首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The rates of uptake of a range of forms of nitrogenous nutrients were measured in cultures of Pfiesteria piscicida and Pfiesteria shumwayae maintained at varying physiological states. The measured rates of dissolved N uptake under some conditions approached the rates of N uptake that are achieved through phagotrophy. Rates of dissolved N uptake by P. piscicida contributed <10% of the cellular N of flagellated cells feeding on algae, but were equal to or greater than phagotrophic N acquisition in cells recently removed from fish cultures. Specific N uptake rates (V, h−1) were higher for cells that were maintained on algal prey for long periods (months) than those that were grown with live fish. However, rates of N uptake on a cellular basis for cells grown on or recently removed from fish were comparable to those maintained on algal prey, likely reflecting differences in the sizes of cells of different physiological condition. Preferences for form of N generally followed a decreasing trend of amino acids > urea > NH4+ > NO3. Nitrate consistently was not a preferred form of N. Although Pfiesteria spp. are often found in eutrophic environments, the relationship between Pfiesteria spp. and nutrient availability is likely to be primarily indirect, mediated through the production of various prey on which Pfiesteria spp. feed. These findings also confirm, however, that when dissolved N concentrations are elevated, they can contribute to the supplemental nutrition of these cells, and thus may provide a significant source of N to Pfiesteria spp. in nature.  相似文献   

2.
The mechanism by which Pfiesteria shumwayae (Glasgow and Burkholder) kills fish is controversial. Several studies have implicated a Pfiesteria-associated exotoxin in fish mortality while other studies indicate that physical attack of dinoflagellates on fish (micropredation) and not exotoxin is responsible. We examined the ichthyotoxicity of two strains of P. shumwayae (CAAE 101272 and CCMP 2089) in a bioassay system that exposed test fish to the dinoflagellates both with and without direct contact in the same aquarium at the same time. Dinoflagellate-free supernatants from both strains were also tested for toxicity. The results showed that direct contact between P. shumwayae and fish significantly enhanced fish mortality with both strains (P < 0.001). About 87.5% and 100% of fish died when exposed directly to CAAE 101272 and CCMP 2089, respectively. When protected from direct contact with Pfiesteria cells, 19% of the fish exposed to CAAE 101272 and 6% of those exposed to CCMP 2089 died. No deaths were observed in controls. Supernatant killed fish when obtained from cultures of CAAE 101272 but not when obtained from CCMP 2089.Analysis of variance showed that, for both strains, fish mortality in Pfiesteria-inoculated bioassays was significantly higher than control bioassays both with and without direct contact (P < 0.001). Differences between strains were not significant (P = 0.3). These results indicate that both strains are associated with exotoxin production. However, the dominant and most consistent mechanism of fish mortality observed in this study required physical contact between fish and Pfiesteria cells.  相似文献   

3.
In 1997 blooms of Pfiesteria piscicida occurred in association with fish kills and human health problems in tributaries of the Chesapeake Bay (Maryland) and the scientific and media response resulted in large economic losses in seafood sales and tourism. These events prompted the Maryland Department of Natural Resources (MDNR) to begin monitoring for Pfiesteria spp. in water column samples. Real-time PCR assays targeted to the 18S rRNA gene were developed by our laboratories and utilized in conjunction with traditional microscopy and fish kill bioassays for detection of these organisms in estuarine water samples. This monitoring strategy aided in determining temporal and spatial distribution of motile forms of Pfiesteria spp. (i.e. zoospores), but did not assess resting stages of the dinoflagellates’ life cycle. To address this area, a 3-year study was designed using real-time PCR assays for analysis of surface sediment samples collected from several Chesapeake Bay tributaries. These samples were tested with the real-time PCR assays previously developed by our laboratories. The data reported herein suggest a strong positive association between presence of Pfiesteria spp. in the sediment and water column, based on long-term water column monitoring data. P. piscicida is detected more commonly in Maryland's estuarine waters than Pfiesteria shumwayae and sediment ‘cyst beds’ may exist for these organisms.  相似文献   

4.
The ELF-97 phosphatase substrate was used to examine phosphatase activity in four strains of the estuarine heterotrophic dinoflagellate, Pfiesteria shumwayae. Acid and alkaline phosphatase activities also were evaluated at different pH values using bulk colorimetric methods. Intracellular phosphatase activity was demonstrated in P. shumwayae cells that were actively feeding on a fish cell line and in food limited cells that had not fed on fish cells for 3 days. All strains, whether actively feeding or food limited showed similar phosphatase activities. P. shumwayae cells feeding on fish cells showed ELF-97 activity near, or surrounding, the food vacuole. Relatively small, spherical ELF-97 deposits were also observed in the cytoplasm and sometimes near the plasma membrane. ELF-97 fluorescence was highly variable among cells, likely reflecting different stages in digestion and related metabolic processes. The location of enzyme activity and supporting colorimetric measurements suggest that, as in other heterotrophic protists, acid phosphatases predominate in P. shumwayae and have a general catabolic function.  相似文献   

5.
6.
Researchers examining the mechanisms of ichthyotoxicity of Pfiesteria shumwayae have come to different conclusions about the role of toxin in this process. Some attribute fish mortality solely to direct attack by these pedunculate dinoflagellates on exposed fish tissue while others have provided evidence for a role of a soluble toxin. Detection of toxin, especially in low concentrations, is a function of the sensitivity of the selected bioassay methods and the various groups addressing this question have utilized different methods. One notable difference in fish bioassay methods utilized to detect Pfiesteria-associated toxin (PfTx) is the species of fish tested. Studies that have not detected PfTx in bioassays generally have used Cyprinodon variegatus (sheepshead minnow) as the test fish while those that have detected toxin generally used Oreochromis spp. (Tilapia). In this study response of these two fish species was compared to determine their relative sensitivity to physical attack by P. shumwayae and to PfTx. The results indicate that Oreochromis niloticus is more susceptible to P. shumwayae and its associated toxin than C. variegatus and implicate differences in the ability these species to osmoregulate as a contributing factor for this phenomenon. Salinity stress enhanced susceptibility of O. niloticus to PfTx and thus improved the sensitivity of the bioassay. The observation that salinity stress enhances toxicity to O. niloticus provides additional information regarding the mechanism of PfTx toxicity although the conditions utilized are not representative of the natural habitat of these freshwater fish.  相似文献   

7.
A series of experiments was conducted to examine effects of four strains of the estuarine dinoflagellate, Pfiesteria shumwayae, on the behavior and survival of larval and adult shellfish (bay scallop, Argopecten irradians; eastern oyster, Crassostrea virginica; northern quahogs, Mercenaria mercenaria; green mussels, Perna viridis [adults only]). In separate trials with larvae of A. irradians, C. virginica, and M. mercenaria, an aggressive predatory response of three strains of algal- and fish-fed P. shumwayae was observed (exception, algal-fed strain 1024C). Larval mortality resulted primarily from damage inflicted by physical attack of the flagellated cells, and secondarily from Pfiesteria toxin, as demonstrated in larval C. virginica exposed to P. shumwayae with versus without direct physical contact. Survival of adult shellfish and grazing activity depended upon the species and the cell density, strain, and nutritional history of P. shumwayae. No mortality of the four shellfish species was noted after 24 h of exposure to algal- or fish-fed P. shumwayae (strains 1024C, 1048C, and CCMP2089) in separate trials at ≤5 × 103 cells ml−1, whereas higher densities of fish-fed, but not algal-fed, populations (>7–8 × 103 cells ml−1) induced low (≤15%) but significant mortality. Adults of all four shellfish species sustained >90% mortality when exposed to fish-fed strain 270A1 (8 × 103 cells ml−1). In contrast, adult M. mercenaria and P. viridis exposed to a similar density of fish-fed strain 2172C sustained <15% mortality, and there was no mortality of A. irradians and C. virginica exposed to that strain. In mouse bioassays with tissue homogenates (adductor muscle, mantle, and whole animals) of A. irradians and M. mercenaria that had been exposed to P. shumwayae (three strains, separate trials), mice experienced several minutes of disorientation followed by recovery. Mice injected with tissue extracts from control animals fed cryptomonads showed no response. Grazing rates of adult shellfish on P. shumwayae (mean cell length ±1 standard error [S.E.], 9 ± 1 μm) generally were significantly lower when fed fish-fed (toxic) populations than when fed populations that previously had been maintained on algal prey, and grazing rates were highest with the nontoxic cryptomonad, Storeatula major (cell length 7 ± 1 μm). Abundant cysts of P. shumwayae were found in fecal strands of all shellfish species tested, and ≤45% of the feces produced viable flagellated cells when placed into favorable culture conditions. These findings were supported by a field study wherein fecal strands collected from field-collected adult shellfish (C. virginica, M. mercenaria, and ribbed mussels, Geukensia demissa) were confirmed to contain cysts of P. shumwayae, and these cysts produced fish-killing flagellated populations in standardized fish bioassays. Thus, predatory feeding by flagellated cells of P. shumwayae can adversely affect survival of larval bivalve molluscs, and grazing can be depressed when adult shellfish are fed P. shumwayae. The data suggest that P. shumwayae could affect recruitment of larval shellfish in estuaries and aquaculture facilities; shellfish can be adversely affected via reduced filtration rates; and adult shellfish may be vectors of toxic P. shumwayae when shellfish are transported from one geographic location to another.  相似文献   

8.
Cryptoperidiniopsis brodyi is a common heterotrophic dinoflagellate known to often co-occur with Pfiesteria species in eastern U.S. estuaries. In this study, C. brodyi from Australia and Pfiesteria piscicida from ballast water from Indonesia were characterized by morphological and genetic analyses. Two P. piscicida strains originating from ballast water samples showed little genetic differences compared to P. piscicida from other countries and their morphology was identical. This finding indicates a potential inflow of P. piscicida into Australian estuaries via ballast water. Nine cultures of C. brodyi were established from Tasmania, South Australia and Western Australia. All C. brodyi cultures exhibited identical thecal plate patterns and could not be discriminated from other non-Australian strains. In contrast, two distinct genotypes could be identified by rDNA sequence analyses which were distinct from the U.S. genotype of C. brodyi. A previous survey using PCR-based methods reported a wide distribution of Pfiesteria shumwayae in Australia. However, the present study demonstrated that SSU rDNA-based P. shumwayae-specific primers produce false-positive PCR reactions with Australian C. brodyi. These results suggest that genetic variants of C. brodyi are widely distributed in Australia and Australian genotypes of C. brodyi had previously been misidentified as P. shumwayae. This finding also indicates that previous Australian distribution studies of P. shumwayae using SSU rDNA-based primers are potentially erroneous and need to be revisited.  相似文献   

9.
Toxicity of Pfiesteria piscicida (strain CAAE #2200) in the presence of fish (juvenile hybrid tilapia, Oreochromis sp., total length 3–6 cm) has been maintained in the laboratory for 19 months by serial transfer of toxic cells using a modified maintenance protocol. Toxicity was re-induced when toxin-producing P. piscicida cells were separated from fish and cultured on algal prey for 50 days and then re-introduced to new tanks containing fish. We confirmed toxicity in a strain of P. shumwayae (strain CAAE #101272). Toxicity to fish was demonstrated in culture filtrates (0.2 μm) derived from cultures of both Pfiesteria spp., however, it was markedly reduced in comparison to unfiltered water. Filtrates retained toxic activity when stored at −20 °C for up to 6 months. Toxicity to fish was retained when filtrates were held at room temperature for 48 h, at 70 °C for 30 min or at 88–92 °C for 2 h. P. piscicida killed all finfish species tested. Grass shrimp (Paleomonetes pugio; adult 2–3 cm), blue crab (Callinectes sapidus; juvenile 4–7 cm) and brine shrimp (Artemia sp.; 18–24 h post-hatch) were unaffected by concentrations of toxin(s) that killed juvenile tilapia in 4–24 h. Ichthyotoxic activity of filtrates from fish-killing cultures and stability of the toxic activity were similar among P. piscicida and P. shumwayae. These results confirm previously reported observations on toxicity of P. piscicidaand P. shumwayae to finfish. We have maintained toxicity in the laboratory for longer periods than have previously been routinely achieved, and we have demonstrated that the toxic activity is heat stable. In contrast to previous studies with other toxic P. piscicida strains, we did not observe toxic activity to blue crabs or other crustaceans.  相似文献   

10.
Recent research emphasis on the ecology of Pfiesteria spp. (Dinophyceae) has led to recognition of several morphologically similar heterotrophic dinoflagellates that often co-occur with Pfiesteria spp. in estuaries along the United States Atlantic coast. These include cryptoperidiniopsoid dinoflagellates, which resemble Pfiesteria spp. in having complex life cycles that include zoospores capable of kleptoplastidy. To examine and compare the role of kleptoplastidy in Cryptoperidiniopsis sp. and Pfiesteria piscicida, we tested the effects of irradiance on growth under prey-saturated (Storeatula major, Cryptophyceae) conditions. Growth of Cryptoperidiniopsis was strongly influenced by light intensity while no major effects were observed in P. piscicida. In Cryptoperidiniopsis, highest cell numbers and specific growth rates, but lowest specific cryptophyte consumption rates, were found at the highest light intensity tested (100 μmol photons m−2 s−1). A growth model was developed and used to estimate that the average half-life of chloroplasts ingested by Cryptoperidiniopsis decreased 3.4-fold from 12.6 h at high light to 3.7 h in the dark. These results show that light strongly enhances specific growth rate and growth efficiency of Cryptoperidiniopsis feeding on cryptophytes, and suggest that retained kleptochloroplasts may play a quantitatively significant role in carbon and energy metabolism of this organism. Differences in the effects of light between Cryptoperidiniopsis and P. piscicida may reflect different nutritional strategies, and allow these closely related dinoflagellates to occupy different niches and co-exist.  相似文献   

11.
Variability has been reported in the toxicity potential of Pfiesteria piscicida that is partly a function of the history of exposure to live fish. Grazing properties of P. piscicida and its susceptibility to ciliate predation were compared in three functional types or toxicity states of this species: actively toxic cultures, cultures with temporary loss of demonstrable toxicity, and cultures with no demonstrable toxicity. Pronounced differences in predator–prey interactions were found between actively toxic cultures and cultures with reduced toxicity. When grown with Rhodomonas sp. (Cryptophyceae) prey, specific growth rates were relatively low in actively toxic cultures under both relatively high and low irradiances. In the cultures with reduced toxicity, prey chloroplast material was apparent in nearly 100% of dinoflagellate cells 3 h after feeding, while chloroplast inclusions were found in <40% of actively toxic cells for ≤16 h (high light) and ≤23 h (low light). These results suggest a relatively high reliance on phagotrophic carbon assimilation and more rapid response to algal prey availability in Pfiesteria cells with lower toxicity. Grazing by two euplotid benthic ciliates (Euplotes vannus and E. woodruffi) on P. piscicida also varied among functional types. Grazing on actively toxic P. piscicida cells did not occur, whereas net positive ingestion rates were calculated for the other prey cultures. These results support concurrent experimental findings that a natural assemblage of microzooplankton displayed lower grazing potential on actively toxic P. piscicida than on cultures with reduced toxicity. In summary, pronounced differences in trophic interactions were found between actively toxic cultures and those with reduced or undetectable toxicity, providing additional evidence of the importance of cellular toxicity in the trophic ecology of Pfiesteria.  相似文献   

12.
While several DNA-based methods have been developed for the putatively toxic dinoflagellate Pfiesteria piscicida Burkholder et Steidinger, an independent detection method such as immunofluorescence can be a useful alternative. In this study, P. piscicida-specific antisera were developed, and an immunofluorescence (IF) procedure was optimized. A total of six antisera were raised using whole cells (WCA) and the insoluble cellular fraction (ICF) as antigens, respectively, and their titer and specificity were examined using dot blot analysis and whole cell IF. Results showed that the two antisera produced from the ICF antigen had a markedly higher titer (1500) than the other four yielded from the WCA (200). In addition, the two ICF-derived antisera exhibited much higher species specificity, showing no cross-reaction with P. shumwayae, Cryptoperidiniopsis sp., Karlodinium micrum, and other more distant algae tested, and very low background for field collected samples. In evaluation of the IF technique using a P. piscicida-specific polymerase chain reaction (PCR) technique, results from both methods generally agreed well for both field samples (from eastern Long Island Sound) spiked with cultured P. piscicida and those containing naturally occurring P. piscicida (from Chesapeake Bay tributaries).  相似文献   

13.
Low turbulence environments have been hypothesized to be necessary for toxic outbreaks of the heterotrophic/mixotrophic dinoflagellate Pfiesteria piscicida. A toxic Pfiesteria outbreak occurred in the shallow waters (the flats) of the lower Pocomoke River, MD, USA, in 1997. During August 1999 and May and August 2000, data were collected with a Shallow Water ADV Turbulence Tripod (SWATT) to estimate turbulent shear at a location monitored for Pfiesteria on the flats. Approximately 78% of the observed shears were ≤1 s−1 and 98% were ≤2 s−1. Densities of Pfiesteria-like dinoflagellates were low in the Pocomoke River during 1999 and 2000 and no toxic outbreaks occurred. In the laboratory, Couette cylinders were used to determine the effect of small-scale shear on feeding and growth of cultured P. piscicida growing on cryptophyte prey. Shear of 1 s−1 had little or no effect on feeding or growth but 3 s−1 reduced feeding and survival/growth of Pfiesteria zoospores. Small, rapidly dividing Pfiesteria cells were most susceptible to negative effects of shear. Pfiesteria appears to be more sensitive to small-scale shear than are most autotrophic dinoflagellates. However, in the lower Pocomoke River, turbulent shear is rarely high enough to inhibit the growth of non-toxic Pfiesteria zoospores. Toxic functional types (TOX-A and TOX-B) may be more sensitive to small-scale shear; it will be important to determine the responses of these types of Pfiesteria in order to predict the affects of wind and tidal mixing on toxic outbreaks.  相似文献   

14.
The putative harmful algal bloom dinoflagellate, Pfiesteria piscicida (Steidinger et Burkholder), frequently co‐occurs with other morphologically similar species collectively known as Pfiesteria‐like organisms (PLOs). This study specifically evaluated whether unique sequences in the internal transcribed spacer (ITS) regions, ITS1 and ITS2, could be used to develop PCR assays capable of detecting PLOs in natural assemblages. ITS regions were selected because they are more variable than the flanking small subunit or large subunit rRNA genes and more likely to contain species‐specific sequences. Sequencing of the ITS regions revealed unique oligonucleotide primer binding sites for Pfiesteria piscicida, Pfiesteria shumwayae (Glasgow et Burkholder), Florida “Lucy” species, two cryptoperidiniopsoid species, “H/V14” and “PLO21,” and the estuarine mixotroph, Karlodinium micrum (Leadbetter et Dodge). These PCR assays had a minimum sensitivity of 100 cells in a 100‐mL sample (1 cell·mL?1) and were successfully used to detect PLOs in the St. Johns River system in Florida, USA. DNA purification and aspects of PCR assay development, PCR optimization, PCR assay controls, and collection of field samples are discussed.  相似文献   

15.
The relative cellular DNA content from 23 different clonal cultures of Pfiesteria spp. zoospores was determined using a DNA fluorochrome and flow cytometry. Significant differences between Pfiesteria piscicida and P. shumwayae were detected, both in mean zoospore DNA content and population cell cycle DNA distribution. Intraspecific differences in DNA content were found between clonal zoospore cultures established from different geographical regions. Long-term cultures (years) of P. piscicida were available for testing, and a negative correlation was observed between zoospore DNA content and time in culture. Zoospore cell cycle-related DNA distributions were also markedly different between the two species in these clonal cultures. In most cultures tested, P. piscicida zoospores exhibited bimodal DNA flow histograms with G1-S-G2+M distributions, typical of eukaryotic asynchronously cycling cells. In contrast, cultures of P. shumwayae zoospores exhibited one DNA peak distribution, indicative of synchronized cells. The data are consistent with the hypothesis that P. shumwayae zoospores are interphasic cells, and mitosis in zoospore cultures of this species predominantly occurs as benthic or adherent non-motile division cysts. Light microscopy observations of the nuclear condition of electrostatically sorted zoospores of each Pfiesteria species also support this hypothesis. If highly conserved, this disparity in modes of vegetative reproduction would ramify the population dynamics of the two Pfiesteria species.  相似文献   

16.
The dinoflagellate, Pfiesteria piscicida, can form harmful algal blooms in estuarine environments. The dominant copepod species usually found in these waters is Acartia tonsa. We tested the ability of A. tonsa to graze the non-toxic zoospore stage of P. piscicida and thus serve as a potential biological control of blooms of this algal species. A. tonsa grazed the non-toxic zoospore stages of both a non-inducible P. piscicida strain (FDEPMDR23) and a potentially toxic strain (Tox-B101156) at approximately equal rates. Ingestion of P. piscicida increased with cell concentration and exhibited a saturated feeding response. Both the maximum number of cells ingested (Imax) and the slope of the ingestion curve (α) of A. tonsa feeding on P. piscicida were comparable to these ingestion parameters for A. tonsa fed similar-sized phytoplankton and protozoan species. When these laboratory ingestion rates were combined with abundance estimates of A. tonsa from the Pocomoke Estuary and Chesapeake Bay, we found that significant grazing control of the non-toxic zoospore stage of P. piscicida by A. tonsa would only occur at high copepod abundances (>10 copepods L−1). We conclude that under most in situ conditions the potential biological control of blooms of P. piscicida is exerted by microzooplankton grazers. However, in the less saline portions of estuaries where maximum concentrations of copepods often occur with low abundances of microzooplankton, copepod grazing coefficients can be similar to the growth rates of P. piscicida.  相似文献   

17.
Water quality, microbial contamination, prior fish health, and variable results have been major impediments to identifying the cause and mechanism of fish mortality in standard aquarium‐format Pfiesteria bioassays. Therefore, we developed a sensitive 96‐h larval fish bioassay for assessing Pfiesteria spp. pathogenicity using six‐well tissue culture plates and 7‐day‐old larval cyprinodontid fish. We used the assay to test pathogenicity of several clonal lines of Pfiesteria piscicida Steidinger and Burkholder and P. shumwayae Glasgow and Burkholder that had been cultured with algal prey for 2 to 36 months. The P. shumwayae cultures exhibited 80%–100% cumulative mortality in less than 96 h at initial zoospore densities of approximately 1000 cells·mL?1. No fish mortalities occurred with P. piscicida at identical densities or in controls. In a dose‐response assay, we demonstrated a strong positive correlation between dinospore density and fish mortality in a highly pathogenic culture of P. shumwayae, generating a 96‐h LD50 of 108 zoospores·mL?1. Additionally, we applied the assay to evaluate a 38‐L P. shumwayae bioassay that was actively killing fish and compared results with those from exposures of juvenile tilapia (Oreochromis niloticus) in a 500‐mL assay system. Water from the fish‐killing 38‐L assay was filtered and centrifuged to produce fractions dominated by dinoflagellates, bacteria, or presumed ichthyotoxin (cell‐free fraction). After 96 h, the larval fish assay exhibited 50%–100% cumulative mortality only in fractions containing dinoflagellates, with no mortalities occurring in the other fractions. The 500‐mL bioassay with tilapia produced inconsistent results and demonstrated no clear correlation between mortality and treatment. The new larval fish bioassay was demonstrated as a highly effective method to verify and evaluate dinoflagellate pathogenicity.  相似文献   

18.
Pfiesteria shumwayae Glasgow et J. M. Burkh. [=Pseudopfiesteria shumwayae (Glasgow et J. M. Burkh.) Litaker, Steid., P. L. Mason, Shields et P. A. Tester] is a heterotrophic dinoflagellate commonly found in temperate, estuarine waters. P. shumwayae can feed on other protists, fish, and invertebrates, but research on the biochemical requirements of this species has been restricted by the lack of axenic cultures. An undefined, biphasic culture medium was formulated that supported the axenic growth of two of three strains of P. shumwayae. The medium contained chicken egg yolk as a major component. Successful growth depended on the method used to sterilize the medium, and maximum cell yields (104 · mL?1) were similar to those attained in previous research when P. shumwayae was cultured with living fish or microalgae. Additionally, P. shumwayae flagellate cells ingested particles present in the biphasic medium, allowing detailed observations of feeding behavior. This research is an initial step toward a chemically defined axenic culture medium and determination of P. shumwayae metabolic requirements.  相似文献   

19.
The functional response of a planktonic ciliate, Strombidium sp. feeding on the dinoflagellate Pfiesteria piscicida non-toxic zoospores (NTZ) was experimentally studied with four different prey concentrations (43–3153 cells ml−1). Data from direct observations (NTZ inside individual Strombidium sp.) was used to calculate predator–prey specific ingestion and clearance rates. The ingestion rates varied between 0.68 and 14.26 NTZ ind−1 h−1, and with the predator–prey specific handling time of 2.83 min the Umax was 21.18 NTZ ind−1 h−1. The increase in the prey concentration between approximately 700 and 3000 NTZ ml−1 did not increase the uptake of prey, and at the lowest Pfiesteria NTZ concentrations the feeding efficiency of Strombidium sp. was lowered, possibly indicating a situation of threshold feeding. When data from direct observations of ingested Pfiesteria NTZ were compared with values of total NTZ loss from the experimental water during the experiment, ingestion was found to represent only a fraction of the total NTZ loss in the presence of ciliates. This discrepancy was concluded to be due to other grazer related factors than actual ciliate grazing. The control of the initial growth of Pfiesteria community, in a pre-bloom situation, would require only a small ciliate abundance (less than 5 ml−1), but when the Pfiesteria NTZ are scarce, relatively more ciliates are needed to limit the population growth of the dinoflagellate community because of the apparent feeding threshold. It is concluded that the formation of non-toxic P. piscicida blooms require periods of low grazing pressure or a means to escape grazing.  相似文献   

20.
Toxic dinoflagellate blooms have increased in estuaries of the east coast of the United States in recent years, and the discovery of Pfiesteria piscicida has brought renewed attention to the problem of harmful algal blooms (HAB) in general. Many bacteria and viruses have been isolated that have algicidal or algistatic effects on phytoplankton, including HAB species. Twenty-two bacterial isolates from the Delaware Inland Bays were screened for algicidal activity. One isolate (Shewanella IRI-160) had a growth-inhibiting effect on all three dinoflagellate species tested, including P. piscicida (potentially toxic zoospores), Prorocentrum minimum, and Gyrodinium uncatenum. This bacterium did not have a negative effect on the growth of any of the other four common estuarine non-dinoflagellate species tested, and in fact had a slight stimulatory effect on a diatom, a prasinophyte, a cryptophyte, and a raphidophyte. Shewanella IRI-160 is the first non-microzooplankton example of a microbe with the ability to control and inhibit the growth of P. piscicida, suggesting that bacteria in the natural environment could play a role in controlling the growth and abundance of P. piscicida and other dinoflagellates. Such bacteria could also potentially be used as management tools to prevent the proliferation of potentially harmful dinoflagellates in estuaries and coastal waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号