as to cells attached to the substratum. In addition, mitogen-activated protein kinase (MAPK)/extracellular response kinase (ERK) and its upstream kinases, ERK kinase (MEK) and Raf-1, were activated by IGF-I in floating cells. While the IGF-I-induced activation of PKB/Akt was inhibited by PI3-K inhibitor LY294002 but not by MEK inhibitor PD98059, the activation of both MEK and ERK by IGF-I was inhibited by both. These findings suggest that the IGF-I signal that leads to stimulation of DNA synthesis of MCF-7 cells is transduced to ERK through PI3-K, only when they are anchorage-deficient.  相似文献   

16.
Exposure of macrophages to LPS elicits the production of proinflammatory cytokines, such as TNF-alpha, through complex signaling mechanisms. Mitogen-activated protein (MAP) kinases play a critical role in this process. In the present study, we have addressed the role of MAP kinase phosphatase-1 (MKP-1) in regulating proinflammatory cytokine production using RAW264.7 macrophages. Analysis of MAP kinase activity revealed a transient activation of c-Jun N-terminal kinase (JNK) and p38 after LPS stimulation. Interestingly, MKP-1 was induced concurrently with the inactivation of JNK and p38, whereas blocking MKP-1 induction by triptolide prevented this inactivation. Ectopic expression of MKP-1 accelerated JNK and p38 inactivation and substantially inhibited the production of TNF-alpha and IL-6. Induction of MKP-1 by LPS was found to be extracellular signal-regulated kinase dependent and involved enhanced gene expression and increased protein stability. Finally, MKP-1 expression was also induced by glucocorticoids as well as cholera toxin B subunit, an agent capable of preventing autoimmune diseases in animal models. These findings highlight MKP-1 as a critical negative regulator of the macrophage inflammatory response, underscoring its premise as a potential target for developing novel anti-inflammatory drugs.  相似文献   

17.
Two isoforms of dopamine D2 receptor, D2L (long) and D2S (short), differ by the insertion of 29 amino acids specific to D2L within the putative third intracellular loop of the receptor, which appears to be important in selectivity for G-protein coupling. We have generated D2L- and D2S-expressing Chinese hamster ovary (CHO) cells, and regulation of the mitogen-activated protein kinase (MAPK) pathway was examined in these cells. Both D2L and D2S mediated a rapid and transient activation of MAPK with dominant activation of p42-kDa MAPK. Pertussis toxin treatment completely abrogated stimulation of MAPK mediated by D2L and D2S, demonstrating that both receptors couple to pertussis toxin-sensitive G proteins in this signaling. Stimulation of MAPK mediated by both D2L and D2S receptor was markedly attenuated by coexpression of the C-terminus of beta-adrenergic receptor kinase (betaARKct), which selectively inhibits Gbetagamma-mediated signal transduction. Further analysis of D2L- and D2S-mediated MAPK activation demonstrated that D2L-mediated MAPK activation was not significantly affected by PKC depletion or partially affected by genistein. In contrast, D2S-mediated MAPK activation was potentially inhibited by PKC depletion and genistein was capable of completely inhibiting D2S-mediated MAPK activation. Together, these results suggest that D2L- and D2S-mediated MAPK activation is predominantly Gbetagamma subunit-mediated signaling and that protein kinase C and tyrosine phosphorylations are involved in these signaling pathways.  相似文献   

18.
Sakurai H  Miyoshi H  Mizukami J  Sugita T 《FEBS letters》2000,474(2-3):141-145
TAK1 is a mitogen-activated protein kinase kinase kinase (MAP3K) that is involved in the c-Jun N-terminal kinase/p38 MAPKs and NF-kappaB signaling pathways. Here, we characterized the molecular mechanisms of TAK1 activation by its specific activator TAB1. Autophosphorylation of two threonine residues in the activation loop of TAK1 was necessary for TAK1 activation. Association with TAK1 and induction of TAK1 autophosphorylation required the C-terminal 24 amino acids of TAB1, but full TAK1 activation required additional C-terminal Ser/Thr rich sequences. These results demonstrated that the association between the kinase domain of TAK1 and the C-terminal TAB1 triggered the phosphorylation-dependent TAK1 activation mechanism.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号