首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In anaesthetised Wistar rats, electrical sympathetic activity and a somatosympathetic reflex in the cervical sympathetic trunk elicited by a single electrical shock to forelimb or hindlimb afferent nerves, were recorded. The spontaneous activity was shown to conform with the pulse and respiratory waves of arterial pressure. Somatosympathetic reflex consists of early and late discharges evoked by somatic myelinated afferent fibres stimulation, and C-response elicited by stimulation of unmyelinated afferent fibres in spinal nerves.  相似文献   

2.
In rats, stimulation of renal mechanoreceptors by increasing ureteral pressure results in a contralateral inhibitory renorenal reflex response consisting of increases in ipsilateral afferent renal nerve activity, decreases in contralateral efferent renal nerve activity, and increases in contralateral urine flow rate and urinary sodium excretion. Mean arterial pressure is unchanged. To study possible functional central interaction among the afferent renal nerves and the aortic and carotid sinus nerves, the responses to renal mechanoreceptor stimulation were compared in sinoaortic denervated rats and sham-denervated rats before and after vagotomy. In contrast to sham-denervated rats, there was an increase in mean arterial pressure in response to renal mechanoreceptor stimulation in sinoaortic-denervated rats. However, there were no differences in the renorenal reflex responses among the groups. Thus, our data failed to support a functional central interaction among the renal, carotid sinus, and aortic afferent nerves in the renorenal reflex response to renal mechanoreceptor stimulation. Studies to examine peripheral interaction between efferent and afferent renal nerves showed that marked reduction in efferent renal nerve activity produced by spinal cord section at T6, ganglionic blockade, volume expansion, or stretch of the junction of superior vena cava and right atrium abolished the responses in afferent renal nerve activity and contralateral renal function to renal mechanoreceptor stimulation. Conversely, increases in efferent renal nerve activity caused by thermal cutaneous stimulation increased basal afferent renal nerve activity and its responses to renal mechanoreceptor stimulation. These data suggest a facilitatory role of efferent renal nerves on renal sensory receptors.  相似文献   

3.
Discomfort and pain are the sensations most commonly evoked from viscera. Most nociceptive signals that originate from visceral organs reach the central nervous system (c.n.s.) via afferent fibres in sympathetic nerves, whereas parasympathetic nerves contain mainly those visceral afferent fibres concerned with the non-sensory aspects of visceral afferent function. Noxious stimulation of viscera activates a variety of specific and non-specific receptors, the vast majority of which are connected to unmyelinated afferent fibres. Studies on the mechanisms of visceral sensation can thus provide information on the more general functions of unmyelinated afferent fibres. Specific visceral nociceptors have been found in the heart, lungs, testes and biliary system, whereas noxious stimulation of the gastro-intestinal tract appears to be detected mainly by non-specific visceral receptors that use an intensity-encoding mechanism. Visceral nociceptive messages are conveyed to the spinal cord by relatively few visceral afferent fibres which activate many central neurons by extensive functional divergence through polysynaptic pathways. Impulses in visceral afferent fibres excite spinal cord neurons also driven by somatic inputs from the corresponding dermatome (viscero-somatic neurons). Noxious intensities of visceral stimulation are needed to activate viscero-somatic neurons, most of which can also be excited by noxious stimulation of their somatic receptive fields. The visceral input to some viscero-somatic neurons in the spinal cord can be mediated via long supraspinal loops. Pathways of projection of viscero-somatic neurons include the spino-reticular and spino-thalamic tracts. All these findings give experimental support to the 'convergence-projection' theory of referred visceral pain. Visceral pain is the consequence of the diffuse activation of somato-sensory nociceptive systems in a manner that prevents accurate spatial discrimination or localization of the stimuli. Noxious stimulation of visceral receptors triggers general reactions of alertness and arousal and evokes unpleasant and poorly localized sensory experiences. This type of response may be a feature of sensory systems dominated by unmyelinated afferent inputs.  相似文献   

4.
李河  戴秀中 《生理学报》1991,43(3):296-301
40只家兔,乌拉坦静脉麻醉。切断双侧主动脉神经(AN)、窦神经及迷走神经。以选择兴奋 AN 有髓传人纤维的条件刺激(0.02ms,50Hz,4—6V,5min)给予切断的 AN 中枢段,模拟导致低阈压力感受反射快速重调的保持压背景,借以诱导快速重调的中枢过程。实验表明:该中枢过程使 AN 有髓纤维传入所激发的压力感受反射降压效应衰减41.82%(P<0.01),肾交感神经活动抑制效应衰减19.31%(P相似文献   

5.
Elucidation of an inhibitory system in the regulation of emesis is presented in this report. Emesis preceded by retching, can be induced in the dog by appropriate electrical stimulation of abdominal vagus nerves at the supradiaphragmatic level. Failure to produce retching or emesis by electrical stimulation of the cervical vagus trunk suggests either that the abdominal vagal emetic afferent does not course in the cervical vagus or that fibers inhibitory to emesis are present. This report presents evidence for afferent fibers inhibitory to retching and emesis in the cervical vagus. Retching and emesis resulting from stimulation of the supradiaphragmatic vagus can be prevented by either transection of the cervical vagus or simultaneous stimulation of the cervical vagus trunk. In addition, retching and emesis occur with stimulation of a fine nerve bundle dissected from the cervical vagus trunk. That the afferent pathway inhibitory to retching and emesis involves pulmonary afferents is suggested by the observation that hyperventilation occurs with stimulation of the cervical vagus trunk.Research supported by U.S.P.H.S. Grant No. FR05339-07  相似文献   

6.
贾秉钧  李河 《生理学报》1991,43(3):249-256
Experiments were performed on 37 urethane-anesthetized rabbits. The aortic nerves, carotid sinus nerves and vagus nerves were cut, MAP and renal sympathetic nerve activity (RSNA) were recorded. The conditional stimulation CSc (0.5 ms, 10 Hz, 4-6V, 5 min) was used to mimic the information of baroreflex non-medullated afferent fibers responding to acute increase of BP. Test stimulation TSa (0.02 ms, 0-80 Hz/30 s, 4-6V) and TSc (0.5 ms, 0-20 Hz/30s, 4-6V) was used to examine the responses of baroreflex A- and C-fibers. After CSc at 1 min the reflex MAP and RSNA of TSc was attenuated at 45.5% (P less than 0.01) and 10.6% (P less than 0.05), the MAP response of TSa was attenuated at 32.1% (P less than 0.05), but the RSNA response was not. From the further investigation it is concluded that the characteristics of central acute resetting are dependent on the components of baroreflex afferent fibers. The reflex responses are attenuated mainly by correspondent afferent components.  相似文献   

7.
In rabbits the depressor nerves and cardiac vagal branches were stimulated. Their actions on heart rate, atrio-ventricular conduction time, myocardial action potential and mean central blood pressure were recorded. The frequency-effect characteristics of the chronotropic, dromotropic and electrotropic actions on the heart, resulting from afferent and efferent nerve stimulation, are compared. The participation of each of the depressor nerves in their total effects on heart rate and blood pressure is studied. Time courses of heart rate and blood pressure decrease by afferent and efferent nerve stimulation with sinusoidally modulated pulse rates are presented. The results are discussed with respect to the different dynamics of blood pressure and heart rate control. It is concluded that at least two mechanisms are involved in blood pressure control by the depressor nerves: 1. Decrease of vascular resistance by lowering the sympathetic tone. 2. Decrease of heart rate by enhancing the cardiac vagal activity. It is suggested that the parasympathetic control unit compensates rapid disturbances, whereas the slow-acting sympathetic vascular mechanism exerts a long-time pressure control of high efficiency.  相似文献   

8.
刺激家兔肾内感受器和肾传入神经的血流动力学效应   总被引:2,自引:1,他引:1  
马戈  何瑞荣 《生理学报》1990,42(3):262-268
在39只麻醉家兔观察刺激肾脏机械和化学感受器以及电刺激肾传入神经的血流动力学效应。增加输尿管压8—22mmHg 及经输尿管向肾盂内逆向灌注 NaCl(1.0 mol/L)及 KCl(0.15mol/L)溶液时,引起平均动脉压(MAP)和心率(HR)下降;切断双侧缓冲神经后,MAP 降低更为显著。电刺激肾传入神经时,HR 减慢,MAP、肠系膜动脉和后肢动脉灌流压降低,左心室收缩压及其微分值下降,心输出量(CO)和总外周阻力(TPR)减小;切断双侧窦神经和减压神经后,除 HK、CO 和 TPR 外,其余各血流动力学指标的减弱更为显著。由此提示,动脉压力感受器反射对肾传入神经激活的心血管效应有缓冲作用。  相似文献   

9.
The aims of present study were to determine whether angiotensin II (ANG II) in the paraventricular nucleus (PVN) is involved in the central integration of the cardiac sympathetic afferent reflex and whether this effect is mediated by the ANG type 1 (AT(1)) receptor. While the animals were under alpha-chloralose and urethane anesthesia, mean arterial pressure, heart rate, and renal sympathetic nerve activity (RSNA) were recorded in sinoaortic-denervated and cervical-vagotomized rats. A cannula was inserted into the left PVN for microinjection of ANG II. The cardiac sympathetic afferent reflex was tested by electrical stimulation (5, 10, 20, and 30 Hz in 10 V and 1 ms) of the afferent cardiac sympathetic nerves or epicardial application of bradykinin (BK) (0.04 and 0.4 microg in 2 microl). Microinjection of ANG II (0.03, 0.3, and 3 nmol) into the PVN resulted in dose-related increases in the RSNA responses to electrical stimulation. The percent change of RSNA response to 20- and 30-Hz stimulation increased significantly at the highest dose of ANG II (3 nmol). The effects of ANG II were prevented by pretreatment with losartan (50 nmol) into the PVN. Microinjection of ANG II (0.3 nmol) into the PVN significantly enhanced the RSNA responses to epicardial application of BK, which was abolished by pretreatment with losartan (50 nmol) into the PVN. These results suggest that exogenous ANG II in the PVN augments the cardiac sympathetic afferent reflex evoked by both electrical stimulation of cardiac sympathetic afferent nerves and epicardial application of BK. These central effects of ANG II are mediated by AT(1) receptors.  相似文献   

10.
Responses of vasomotor neurons of the cat medulla to electrical stimulation of the depressor nerve and of mixed nerves of the limbs and to adequate stimulation of the vestibular apparatus were investigated. Evoked unit activity was demonstrated as groups of action potentials followed by inhibition of spontaneous activity. Three types of unit responses to stimulation of the depressor nerve and somatic afferent fibers and changes in unit activity in response to vestibular stimulation are described. The features distinguishing the convergence of afferent impulses on vasomotor neurons are discussed.Institute of Medico-Biological Problems, Ministry of Health of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 5, pp. 460–467, September–October, 1973.  相似文献   

11.
Afferent stimulation of one canine thoracic cardiopulmonary nerve can generate compound action potentials in another ipsilateral cardiopulmonary nerve. These compound action potentials persist after acute decentralization of the middle cervical ganglion, indicating that they result from neural activity in the middle cervical ganglion and thoracic nerves. Changing the frequency of stimulation can alter the compound action potentials, suggesting that temporal facilitation or inhibition occurs in this middle cervical ganglion preparation. The compound action potentials can be modified by stimulation of sympathetic preganglionic fibers and by hexamethonium, atropine, phentolamine, propranolol, and (or) manganese. It thus appears that afferent cardiopulmonary nerves can activate efferent cardiopulmonary nerves via synaptic mechanisms in the stellate and middle cervical ganglia. It also appears that these mechanisms involve adrenergic and cholinergic receptors and are influenced by preganglionic sympathetic fibers arising from the cord.  相似文献   

12.
Experiments were carried out on cats six days after complete transection of the spinal cord. Cord dorsum potentials (CDP) were recorded in the vicinity of the third lumbar segment during stimulation of the isolated dorsolateral funiculus (DLF). The CDP consist of a rapid monophasic potential (which apparently reflects antidromic excitation of the cells of Clarke's column) and two subsequent slow negative waves, which are replaced by a long positive oscillation. In form, time characteristics, and behavior during thythmic stimulation, this potential differs considerably from the CDP recorded during stimulation of the afferent nerves. The presence of a positive phase of the CDP indicates that stimulation of the DLF evokes primary afferent depolarization (PAD). Stimulation of the DLF causes inhibition of the CDP evoked by stimulation of the afferent nerve. The time course of this inhibition corresponds to the time course of presynaptic inhibition. It is demonstrated that stimulation of the afferent nerve (n. femoralis) inhibits slow components of the CDP evoked by stimulation of the DLF. This inhibition reaches a maximum at the 16th millisecond; its duration exceeds 300 msec. Stronger and more prolonged inhibition of the same components is observed when both the conditioning and the testing stimuli are administered to the DLF. Since primary afferents do not take part in CDP emergence during stimulation of the DLF, it may be hypothesized that the observed inhibition develops as a result of depolarization of interneuron axon terminals.Dnepropetrovsk State University. Translated from Neirofiziologiya, Vol. 2, No. 5, pp. 520–527, September–October, 1970.  相似文献   

13.
Depolarization of primary afferent terminals in the lumbosacral portion of the spinal cord evoked by selective activation of propriospinal pathways was investigated in anesthetized cats. The strongest depolarization developed as a result of activation of short (two to five segments) propriospinal pathways in the lateral funiculus; stimulation of the long propriospinal pathways of this funiculus also induced depolarization, but of lower amplitude. Stimulation of propriospinal pathways of the ventral funiculi was ineffective. Significant primary afferent depolarization developed only following the use of a series of stimuli and strong stimulation of the propriospinal pathways. Excitation of these pathways caused depolarization of afferent terminals of both cutaneous and muscular nerves, including muscular sensory fibers of group Ia, although in the latter case its intensity was low. Neuronal mechanisms involved in the generation of this depolarization and its possible functional role are dicussed.  相似文献   

14.
Possible roles of the afferent vagus nerve in regulation of interleukin (IL)-1beta expression in the brain and hypothalamic-pituitary-adrenal (HPA) axis were examined in anesthetized rats. Levels of IL-1beta mRNA and protein in the brain were measured by comparative RT-PCR and ELISA. Direct electrical stimulation of the central end of the vagus nerve was performed continuously for 2 h. The afferent stimulation of the vagus nerve induced increases in the expression of mRNA and protein levels of IL-1beta in the hypothalamus and the hippocampus. Furthermore, expression of corticotropin-releasing factor mRNA was increased in the hypothalamus 2 h after vagal stimulation. Plasma levels of ACTH and corticosterone were also increased by this stimulation. The present results indicate that activation of the afferent vagus nerves itself can induce production of IL-1beta in the brain and activate the HPA axis. Therefore, the afferent vagus nerve may play an important role in transmitting peripheral signals to the brain in the infection and inflammation.  相似文献   

15.
Conditioning stimuli were applied to the common peroneal or superficial peroneal nerve in acute experiments on anesthetized cats. Changes in the N1-component of the dorsal cord potential evoked by stimulation of one of these nerves or of other nerves (tibial, deep peroneal) and changes in the amplitude of antidromic action potentials in the afferent fibers of these nerves were investigated. The degree of reinforcement of antidromic action potentials, reflecting the degree of depolarization of the afferent terminals, was found to be greater for the passive nerve than for the active to which the conditioning stimulus was applied. Inhibition of the N1-component of the dorsal cord potential was deeper when a pair of stimuli was applied to two different nerves (under these conditions only the mechanism of presynaptic inhibition was activated) than when they were applied to the same nerve. It is concluded that presynaptic inhibition, by selectively controlling afferent volleys, can evidently play a coordinating role.  相似文献   

16.
The relative potencies of cholecystokinin (CCK)-8 and CCK-33 for decreasing meal size depend on the route of administration. Inhibitory potencies are equal after intraperitoneal administration, but CCK-33 is significantly more potent after intraportal administration. This suggests that CCK-33 is a more effective stimulant of hepatic afferent vagal nerves than is CCK-8. To investigate this possibility, we administered both peptides intraperitoneally in rats with abdominal vagotomies that spared only the hepatic proper vagal nerves (H) and in rats with abdominal vagotomies that spared the common hepatic branch that contains the fibers of the hepatic proper and gastroduodenal nerves (HGD). The vagal afferent innervation in H and HGD rats was verified with a wheat germ agglutinin-horseradish tracer strategy. Intraperitoneal administration of CCK-33 decreased 30-min intake of 10% sucrose in H rats as much as in sham rats, but CCK-8 decreased intake significantly less in H rats than in sham rats. The larger inhibitory effect of CCK-33 than of CCK-8 in H rats is consistent with the hypothesis that CCK-33 is a more effective stimulant of the hepatic proper vagal afferent nerves than CCK-8. In contrast to the results in H rats, the inhibitory potencies of both peptides were significantly and equivalently reduced in HGD rats compared with sham rats. This suggests that there is an inhibitory interaction between the stimulation of the gastroduodenal and hepatic proper afferent fibers by CCK-33.  相似文献   

17.
1. Experiments were performed in 18 chloralose-anaesthetized, curarized cats in order to study the callosal transfer of somatic information originated in exteroceptive and proprioceptive receptors. Several cutaneous and deep nerves of the forelimb were prepared and stimulated with graded intensities, so as to activate selectively afferent fibres pertaining to the different groups of Lloyd's classification. Simultaneous records were taken (and averaged on-line by means of a multichannel analyzer) from the distal end of a cut dorsal rootlet (C7-C8), from the cerebral cortex (SI, SII or area 3a, according to the experiment) and from the somesthetic callosal region (SCR). 2. The low-threshold afferent fibres (Group II) of cutaneous origin were found to have a wide projection to the SCR, with the maximal density in its middle portion. Some of the fastest corticocallosal impulses are relayed monosynaptically at cortical level. Plots of the amplitude of cortical and callosal responses as a function of stimulus strength showed that both central responses have the same threshold and exhibit a parallel, sharply-rising amplitude increase, thus suggesting that the cortico-callosal re-transmission system for afferent impulses of cutaneous origin is very powerful in nature. Impulses elicited in afferent fibres of higher threshold (Group III) do not enhance the cortical and callosal positive waves provoked by Group II afferent volleys. 3. Afferent fibres of deep origin were also found to send a wide projection to the SCR, although less substantial than that of cutaneous fibres. Stimulation of the deep radial nerve elicited mass responses in the whole SCR, provided the strength of stimuli was high enough to engage the Group II fibres. Only in the central portion of the SCR were small potentials recorded in response to pure Group I volleys of DRN. Experiments performed with selective stimulation of pure muscular branches of forelimb deep nerves as well as of articular and mixed (muscular and articular) branches gave evidence making it possible to ascertain the origin of deep afferent fibres projecting to the SCR. Stimulation of the forelimb muscular branches with strength provoking full activation of Group I afferent and additional engagement of those of Group II, did not provoke mass responses in the whole extent of the SCR. In order to obtain callosal potentials upon stimulation of pure muscular nerves, it was necessary to increase the stimulus strength at or above the threshold for Group III fibres. On the contrary, the same callosal foci unresponsive to Group I and II muscular afferent volleys exhibited clear-cut responses to stimulation of the lowest-threshold Group I and/or Group II afferents of articular and mixed nerves. From the results it might be inferred that only proprioceptive information originating from articular receptors and from extrafusal muscular afferents has access to the callosal interhemispheric transfer.  相似文献   

18.
Food induced neurohumoral signals are conduced to data processing brain centers mainly as vagal afferent discharge resulting in food intake regulation. The aim of this study was to evaluate effects of vagal nerve neuromodulation in control of food intake with fed-pattern microchip (MC) pacing. Experiments were performed on 60 rats divided on 5 groups: I group 0,05Hz left vagal pacing, II - pacing of both vagal nerves with MC 0,05Hz, III- left vagal MC 0,1Hz pacing, IV - pacing of both vagal nerves with MC 0,1 Hz was performed. In group V left vagal pacing was combined with right side abdominal vagotomy. Body weight and total food intake decreased by 12% and 14% (I), 26% and 30%(II), 8% and 21%(III), 14% and 30%(IV), 38% and 41%(IV), respectively (p<0.05). Effects of both vagal nerves stimulation on final body weight and food intake was significantly more effective than only single nerve MC pacing however most effective was stimulation with 0,1Hz combined with right vagotomy. We conclude that vagal stimulation reduce food intake and body weight by increasing vagal afferent signals. Our results suggest that information in vagal afferents can be modulated resulting in changes of feeding behaviour and body weight.  相似文献   

19.
Summary Nerves immunoreactive for the peptides substance P, neurokinin A, calcitonin gene-related peptide or cholecystokinin-octapeptide innervate the uterine cervix in the rat. Nerve terminals are associated with the myometrial and vascular smooth muscle and are distributed throughout the endocervix. These nerves degenerate following neonatal capsaicin treatment indicating that they are small-diameter, unmyelinated, C-type primary afferent nerves. Adult female rats, treated with capsaicin as neonates, exhibit decreased fertility following mating and diminished sensitivity to the induction of pseudopregnancy following copulomimetic electrical stimulation of the cervix. The results also demonstrate that hypothalamo-adenohypophyseal-ovarian interactions, corpus luteum progesterone secretion and uterine sensitivity to progesterone are normal in capsaicin-treated rats. Taken together, these data suggest that the reproductive dysfunction observed in capsaicin-treated rats is due to destruction of the afferent limb of the neuroendocrine copulatory response that facilitates the luteal progesterone secretion necessary to support pregnancy or pseudopregnancy. Thus, it is concluded that the afferent limb of this neuroendocrine response in the rat consists primarily of unmyelinated, peptide-containing, C-type primary afferent nerves.A preliminary report of this study was presented at the Substance P and Neurokinins Symposium in Montreal, 1986, and published in the symposium proceedings (Traurig et al. 1987)  相似文献   

20.
Postsynaptic potentials of motoneurons in the facial nerve nucleus, evoked by stimulation of the cranial nerves (trigeminal, hypoglossal, facial) and of the sensomotor cortex were investigated in cats anesthetized with chloralose and pentobarbital. Two functionally opposite groups of motoneurons were found to exist in the facial nucleus. Stimulation of the afferent nerves and cortex evoked the appearance of EPSPs in the first of these groups and IPSPs in the second. The latency and duration of the PSPs indicate that afferent and corticofugal impulses reach the facial motoneurons along polysynaptic pathways. Interneurons on which wide convergence of influences travelling along afferent fibers and of the cortex, were found in the region of the facial nucleus. The possible neuronal pathways concerned with the transmission of afferent and corticofugal impulses to the facial motoneurons are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol.4, No.4, pp. 391–400, July–August, 1972.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号