首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
Insulinlike growth factor II (IGF-II) is a highly mitogenic fetal growth factor suspected of regulating the growth of a wide spectrum of tissues via an autocrine or paracrine mode of action or both. High steady-state levels of IGF-II RNA were detected in 45% of hepatocellular carcinomas (HCCs) arising from woodchuck livers with persistent woodchuck hepatitis virus (WHV) infection. Analysis of WHV RNA in the same HCCs revealed that HCCs with high levels of IGF-II RNA contained low or undetectable levels of WHV RNA and HCCs with low levels of IGF-II RNA contained high levels of WHV RNA. Integrated WHV DNA was present in HCCs from both groups, but viral DNA replicating forms were present, predominantly in HCCs with low levels of IGF-II. Several IGF-II RNAs, the most prominent of which were poly(A) species of approximately 3.75 and 1.1 to 1.3 kilobases, were detected only in precancerous nodules and HCCs. Levels of IGF-II were elevated two- to three-fold in the serum of woodchucks with chronic active hepatitis preceding the occurrence of HCC. Proliferation of a population of oval cells, which arise from portal tract regions in the liver, preceded the development of HCC and was a prominent feature of livers from which tumors with high levels of IGF-II occurred. The HCCs tended to have distinct histological features according to their growth factor status. Tumors with low levels of IGF-II were generally highly differentiated acinar-trabecular HCCs, whereas tumors with high levels of IGF-II were more anaplastic, with regions of fibrosis and fatty accumulation. A model to relate the pathology of WHV infection to oval cell proliferation and IGF-II expression in the development of these heterogeneous HCCs is presented.  相似文献   

4.
5.
6.
Human insulin-like growth factor II (IGF-II) mRNAs are subject to site-specific endonucleolytic cleavage in the 3' untranslated region, leading to an unstable 5' cleavage product containing the IGF-II coding region and a very stable 3' cleavage product of 1.8 kb. This endonucleolytic cleavage is most probably the first and rate-limiting step in degradation of IGF-II mRNAs. Two sequence elements within the 3' untranslated region are required for cleavage: element I, located approximately 2 kb upstream of the cleavage site, and element II, encompassing the cleavage site itself. We have identified a stable double-stranded RNA stem structure (delta G = -100 kcal/mol [418.4 kJ/mol]) that can be formed between element I and a region downstream of the cleavage site in element II. This structure is conserved among human, rat, and mouse mRNAs. Detailed analysis of the requirements for cleavage shows that the relative position of the elements is not essential for cleavage. Furthermore, the distance between the coding region and the cleavage site does not affect the cleavage reaction. Mutational analysis of the long-range RNA-RNA interaction shows that not only the double-stranded character but also the sequence of the stable RNA stem is important for cleavage.  相似文献   

7.
8.
IMP-3, a member of the insulin-like growth factor-II (IGF-II) mRNA-binding protein (IMP) family, is expressed mainly during embryonic development and in some tumors. Thus, IMP-3 is considered to be an oncofetal protein. The functional significance of IMP-3 is not clear. To identify the functions of IMP-3 in target gene expression and cell proliferation, RNA interference was employed to knock down IMP-3 expression. Using human K562 leukemia cells as a model, we show that IMP-3 protein associates with IGF-II leader-3 and leader-4 mRNAs and H19 RNA but not c-myc and beta-actin mRNAs in vivo by messenger ribonucleoprotein immunoprecipitation analyses. IMP-3 knock down significantly decreased levels of intracellular and secreted IGF-II without affecting IGF-II leader-3, leader-4, c-myc, or beta-actin mRNA levels and H19 RNA levels compared with the negative control siRNA treatment. Moreover, IMP-3 knock down specifically suppressed translation of chimeric IGF-II leader-3/luciferase mRNA without altering reporter mRNA levels. Together, these results suggest that IMP-3 knock down reduced IGF-II expression by inhibiting translation of IGF-II mRNA. IMP-3 knock down also markedly inhibited cell proliferation. The addition of recombinant human IGF-II peptide to these cells restored cell proliferation rates to normal. IMP-3 and IMP-1, two members of the IMP family with significant structural similarity, appear to have some distinct RNA targets and functions in K562 cells. Thus, we have identified IMP-3 as a translational activator of IGF-II leader-3 mRNA. IMP-3 plays a critical role in regulation of cell proliferation via an IGF-II-dependent pathway in K562 leukemia cells.  相似文献   

9.
Insulin-like growth factor II (IGF-II) is present at high levels in fetal and early neonatal rat plasma, and decreases profoundly following birth. In the present study, the levels of IGF-II RNA in different rat tissues at different ages were determined by hybridization to a rat IGF-II cDNA probe. IGF-II RNA was present in 11 of 13 fetal or neonatal tissues examined: at higher levels in muscle, skin, lung, liver, intestine, and thymus; at lower levels in brain stem, heart, cerebral cortex, kidney, and hypothalamus; and undetectable in spleen and pancreas (although the latter RNA was partially degraded). In each tissue, Northern blot hybridization revealed the presence of six IGF-II RNAs: 6, 4, 3.8, 2.2, 1.7, and 1.2 kilobase pairs, consistent with results previously observed in the BRL-3A rat liver cell line and attributed to alternative RNA processing. Although differences in the relative abundance of these RNAs were observed in different tissues, the same size species occurred in all tissues with the 4-kilobase pair RNA the most abundant species. RNAs from the different tissues were examined at six developmental ages (days 16 and 21 of gestation; days 2, 11, 22, and 75 after birth) by hybridization to slot blots and Northern blots. In lung, thymus, kidney, and brain stem, IGF-II RNA was expressed at higher levels in the fetus than after birth, whereas in muscle, skin, liver, heart, and intestine, the high fetal levels of IGF-II RNA continued through day 11 or day 22 after birth. IGF-II RNA persisted into adulthood in cerebral cortex and hypothalamus. Although the significance of these tissue-specific differences in the developmental regulation of the expression of IGF-II RNA remains to be established, they exhibit intriguing temporal correlations with major maturational events in some tissues such as lung and muscle.  相似文献   

10.
Human insulin-like growth factor II (IGF-II) mRNA can be cleaved at a specific site in its 4 kb long 3′-UTR. This yields a stable 3′ cleavage product of 1.8 kb consisting of a 3′-UTR and a poly(A) tail and an unstable 5′ cleavage product containing the IGF-II coding region. After cleavage, the 5′ cleavage product is targeted to rapid degradation and consequently is no longer involved in IGF-II protein synthesis. Cleavage is therefore thought to provide an additional way to control IGF-II gene expression. In this paper the kinetics and the efficiency of cleavage of IGF-II mRNAs are examined. The cleavage efficiency of IGF-II mRNAs carrying four different leaders (L1–L4) is enhanced in the highly structured leaders L1 and L3. Additionally, under standard cell culture conditions cleavage is a slow process that only plays a limited role in destabilisation and translation of the IGF-II mRNAs. However, in human Hep3B cells and CaCo2 cells which express IGF-II endogenously, cleavage is upregulated 3–5-fold at high cell densities. Regulated endonucleolytic cleavage of IGF-II mRNAs is restricted to cells in which IGF-II expression is related to specific cell processes.  相似文献   

11.
12.
13.
Cell surface binding, internalization, and biological effects of insulin-like growth factors (IGFs) I and II have been studied in primary neuronal cultures from developing rat brain (embryonic day 15). Two types of IGF binding sites are present on the cell surface. The IGF-I receptor alpha-subunit (Mr 125,000) binds IGF-I with a KD of 1 nM and IGF-II with 10 times lower affinity. The mannose-6-phosphate (Man-6-P)/IGF-II receptor (Mr 250,000) binds IGF-II with a KD of 0.5 nM and IGF-I with 100 times lower affinity. Surface-bound IGF-I and IGF-II are internalized by their respective receptors binding and internalization of IGF-II but not those of IGF-I. Neuronal synthesis of RNA and DNA is increased twofold by IGF-I with 10 times higher potency than IGF-II. Antibody 3637, which blocks receptor binding of IGF-II, has no effect on the DNA response to IGF-I or IGF-II. Double immunocytochemical staining with antibodies to bromodeoxyuridine and neurofilament shows that greater than 80% of the bromodeoxyuridine-positive cells become neurofilament positive. It is concluded that IGF-I and IGF-II bind to two receptors on the surface of neuronal precursor cells that mediate endocytosis and degradation of IGF-I and IGF-II. Proliferation of neuronal precursor cells is stimulated by IGF-I and IGF-II via activation of the IGF-I receptor.  相似文献   

14.
15.
16.
The objective of this study was to examine insulin-like growth factor (IGF)-I and IGF-II mRNA levels in fast and slow growing families of catfish. Relative levels of IGF-I and IGF-II mRNA were determined by real-time PCR. Family A exhibited a specific growth rate (SGR) of 3.6 and was designated as fast growing, while family H exhibited a SGR of 3.1 and was designated as slow growing (P=0.017). Levels of IGF-II mRNA were 3.3-fold greater (P=0.006) in muscle for the fast growing family compared to the slow growing family. Levels of IGF-II mRNA were 1.8-fold greater (P=0.049) in liver for the fast growing family compared to the slow growing family. Levels of IGF-II mRNA from both fast and slow families were 12.2-fold greater (P<0.001) in muscle and 5.8-fold greater (P=0.021) in liver, respectively, compared to levels of IGF-I mRNA. Muscle and liver levels of IGF-I mRNA were similar between families. Elevated levels of IGF-II mRNA in muscle and liver compared to IGF-I mRNA, as well as differences in levels of IGF-II mRNA between fast and slow growing families of fish suggests a role of IGF-II in growth of channel catfish.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号