首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuous perfusion of rat hearts with concentrations of forskolin between 0.1 and 12 microM resulted in transient increases in tension after 45 s, followed by a return to the control value after 5 min. In contrast, the content of cyclic AMP increased linearly with time over this period, reaching values up to 35 times control after 5 min. Increases in contractile force, intracellular cyclic AMP concentration and the proportion of phosphorylase in the a form were dependent on the concentration of forskolin when measured 45 s and 120 s after initiation of perfusion. In hearts perfused for 45 s with various concentrations of forskolin, the measured cyclic AMP-dependent protein kinase activity ratio and phosphorylase a content for a given measured intracellular cyclic AMP concentration were both much less than the corresponding values in hearts perfused for 30 s with various concentrations of isoprenaline. The phosphorylation of the contractile proteins troponin-I and C-protein also showed a concentration-dependent increase in hearts perfused with forskolin. There was a strong correlation between the cyclic AMP-dependent protein kinase activity ratios and the phosphorylation of the contractile proteins under all perfusion conditions. These results suggest that cyclic AMP is compartmented in perfused rat heart, and that much of the cyclic AMP produced in response to forskolin is unavailable to activate cyclic AMP-dependent protein kinase.  相似文献   

2.
Acetylcholine (1muM) increased cyclid GMP content in paced perfused rat hearts within 15 sec., with peak content occurring at 1 min. No effect of acetylcholine on cyclic AMP content, phosphorylase activity or glycogen synthase was observed. Epinephrine (1muM) infusion increased both cyclic AMP content and phosphorylase, but did not alter cyclic GMP content or glycogen synthase activity. When acetylcholine was infused during the second min. of a 2 min. infusion of epinephrine, the cholinergic agent increased cyclic GMP and reduced the stimulated phosphorylase activity and elevated cyclic AMP.  相似文献   

3.
Intratesticular injection of prostaglandin E2 (PGE2) and F2 alpha (PGF2 alpha) caused stimulation of ornithine decarboxylase (ODC) activity in the testis of immature rats. PGE2 at a dose of 10 microgram per testis was maximally effective 2 hours after the injection. Dibutyryl cyclic AMP (cAMP) and 1 methyl, 3-isobutyl xanthine (MIX), a phosphodiesterase inhibitor, also stimulated ODC activity. Simultaneous injection of PGE2 and FSH or LH caused additional stimulation of ODC activity. Similarly injection of PGE2 in addition to cAMP or MIX also caused increased stimulation of ODC. Indomethacin (IM, 60 microgram/testis) inhibited LH, FSH or cAMP induced ODC activity. However, IM at the same dose inhibited the synthesis of total proteins. These results suggest that PGE2 and PGF2 alpha stimulate the activity of ODC. The action of prostaglandins may be independent of the action of gonadotropic hormones. cAMP appears to mediate the action of prostaglandins in the testis of rat.  相似文献   

4.
Cyclic AMP production by freshly isolated cells, from a 32P-induced transplantable rat osteogenic sarcoma, was stimulated by PGE1, PGE2 and to a less extent by PGF2alpha and PGA2. In the case of PGE2, the cyclic AMP content of cells was maximal within 5 min. The 13,14-dihydroderivatives of PGE1, PGE2 and PGF2alpha had approximately 40% of the activity of the parent prostaglandin whilst, in every case, the metabolites (15-keto and 13,14-dihydro-15-keto) had very little activity. Two prostaglandin endoperoxide analogues (U44069 and U46619) had only 10% of the activity of an equimolar dose of PGE2. The data presented in this paper demonstrates similarities between the responses of these cells and cells derived from bony tissue in terms of the ability of prostaglandins to stimulate bone resorption in tissue culture.  相似文献   

5.
Calcium chloride injected into isolated perfused rat hearts produced a positive inotropic effect and increased the levels of phosphorylase a (EC 2.4.1.1). The increase in enzyme activity lagged behind the inotropic effect. Pretreatment of animals with thyroid hormone enhanced the ability of noradrenaline to activate phosphorylase but did not affect the inotropic or phosphorylase activating effect of calcium. Thyroid hormone pretreatment did enhance the chronotropic effect of calcium. Calcium did not affect the cardiac levels of cyclic AMP. It is concluded that calcium can activate phosphorylase by a mechanism other than cyclic AMP and that the enhancement of adrenergic amine-induced phosphorylase activation by thyroid hormone is not a calcium mediated event.  相似文献   

6.
Cyclic AMP levels in primary monolayer cultures of epithelial cells prepared from mid-pregnant mice are stimulated by prostaglandin E1 and E2. Prostaglandin F1alpha and F2alpha have only a slight effect upon cyclic AMP levels. In the absence of phosphodiesterase inhibitors the rise in cyclic AMP produced by PGE1 is only transient and the levels return to normal within 30 minutes. High concentrations (16 mM) of theophylline are needed to prevent this decline, suggesting that the phosphodiesterase activity of epithelial cells in culture is high. However, theophylline alone produced only a small increase in basal cyclic AMP levels even over a 2-hour period indicating that basal cyclic AMP is turned over more slowly than cyclic AMP produced in response to stimulation with PGE1. Both PGE and PGF synthesis were monitored using radioimmunoassay procedures previously reported. The observed levels were found to decrease as cell density increased and were sensitive to the addition of agents such as collagen and naproxen.  相似文献   

7.
Prostaglandins of the E-series (PGE1 and PGE2) may be involved in disease-related, localized loss of bone. E-prostaglandins increase the cyclic AMP content of many cells; and, to determine if their effects on bone are mediated by cyclic AMP, we examined the effects of E-prostaglandins and of other agents on the cyclic AMP content of cultured bone cells. PGE2 produced a rapid, marked and dose-related increase in the cyclic AMP content of confluent monolayers of bone cells isolated from newborn rat calvaria. At 2.8 X 10(-6) M, PGE1 and PGE2 had approximately the same effect, while the effect of PGF2alpha was much less pronounced. In the presence of theophylline, PGE2 had a more marked effect than parathyroid hormone (PTH) and the combination of PGE2 and PTH had a synergistic effect. The divalent, cationic, ionophore, A23187, produced an increase in cellular cyclic AMP and had an additive effect in combination with PGE2. Synthetic salmon calcitonin (CT), which inhibits the bone resorptive effect of PGE2, increased cellular cyclic AMP and had an additive effect in combination with PGE2. A prostaglandin antagonist, SC-19220, partially inhibited the resorptive effect of PGE2 and reduced its effect on cellular cyclic AMP. The calcium antagonist, D600, inhibited the bone resorptive effects of PGE2 but had no effect on increased cellular cyclic AMP produced by PGE2. The marked effect of PGE2 on bone cell cyclic AMP suggests that this action is involved in the mechanism of PGE2-related bone loss. The fact that agents with different effects on PGE2-induced increases in cellular cyclic AMP can inhibit its resorptive actions, suggests that PGE2-induced changes in cyclic AMP may be related less to its resorptive actions than to its inhibitory effect on bone formation.  相似文献   

8.
The effects of acetylcholine and sodium nitroprusside on cyclic GMP levels, contractile force, and glycogen metabolism were investigated in the perfused rat heart. While both agents produced time- and concentration-dependent increases in cyclic GMP, only acetylcholine significantly decreased contractile force. Neither agent altered the basal cyclic AMP concentration, cyclic AMP-dependent protein kinase activity ratio, or phosphorylase activity. When dosages were adjusted to give approximately equal increases in cyclic GMP, acetylcholine attenuated the effect of epinephrine on contractile force and glycogen phosphorylase activity while nitroprusside did not antagonize the action of the beta-adrenergic agent on either parameter. The data suggest that increased cardiac cyclic GMP is not sufficient to completely explain the action of acetylcholine on either contractile force or its antagonism of epinephrine-induced increases in force or glycogen phosphorylase activity.  相似文献   

9.
The effects of acetylcholine and sodium nitroprusside on cyclic GMP levels, contractile force, and glycogen metabolism were investigated in the perfused rat heart. While both agents produced time- and concentration-dependent increases in cyclic GMP, only acetylcholine significantly decreased contractile force. Neither agent altered the basal cyclic AMP concentration, cyclic AMP-dependent protein kinase activity ratio, or phosphorylase activity. When dosages were adjusted to give approximately equal increases in cyclic GMP, acetylcholine attenuated the effect of epinephrine on contractile force and glycogen phosphorylase activity while nitroprusside did not antagonize the action of the beta-adrenergic agent on either parameter. The data suggest that increased cardiac cyclic GMP is not sufficient to completely explain the action of acetylcholine on either contractile force or its antagonism of epinephrine-induced increases in force or glycogen phosphorylase activity.  相似文献   

10.
In anaesthetized open-chest dogs tachyarrhythmia (TA) was electrically induced by above-threshold stimuli via the right ventricle. During TA a significant increase in the release of PGE and cyclic AMP of 20% and 40% of the control levels, respectively, was observed in the canine coronary sinus blood (CSB), whereas the level of PGF2 alpha remained nearly unchanged under these conditions. The efflux of cyclic AMP corresponded with a concomitant increase in the left ventricular tissue level of this nucleotide by 59% during TA. Pretreatment with the beta-adrenergic blocking agent propranolol (1.0 mg/kg i.v.) prevented the TA induced changes in the level of PGE as well as cyclic AMP in the CSB and in the tissue levels of cyclic AMP. Propranolol alone was without any effect on the efflux of cyclic AMP, but decreased significantly the efflux of PGE by 32%. There was an increase in the activity of phosphorylase a in the myocardial tissue from 10% to 20% of the total (a + b) activity of this enzyme during TA, which could be abolished by propranolol pretreatment. The results suggest possible interrelationships between catecholamines, cyclic AMP and PGE.  相似文献   

11.
The biosynthesis of prostaglandins by isolated rat adrenocortical cells has been studied by determinations of products formed during incubations with labeled arachidonic acid and by radioimmunoassays. Analysis by thin-layer chromatographic separation of silicic acid column fractions indicated that PGE2, PGA2, (B2) and PGF2 alpha were the predominant prostaglandins formed by rat adrenocortical cells. Approximately 75% of the incorporated isotope was associated with the prostaglandins of the PGE pathway [PGE2 + PGA2 (B2)]. This was a consistent finding whether cells were incubated directly with arachidonic acid or with cells prelabeled with the substrate prior to study. ACTH did not affect the uptake or oxidation of [1-14C]-arachidonate, but did significantly increase incorporation of labeled substrate into [14C]prostaglandins. Of the ACTH-induced increase, 92% was accounted for by an increase in prostaglandins of the E pathway. Studies with prelabeled cells indicated that 77% of the prostaglandins synthesized in both control and ACTH-stimulated adrenocortical cells was released into the incubation medium during the 2-hr study. These had the same composition [88% PGE2 + PGA2 (B2)] as did the intracellular prostaglandins. Analysis by radioimmunoassays gave comparable data on the distribution of E- and F-type prostaglandins in control cells and cells incubated with ACTH or dibutyryl cyclic AMP. Thus, with these techniques, 88-92% of the increased prostaglandin synthesis due to ACTH or cyclic AMP was produced by the PGE2 rather than the PGF2 alpha pathway.  相似文献   

12.
The ability of acetylcholine to antagonize catecholamine-induced activation of myocardial cyclic AMP dependent protein kinase and glycogen phosphorylase activity was assessed using isolated perfused rat hearts. Perfused hearts were treated with either saline, epinephrine, epinephrine plus phentolamine or isoproterenol. After 1 minute of infusion of the indicated drug a second infusion containing acetylcholine was started. After an additional minute hearts were frozen and analyzed for cyclic nucleotide content and enzyme activity. In the presence of the alpha receptor blocking agent, phentolamine, epinephrine is a more effective activator of protein kinase than in its absence. Under these conditions the antagonistic action of acetylcholine on protein kinase activation is more pronounced. In the presence of epinephrine plus phentolamine or in the presence of isoproterenol the antagonistic action of acetylcholine on phosphorylase activity can be accounted for by a reduction in cyclic AMP-protein kinase. This same action of acetylcholine on epinephrine-stimulated phosphorylase in the aabsence of phentolamine, however, cannot be totally accounted for by a reduction in cyclic AMP content or in protein kinase activity.  相似文献   

13.
Platelet aggregation. I. Regulation by cyclic AMP and prostaglandin E1   总被引:12,自引:0,他引:12  
Platelet aggregation plays a major role in thrombogenesis. This study was undertaken to examine the inhibition of platelet aggregation induced by adenosine diphosphate. It is known that cyclic AMP (adenosine monophosphate) and its dibutyryl derivative inhibit platelet aggregation. This study showed that prostaglandin E1 (PGE1) also inhibits platelet aggregation and stimulates cyclic AMP synthesis by stimulation of adenyl cyclose. Caffeine, on the other hand, inhibits platelet phosphodiesterase, and increases cyclic AMP levels. PGA1 and PGF1 alpha can also inhibit platelet aggregation but only at very high concentrations.  相似文献   

14.
Mouse resident peritoneal macrophages stimulated in vitro by purified bacterial lipopolysaccharide (LPS) produced both prostaglandin E2 (PGE2) and prostaglandin I2 (PGI2), the latter detected as its stable metabolite, 6-keto PGF1 alpha. Maximum production, induced in each case by 1 ng/ml purified LPS, was in the range of 10(-7)M for PGI2 and 3 x 10(-8)M for PGE2. A quantitatively similar increase in intracellular levels of macrophage cyclic AMP (measured on a whole cell basis), with a similar duration of effect, was stimulated by PGE2 and PGI2; however, only PGE2 had a negative regulatory effect on macrophage activation for tumor cell killing. These data confirm that more than a whole cell increase in the concentration of cyclic AMP is needed to shut off nonspecific tumor cell killing mediated by LPS-activated resident peritoneal macrophages.  相似文献   

15.
PG (prostaglandin) E1 inhibits the uptake of iridine, thymidine, 2-deoxy-D-glucose and L-isoleucine into human diploid WI38 fibroblasts. The inhibition occurs within seconds of the addition of the prostaglandin to the culture. PGE2, PGF1alpha and PGF2alpha behave similarly. Arachidonic acid and 8,11,14-eicosatrienoic acid also decrease uptake in the presence or absence of indomethacin. Other unsaturated fatty acids such as oleic acid, linoleic acid and linolenic acid are essentially inactive. Ricinoleic acid (the 9-hydroxyoleic acid), however, inhibits uptake to about the same degree, at concentrations similar to those of the prostaglandins. Results indicate that this rapid blockage by the prostaglandins and certain fatty acids is not cyclic AMP-mediated. For example, although PGF1alpha and PGF2alpha are much poorer stimulators of cyclic AMP formation than are PGE1 and PGE2, they are nevertheless effective inhibitors of substrate uptake. Adrenaline, a very effective stimulator of cyclic AMP formation in the cells, is not inhibitory. Also, the addition of 8-methylthioadenosine 3':5'-cyclic monophosphate (methylthio cyclic AMP) to the culture, methylthio cyclic AMP decreases the uptake of nucleotides into cultures undergoing active cell division, approximately to values found in quiescent cultures. PGE1 also has this effect on cells undergoing active growth. This gradual decrease is substrate uptake caused by PGE1 appears to be a separate event from its initial rapid inhibition of uptake.  相似文献   

16.
The synthetic prostaglandin analogs 16, 16-dimethyl PGF2 alpha and 16, 16-dimethyl PGE2 were administered to dogs with chronic biliary and gastric fistulas. The effects of 16, 16 diMePGF2 alpha and 16, 16 diMePGE2 were evaluated on bile flow and composition and bile adenosine 3', 5' monophosphate (cyclic AMP) secretion. 16, 16 diMePGF2 alpha in doses of 0.125 and 0.25 microgram-kg-min significantly increased hepatic bile flow. The choleresis was characterized by increased chloride and bicarbonate secretion. Measurement by radioimmunoassay of bile cyclic AMP concentration demonstrated no evident increase in bile cyclic AMP secretion associated with the choleresis produced by 16, 16 diMePGF2 alpha. The administration of 16, 16 diMePGE2 in a dose range 0.01 to 1.0 microgram-kg-min did not significantly alter bile flow rates or composition. Bile erythritol-14C clearance, a measure of canalicular bile flow, was significantly increased by PGF2 alpha but not by 16, 16-dimethyl PGF2 alpha, suggesting that the mechanism of action of PGF2 alpha in stimulating hepatic bile flow may be different from that involved in 16, 16-dimethyl PGF2 alpha choleresis. The results of this study indicate that the synthetic PGF2 alpha analog produces a choleretic response not mediated by adenylate cyclase and associated with increased chloride and bicarbonate secretion.  相似文献   

17.
Prostaglandin H2 (PGH2) inhibited noradrenaline induced cyclic AMP accumulation in isolated rat fat cells in a dose-dependent manner. IC50 was 10-25 ng/ml both in the absence and in the presence of theophylline. The degree of inhibition produced by PGH2 increased with time of incubation. A stable PGH2 analog did not inhibit cyclic AMP accumulation. PGH2 was rapidly converted by isolated fat cells to PGD2, PGE2 and PGF2alpha' but no formation of thromboxane B2 was found either in vitro or in vivo. PGE2 was a more potent inhibitor than PGH2 of noradrenaline induced cyclic AMP accumulation. PGD2 enhanced cyclic AMP accumulation in a limited concentration interval, while PGF2alpha was essentially uneffective. Our results suggest that PGH2 is an inhibitor of cyclic AMP formation in isolated rat fat cells only after conversion to PGE2. A physiological role for PGH2 as a modulator of lipolysis is considered unlikely.  相似文献   

18.
Prostaglandins (PGs) are known to have effects on hepatic glucose metabolism. Some actions of PGs in intact liver systems may not involve PG effects directly at the level of the hepatocyte. To define the ability of structurally distinct prostaglandins to affect hepatocyte metabolism directly, the regulation of glycogenolysis was studied in hepatocytes isolated from male Sprague-Dawley rats. PGF and PGB2 inhibited glucagon-stimulated glycogenolysis in the hepatocyte system. Pinane thromboxane A2 (PTA2) and PGD2 had no effect on glucagon-stimulated glycogenolysis. Consistent with their inhibition of glucagon-stimulated glycogenolysis, PGF2 and PGF2 alpha inhibited glucagon-stimulated hepatocyte cyclic AMP accumulation. These actions of PGB2 and PGF2 alpha are identical with those previously reported for PGE2. Additionally, PGE2, PGF2 alpha and PGB2 inhibited glucagon-stimulated adenylate cyclase activity in purified hepatic plasma membranes. In contrast, PGF2 alpha, PGD2 and PTA2 were all without affect on basal rates of hepatocyte glycogenolysis or hepatocyte cyclic AMP content. PGE2 also inhibited glycogenolysis stimulated by the alpha-adrenergic agonist phenylephrine. Exogenous arachidonic acid was not able to reproduce the affects of PGE2 or PGF2 alpha on hepatocyte glycogenolysis, consistent with an extra-hepatocyte source of the prostaglandins in the intact liver. Thus PGE2 and PGF2 alpha act specifically to inhibit glucagon-stimulated adenylate cyclase activity. No prostaglandin tested was found to stimulate glycogenolysis. PGE2 and PGF2 alpha may represent intra-hepatic modulators of hepatocyte glucose metabolism.  相似文献   

19.
Prostaglandin E1 (PGE1)-mediated transmembrane signal control systems were investigated in intact murine neuroblastoma cells (clone N1E-115). PGE1 increased intracellular levels of total inositol phosphates (IP), cyclic GMP, cyclic AMP, and calcium ([Ca2+]i). PGE1 transiently increased inositol 1,4,5-trisphosphate formation, peaking at 20 s. There was more than a 10-fold difference between the ED50 for PGE1 at cyclic AMP formation (70 nM) and its ED50 values at IP accumulation (1 microM), cyclic GMP formation (2 microM), and [Ca2+]i increase (5 microM). PGE1-mediated IP accumulation, cyclic GMP formation, and [Ca2+]i increase depended on both the concentration of PGE1 and extracellular calcium ions. PGE1 had more potent intrinsic activity in cyclic AMP formation, IP accumulation, and cyclic GMP formation than did PGE2, PGF2 alpha, or PGD2. A protein kinase C activator, 4 beta-phorbol 12 beta-myristate 13 alpha-acetate, had opposite effects on PGE1-mediated IP release and cyclic GMP formation (inhibitory) and cyclic AMP formation (stimulatory). These data suggest that there may be subtypes of the PGE1 receptor in this clone: a high-affinity receptor mediating cyclic AMP formation, and a low-affinity receptor mediating IP accumulation, cyclic GMP formation, and intracellular calcium mobilization.  相似文献   

20.
Recent studies have reported that beta-adrenergic agonists stimulate the production of stimulatory prostaglandins (PGs) by intrauterine tissues in vitro. These drugs are used clinically to inhibit uterine contractions; consequently an increase in stimulatory PGs in vivo might have potentially adverse effects. We have, therefore, investigated whether beta-adrenergic agonists increase plasma PG concentrations in vivo. Samples of peripheral (aorta) and uterine venous enriched (vena cava) blood from nonpregnant sheep were collected at 15-min intervals for 1 h before, 3 h during, and 1 h postinfusion of either (a) the beta-adrenergic agonist isoproterenol (Isop) at a dose of 0.16 microgram.kg-1.min-1; (b) Isop at a dose of 0.08 microgram.kg-1.min-1; or (c) saline, 1 mL/h via a jugular vein catheter. The sheep were also equipped with intrauterine recording balloons to record intrauterine pressure and myometrial electromyographic (EMG) electrodes to measure EMG activity. Infusion of Isop at 0.16 microgram.kg-1.min-1 produced a significant initial inhibition of uterine activity, although contractions returned (within 60 min) despite continued administration of Isop. Plasma PGE2 (but not PGF2 alpha or 13,14-dihydro-15-keto-PGF2 alpha (PGFM] concentrations were significantly elevated during the Isop infusion. Administration of Isop at 0.08 microgram.kg-1.min-1 produced no effects on uterine contractile activity but was associated with a significant elevation in plasma PGE2 (but not PGF2 alpha or PGFM) concentrations. No changes in plasma PGE2, PGF2 alpha, or PGFM occurred during saline infusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号