首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many patients with diabetes fail to meet recommended glycemic goals regardless of the recognition of optimal glycemic control as a key component for improving clinical outcomes and quality of life in patients with diabetes. Patient- and physician-related barriers to the adoption of insulin therapy include fear and anxiety about injecting insulin, concerns about side effects, and personal health beliefs in regard to the use of insulin. There is an unmet need for an alternative insulin therapy that provides optimal glycemic control, is well tolerated, and improves patient adherence. Of the several inhaled insulin devices that are in various stages of development, the Exubera (INH) formulation is the first to be approved for use in the United States and in Europe. Exubera is a novel, rapid-acting inhaled human insulin formulation that has been developed for prandial insulin use. Clinical studies have shown that INH consistently improves glycemic control, in combination with longer-acting subcutaneous (SC) insulin regimens in patients with type 1 or type 2 diabetes, or is used to supplement or replace oral antidiabetic therapy in patients with type 2 diabetes. INH has demonstrated long-term safety and tolerability, with a risk for hypoglycemia similar to that of SC insulin, and no clinically meaningful changes in pulmonary function have been noted with its use. Patients treated with INH in clinical studies reported high levels of satisfaction with treatment, and many patients with diabetes choose inhaled insulin when it is offered as a treatment option. Taken together, these findings suggest that INH represents an important new development in the treatment of diabetes that may improve glycemic control in many patients with diabetes.  相似文献   

2.
3.
Recent studies in nanotechnology resulted in the development of novel formulations with improved bioavailability. This is especially important for oral administered drugs as the most convenient formulations for administration to patients. The review considers processes occurring in the gastro-intestinal (GI) tract during oral administration of drugs. The increase of bioavailability of the drug may be achieved through designing novel formulations according to the specific drug properties. These include capsules that release pharmaceutical agents at various parts of the GI tract, floating systems that prolong the presence of the drug in stomach, maximally dispersed forms containing surface-active soluble polymers or micelles that carry poor-soluble drugs inside their non-polar core, agents that facilitate tight junction opening, such as caprate and chitosan, and lipid-based formulations. The own data show the stimulating influence of phospholipid nanoparticles on peroral absorption of the drug, indomethacin, in rats and on passage of transport marker and drugs through Caco-2 cell monolayer in vitro. The review summarizes current understanding of factors that influence the bioavailability of the oral drug formulations, currently used models for pharmacokinetic studies, and various approaches to developing novel pharmaceutical formulations that increase the bioavailability of the drugs.  相似文献   

4.
The destruction of β-cells of the pancreas leads to either insulin shortage or the complete absence of insulin, which in turn causes diabetes Mellitus. For treating diabetes, many trials have been conducted since the 19th century until now. In ancient times, insulin from an animal’s extract was taken to treat human beings. However, this resulted in some serious allergic reactions. Therefore, scientists and researchers have tried their best to find alternative ways for managing diabetes with progressive advancements in biotechnology. However, a lot of research trials have been conducted, and they discovered more progressed strategies and approaches to treat type I and II diabetes with satisfaction. Still, investigators are finding more appropriate ways to treat diabetes accurately. They formulated insulin analogs that mimic the naturally produced human insulin through recombinant DNA technology and devised many methods for appropriate delivery of insulin. This review will address the following questions: What is insulin preparation? How were these devised and what are the impacts (both positive and negative) of such insulin analogs against TIDM (type-I diabetes mellitus) and TIIDM (type-II diabetes mellitus)? This review article will also demonstrate approaches for the delivery of insulin analogs into the human body and some future directions for further improvement of insulin treatment.  相似文献   

5.
Thyroid diseases are closely associated with the development of types 1 and 2 diabetes mellitus (DM), and the development of effective approaches for their treatment is one of the urgent problems of endocrinology. Traditionally, thyroid hormones (THs) are used to correct functions of the thyroid system. However, they are characterized by many side effects, including their negative effect on the cardiovascular system as well as the ability of TH to enhance insulin resistance and to impair insulin-producing function of the pancreas thus exacerbating diabetic pathology. In this context significant efforts have been made to develop TH analogues, selective for certain types of TH receptors that do not have these side effects. The peptide and lowmolecular weight regulators of thyroid-stimulating hormone receptor, which regulate the activity of the thyroid axis at the stage of TH synthesis and secretion in thyrocytes, are being created. Systemic and intranasal administration of insulin, as well as metformin therapy and administration of antioxidants are effective for the treatment of thyroid pathology in patients with types 1 and 2 DM. In the review, the literature data and the results of own studies on pharmacological approaches for the treatment and prevention of thyroid diseases in patients with types 1 and 2 DM have been summarized and analyzed.  相似文献   

6.
The objective of this article is to review current findings in the published literature on the efficacy of insulin therapy in combination with oral antidiabetic agents, with a focus on practical information that might help to provide an evidence-based template for selecting how best to combine oral agents and basal insulin in patients with type 2 diabetes. Here we review the current oral agents used to treat type 2 diabetes, their mechanisms of action, and how they can be combined with insulin therapy to help patients achieve guideline-recommended glycemic goals. While practical advice exists for initiating a therapeutic regimen comprised of basal insulin and oral agent(s), direction as to appropriate therapy for individual patients with differing physiologic requirements is needed. Oral antidiabetic therapy in combination with insulin provides an effective therapeutic option for patients who are unable to achieve or maintain glycemic goals on oral therapy alone.  相似文献   

7.
The purpose of the study was to find out differences between treatments of diabetes type 2 after secondary oral antidiabetic drug failure. Three different methods of treatment were compared: lispro insulin in combination with metformin, glimepiride and metformin combination or two daily doses of biphasic insulin 30/70 together with bed-time NPH insulin. The study included 87 patients with diabetes mellitus type 2 randomly distributed into 3 different treatment groups. Fasting and postprandial glucose were analyzed by enzymatic colorimetric method and HbA1c was measured by ion exchange chromatography. HbA1c significantly decreased in all three study groups. The decrease was mostly expressed among patients treated with lispro and metformin. When focused on postprandial glucose control, antihyperglycemic metformin and insulin lispro therapy has greater impact on the overall metabolic control (decrease in level of HbA1c) in comparison with the above mentioned more traditional approaches.  相似文献   

8.
The genetic treatment of neurodegenerative diseases still remains a challenging task since many approaches fail to deliver the therapeutic material in relevant concentrations into the brain. As viral vectors comprise the risk of immune and inflammatory responses, human serum albumin (HSA) nanoparticles were found to represent a safer and more convenient alternative. Their ability to cross the blood-brain barrier (BBB) and deliver drugs into the brain in order to enhance gene-based therapy has been previously demonstrated. The present study deals with the development of pGL3-PEI-coated HSA nanoparticles and subsequent in vitro testing in cerebellar granular and HeLa cells. The luciferase control vector pGL3 was chosen as reporter plasmid encoding for the firefly luciferase protein, linear polyethylenimine (22 kDa) as endosomolytic agent for enhancing the cells’ transfection. Studies on particle characteristics, their cellular uptake into aforementioned cell lines and on subcellular localisation, and transfection efficiency in the cerebellar cells proved the feasibility of nanoparticle-based gene delivery.  相似文献   

9.
《Insulin》2008,3(1):31-36
Background: A frequently cited barrier to insulin use in type 2 diabetes mellitus (DM) is concern about the adverse effects on quality of life. Results of studies in this area have been mixed, with insulin use showing decreased, enhanced, or no impact on quality of life.Objective: The purpose of this paper is to discuss the state of the science regarding the effects of insulin on quality of life and to present strategies providers can implement in their clinical practices to decrease barriers to insulin use among patients with type 2 DM.Methods: An English-language MEDLINE search of the current literature using the terms insulin and quality of life was conducted for this article.Results: Although patient-identified concerns regarding insulin use represent some aspects of quality of life, study results have been mixed. However, 2 large studies examining the use of insulin glargine and its effects on quality of life found that glargine was associated with significantly greater improvements in quality of life when added to oral antidiabetic agents (OADs) than was the use of OADs alone. Another study examined the effects of intensive multi- therapy (monthly visits, self-management diabetes education, and medication adjustments) on quality of life among patients with type 2 DM and found that quality-of-life scores improved among patients who initiated insulin therapy during the trial. The effects of insulin delivery systems on quality of life have also been assessed. In these studies, patients preferred insulin pens over vials and syringes and inhaled over injected insulin. Health care providers can facilitate acceptance of insulin by employing strategies to help patients overcome psychological barriers to insulin therapy.Conclusions: Although patient concerns about the effects of insulin use are legitimate, insulin therapy is often needed to achieve treatment targets. Providers can reduce the impact on quality of life by addressing barriers, helping patients improve metabolic control, and providing ongoing information and support.  相似文献   

10.
11.
Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide   总被引:21,自引:0,他引:21  
The JNK pathway is known to be activated in several tissues in the diabetic state, and is possibly involved in the development of insulin resistance and suppression of insulin biosynthesis. Here we show a potential new therapy for diabetes using cell-permeable JNK-inhibitory peptide. Intraperitoneal administration of the peptide led to its transduction into various tissues in vivo, and this treatment markedly improved insulin resistance and ameliorated glucose tolerance in diabetic mice. These data indicate that the JNK pathway is critically involved in diabetes and that the cell-permeable JNK-inhibitory peptide may have promise as a new therapeutic agent for diabetes.  相似文献   

12.
The application of nanotechnology in biological research is beginning to have a major impact leading to the development of new types of tools for human health. One focus of nanobiotechnology is the development of nanoparticle-based formulations for use in drug or gene delivery systems. However most of the nano probes currently in use have varying levels of toxicity in cells or whole organisms and therefore are not suitable for in vivo application or long-term use. Here we test the potential of a novel silica based nanoparticle (organically modified silica, ORMOSIL) in living neurons within a whole organism. We show that feeding ORMOSIL nanoparticles to Drosophila has no effect on viability. ORMOSIL nanoparticles penetrate into living brains, neuronal cell bodies and axonal projections. In the neuronal cell body, nanoparticles are present in the cytoplasm, but not in the nucleus. Strikingly, incorporation of ORMOSIL nanoparticles into the brain did not induce aberrant neuronal death or interfered with normal neuronal processes. Our results in Drosophila indicate that these novel silica based nanoparticles are biocompatible and not toxic to whole organisms, and has potential for the development of long-term applications.  相似文献   

13.
The effects of circulating insulin-like growth factor (IGF)-I on increasing insulin sensitivity are well recognized. IGF-I may have a further important role in maintaining beta-cell mass, and lower IGF-I activity could explain links between small size at birth and risk of type 2 diabetes in short, obese adults. In the representative Avon Longitudinal Study of Pregnancy and Childhood birth cohort, whereas insulin sensitivity is related to early postnatal weight gain, insulin secretion is related to IGF-I level and statural growth. Adult studies suggest that lower IGF-I levels at baseline predict increased risk for developing impaired glucose tolerance and type 2 diabetes. A common genetic polymorphism in the IGF1 gene could influence size at birth, postnatal growth and type 2 diabetes risk, but results of studies have been inconsistent. Extrapolation of these data to short children born small for gestational age is complex. Some have evidence of IGF-I and insulin resistance, suggesting inherent defects in IGF-I signalling. These children have poor growth responses to growth hormone (GH) therapy and perhaps the highest type 2 diabetes risk. Where these metabolic abnormalities are less severe, responses to GH therapy are good and diabetes risk may then depend on other genetic factors, indicated by a family history of diabetes or origin from ethnic groups with high diabetes prevalence.  相似文献   

14.
A novel oral form of salmon calcitonin (sCT) was recently demonstrated to improve both fasting and postprandial glycemic control and induce weight loss in diet-induced obese and insulin-resistant rats. To further explore the glucoregulatory efficacy of oral sCT, irrespective of obesity and metabolic dysfunction, the present study investigated the effect of chronic oral sCT treatment on fasting and postprandial glycemic control in male lean healthy rats. 20 male rats were divided equally into a control group receiving oral vehicle or an oral sCT (2?mg/kg) group. All rats were treated twice daily for 5 weeks. Body weight and food intake were monitored during the study period and fasting blood glucose, plasma insulin and insulin sensitivity were determined and an oral glucose tolerance test (OGTT) performed at study end. Compared with the vehicle group, rats receiving oral sCT had improved fasting glucose homeostasis and insulin resistance, as measured by homeostatic model assessment of insulin resistance index (HOMA-IR), with no change in body weight or fasting plasma insulin. In addition, the rats receiving oral sCT had markedly reduced glycemia and insulinemia during OGTT. This is the first report showing that chronic oral sCT treatment exerts a glucoregulatory action in lean healthy rats, irrespective of influencing body weight. Importantly, oral sCT seems to exert a dual treatment effect by improving fasting and postprandial glycemic control and insulin sensitivity. This and previous studies suggest oral sCT is a promising agent for the treatment of obesity-related insulin resistance and type 2 diabetes.  相似文献   

15.
Assessment of insulin secretion in humans under physiological conditions has been a challenge because of its complex interplay with insulin action and hepatic insulin extraction. The possibility of simultaneously assessing beta-cell function, insulin sensitivity, and hepatic insulin extraction under physiological conditions using a simple protocol is appealing, since it has the potential to provide novel insights regarding the regulation of fasting and postprandial glucose metabolism in diabetic and nondiabetic humans. In this Perspective, we review data indicating that an oral glucose tolerance test (OGTT) or a meal test is able to accomplish this goal when interpreted with the oral beta-cell minimal model. We begin by using the well-established intravenous minimal model to highlight how the oral minimal model was developed and how the oral assessment parallels that of an intravenous glucose tolerance test (IVGTT). We also point out the unique aspects of both approaches in relation to their ability to assess different aspects of the beta-cell secretory cascade. We review the ability of the oral model to concurrently measure insulin sensitivity and hepatic insulin extraction, thereby enabling it to quantitatively portray the complex relationship among beta-cell function, hepatic insulin extraction, and insulin action. In addition, data from 204 individuals (54 young and 159 elderly) who underwent both IVGTT and meal tolerance tests are used to illustrate how these different approaches provide complementary but differing insights regarding the regulation of beta-cell function in humans.  相似文献   

16.
For many years, the development of insulin resistance has been seen as the core defect responsible for the development of Type 2 diabetes. However, despite extensive research, the initial factors responsible for insulin resistance development have not been elucidated. If insulin resistance can be overcome by enhanced insulin secretion, then hyperglycaemia will never develop. Therefore, a β-cell defect is clearly required for the development of diabetes. There is a wealth of evidence to suggest that disorders in insulin secretion can lead to the development of decreased insulin sensitivity. In this review, we describe the potential initiating defects in Type 2 diabetes, normal pulsatile insulin secretion and the effects that disordered secretion may have on both β-cell function and hepatic insulin sensitivity. We go on to examine evidence from physiological and epidemiological studies describing β-cell dysfunction in the development of insulin resistance. Finally, we describe how disordered insulin secretion may cause intracellular insulin resistance and the implications this concept has for diabetes therapy. In summary, disordered insulin secretion may contribute to development of insulin resistance and hence represent an initiating factor in the progression to Type 2 diabetes.  相似文献   

17.
The pathophysiology of Type 1 diabetes (T1D) appears largely related to an innate defect in the immune system culminating in a loss of self tolerance and destruction of the insulin producing β-cells. Currently, there is no definitive cure for diabetes. Insulin injection does not mimic the precise regulation of β-cells on glucose homeostasis, leading long term to the development of complications. Other therapeutic approaches therefore, are necessary and cell therapy is thought to be a possible approach. In this sense, mesenchymal stem cells (MSCs) can offer a promising possibility that deserves to be explored. MSCs are multipotent non-hematopoietic progenitor cells. Their therapeutic potentials have recently been brought into the spotlights of many fields of research. Although the regenerative capabilities of MSCs have been a driving force to initiate studies testing their therapeutic effectiveness, their immunomodulatory properties have been equally exciting. MSCs possess specific immunomodulatory properties that would appear capable of disabling immune dysregulation that leads to β-cell destruction in T1D. Furthermore, MSCs can be sequentially cultured in specially defined conditions and their differentiation extends toward the β-cell phenotype and the formation of insulin producing cells (IPCs). To date, the role of MSCs in T1D remains completely unexplored. We herein summarize multiple strategies that have been proposed and tested for its potential therapeutic benefit for T1D.  相似文献   

18.
Previous investigations of the phosphoenolpyruvate carboxykinase (PEPCK) gene have been conducted using rats. In a recent comparative study, we investigated, for the first time, the effects of fasting, refeeding, alloxan-induced diabetes, and insulin treatment on the levels of PEPCK mRNA in mouse liver, kidney, and adipose tissues. As in rats, fasting and diabetes induced, while insulin repressed, hepatic PEPCK mRNA. In contrast, the response of renal PEPCK mRNA to fasting, refeeding, and diabetes in mice differed quantitatively with that in rats: fasting caused a twofold increase in mice and a fourfold increase in rats. Moreover, diabetes, which induces renal PEPCK mRNA indirectly by causing acidosis in rats, was without effect in mice. In adipose tissue, the results of previous studies in both rats and mice have shown that the amount of PEPCK protein and its rate of synthesis are increased by fasting and diabetes and decreased by refeeding and insulin treatment. Thus, it was surprising to find that fasting, refeeding, alloxan-induced diabetes, and insulin treatment had no effect on adipose tissue PEPCK mRNA in either rats or mice.  相似文献   

19.
As is well known, adipose tissue is an important site for lipid metabolism and insulin-responsive glucose uptake. The recent discovery of the endocrine function of adipose tissue and the association of obesity with chronic low-grade inflammation in adipose tissue has reinforced the concept of the central role of adipose tissue in mediating obesity-linked insulin resistance and metabolic dysregulation. The study of adipose cells has provided new insights into the mechanism underlying insulin resistance as well as the therapeutic strategies for diabetes. Numerous efforts have been made in identifying key molecular regulators of insulin action and metabolism, including the utilization of advanced proteomics technology. Various proteomic approaches have been applied to identify the adipose secretome, protein-expression profiling and post-translational modifications in adipose cells in the pathological state. In this review, we summarize the recent advances in the proteomics of adipose tissue, and discuss the identified proteins that potentially play important roles in insulin resistance and diabetes.  相似文献   

20.
马跃  邓莉  李善刚 《生物工程学报》2022,38(6):2087-2104
CRISPR/Cas9基因编辑技术已成为基因治疗领域最有前景的工具。在临床应用中,对CRISPR/Cas9进行安全有效的递送一直是亟待解决的问题。纳米粒子,如脂基纳米粒子、聚合物纳米粒子、纳米金颗粒以及生物膜类纳米粒子等,因其生物相容性、安全性和可设计性等特点有望为基因治疗带来新的突破。文中首先对纳米粒子的特性和基因治疗中CRISPR/Cas9的发展进行了概述,然后详细归纳了纳米粒子在递送不同形式的CRISPR/Cas9中的应用,最后对纳米粒子介导的基因治疗的递送在未来面临的挑战和安全性等方面作出总结论述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号