首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The number of distinct functional classes of single-stranded RNAs (ssRNAs) and the number of sequences representing them are substantial and continue to increase. Organizing this data in an evolutionary context is essential, yet traditional comparative sequence analyses require that homologous sites can be identified. This prevents comparative analysis between sequences of different functional classes that share no site-to-site sequence similarity. Analysis within a single evolutionary lineage also limits evolutionary inference because shared ancestry confounds properties of molecular structure and function that are historically contingent with those that are imposed for biophysical reasons. Here, we apply a method of comparative analysis to ssRNAs that is not restricted to homologous sequences, and therefore enables comparison between distantly related or unrelated sequences, minimizing the effects of shared ancestry. This method is based on statistical similarities in nucleotide base composition among different functional classes of ssRNAs. In order to denote base composition unambiguously, we have calculated the fraction G+A and G+U content, in addition to the more commonly used fraction G+C content. These three parameters define RNA composition space, which we have visualized using interactive graphics software. We have examined the distribution of nucleotide composition from 15 distinct functional classes of ssRNAs from organisms spanning the universal phylogenetic tree and artificial ribozymes evolved in vitro. Surprisingly, these distributions are biased consistently in G+A and G+U content, both within and between functional classes, regardless of the more variable G+C content. Additionally, an analysis of the base composition of secondary structural elements indicates that paired and unpaired nucleotides, known to have different evolutionary rates, also have significantly different compositional biases. These universal compositional biases observed among ssRNAs sharing little or no sequence similarity suggest, contrary to current understanding, that base composition biases constitute a convergent adaptation among a wide variety of molecular functions.  相似文献   

2.
The patterns and rates of nucleotide substitution in mitochondrial ribosomal RNA genes are described and applied in a phylogenetic analysis of fishes of the subfamily Serrasalminae (Teleostei, Characiformes, Characidae). Fragments of 345 bp of the 12S and 535 bp of the 16S genes were sequenced for 37 taxa representing all but three genera in the subfamily. Secondary-structure models based on comparative sequence analysis were derived to characterize the pattern of change among paired and unpaired nucleotides, forming stem and loop regions, respectively. Base compositional biases were in the direction of A-rich loops and G-rich stems. Ninety-five percent of substitutions in stem regions were compensatory mutations, suggesting that selection for maintenance of base pairing is strong and that independence among characters cannot be assumed in phylogenetic analyses of stem characters. The relative rate of nucleotide substitution was similar in both fragments sequenced but higher in loop than in stem regions. In both genes, C-T transitions were the most common type of change, and overall transitions outnumbered transversions by a factor of two in 16S and four in 12S. Phylogenetic analysis of the mitochondrial DNA sequences suggests that a clade formed by the generaPiaractus, Colossoma, andMylossoma is the sister group to all other serrasalmins and that the generaMyleus, Serrasalmus, andPristobrycon are paraphyletic. A previous hypothesis concerning relationships for the serrasalmins, based on morphological evidence, is not supported by the molecular data. However, phylogenetic analysis of host-specific helminth parasites and cytogenetic data support the phylogeny of the Serrasalminae obtained in this study and provide evidence for coevolution between helminth parasites and their fish hosts.  相似文献   

3.
12S ribosomal RNA (rRNA) gene sequences from a suite of mammalian taxa (13 placentals, 4 marsupials, 1 monotreme), for which phylogenetic relationships are well established based on independent criteria, were employed to study the evolution of this gene. Phylogenetic analysis of 12S sequences produces a phylogeny that agrees with expectations. Base composition provides evidence for directional symmetrical substitution pressure in loops; in stems, base composition is much more even. Rates of nucleotide substitution are lower in stems than loops. Patterns of nucleotide substitution show an overall preference for transitions over transversions, with this difference more profound in stems than loops. Among different transversion pathways, there is a wide range of transformation frequencies. An analysis of compensatory substitutions shows that there is strong evidence for their occurrence and that a weighting factor of 0.61 should be applied in phylogenetic analyses to account for the dependence of mutations at stem positions relative to positions where changes are independent. Among stem variables (i.e., stem length, interaction distance, substitution rates, G+C content, and the percentage of bases that are paired), several significant correlations were discovered, but stem length and interaction distance are uncorrelated with other variables.   相似文献   

4.
One of the major issues in phylogenetic analysis is that gene genealogies from different gene regions may not reflect the true species tree or history of speciation. This has led to considerable debate about whether concatenation of loci is the best approach for phylogenetic analysis. The application of Next‐generation sequencing techniques such as RAD‐seq generates thousands of relatively short sequence reads from across the genomes of the sampled taxa. These data sets are typically concatenated for phylogenetic analysis leading to data sets that contain millions of base pairs per taxon. The influence of gene region conflict among so many loci in determining the phylogenetic relationships among taxa is unclear. We simulated RAD‐seq data by sampling 100 and 500 base pairs from alignments of over 6000 coding regions that each produce one of three highly supported alternative phylogenies of seven species of Drosophila. We conducted phylogenetic analyses on different sets of these regions to vary the sampling of loci with alternative gene trees to examine the effect on detecting the species tree. Irrespective of sequence length sampled per region and which subset of regions was used, phylogenetic analyses of the concatenated data always recovered the species tree. The results suggest that concatenated alignments of Next‐generation data that consist of many short sequences are robust to gene tree/species tree conflict when the goal is to determine the phylogenetic relationships among taxa.  相似文献   

5.
The mitochondrial 16S ribosomal RNA (rRNA) gene sequences from 93 cyprinid fishes were examined to reconstruct the phylogenetic relationships within the diverse and economically important subfamily Cyprininae. Within the subfamily a biased nucleotide composition (A>T, C>G) was observed in the loop regions of the gene, and in stem regions apparent selective pressures of base pairing showed a bias in favor of G over C and T over A. The bias may be associated with transition-transversion bias. Rates of nucleotide substitution were lower in stems than in loops. Analysis of compensatory substitutions across these taxa demonstrates 68% covariation in the gene and a logical weighting factor to account for dependence in mutations for phylogenetic inference should be 0.66. Comparisons of varied stem-loop weighting schemes indicate that the down-weightings for stem regions could improve the phylogenetic analysis and the degree of non-independence of stem substitutions was not as important as expected. Bayesian inference under four models of nucleotide substitution indicated that likelihood-based phylogenetic analyses were more effective in improving the phylogenetic performance than was weighted parsimony analysis. In Bayesian analyses, the resolution of phylogenies under the 16-state models for paired regions, incorporating GTR + G + I models for unpaired regions was better than those under other models. The subfamily Cyprininae was resolved as a monophyletic group, as well as tribe Labein and several genera. However, the monophyly of the currently recognized tribes, such as Schizothoracin, Barbin, Cyprinion + Onychostoma lineages, and some genera was rejected. Furthermore, comparisons of the parsimony and Bayesian analyses and results of variable length bootstrap analysis indicates that the mitochondrial 16S rRNA gene should contain important character variation to recover well-supported phylogeny of cyprinid taxa whose divergences occurred within the recent 8 MY, but could not provide resolution power for deep phylogenies spanning 10-19 MYA.  相似文献   

6.
7.
The complete sequence of the mitochondrial genome of Leptorhynchoides thecatus (Acanthocephala) was determined, and a phylogenetic analysis was carried out to determine its placement within Metazoa. The genome is circular, 13,888 bp, and contains at least 36 of the 37 genes typically found in animal mitochondrial genomes. The genes for the large and small ribosomal RNA subunits are shorter than those of most metazoans, and the structures of most of the tRNA genes are atypical. There are two significant noncoding regions (377 and 294 bp), which are the best candidates for a control region; however, these regions do not appear similar to any of the control regions of other animals studied to date. The amino acid and nucleotide sequences of the protein coding genes of L. thecatus and 25 other metazoan taxa were used in both maximum likelihood and maximum parsimony phylogenetic analyses. Results indicate that among taxa with available mitochondrial genome sequences, Platyhelminthes is the closest relative to L. thecatus, which together are the sister taxon of Nematoda; however, long branches and/or base composition bias could be responsible for this result. The monophyly of Ecdysozoa, molting organisms, was not supported by any of the analyses. This study represents the first mitochondrial genome of an acanthocephalan to be sequenced and will allow further studies of systematics, population genetics, and genome evolution.Reviewing Editor: Dr. Rafael Zardoya The entire genome sequence has been deposited with the GenBank Data Libraries under-accession number AY562383.  相似文献   

8.
Analyses of small subunit ribosomal RNA genes (SSU rDNAs) have significantly influenced our understanding of the composition of aquatic microbial assemblages. Unfortunately, SSU rDNA sequences often do not have sufficient resolving power to differentiate closely related species. To address this general problem for uncultivated bacterioplankton taxa, we analysed and compared sequences of polymerase chain reaction (PCR)-generated and bacterial artificial chromosome (BAC)-derived clones that contained most of the SSU rDNAs, the internal transcribed spacer (ITS) and the large subunit ribosomal RNA gene (LSU rDNA). The phylogenetic representation in the rRNA operon PCR library was similar to that reported previously in coastal bacterioplankton SSU rDNA libraries. We observed good concordance between the phylogenetic relationships among coastal bacterioplankton inferred from SSU or LSU rDNA sequences. ITS sequences confirmed the close intragroup relationships among members of the SAR11, SAR116 and SAR86 clades that were predicted by SSU and LSU rDNA sequence analyses. We also found strong support for homologous recombination between the ITS regions of operons from the SAR11 clade.  相似文献   

9.
The phylogeny of Crocodylia offers an unusual twist on the usual molecules versus morphology story. The true gharial (Gavialis gangeticus) and the false gharial (Tomistoma schlegelii), as their common names imply, have appeared in all cladistic morphological analyses as distantly related species, convergent upon a similar morphology. In contrast, all previous molecular studies have shown them to be sister taxa. We present the first phylogenetic study of Crocodylia using a nuclear gene. We cloned and sequenced the c-myc proto-oncogene from Alligator mississippiensis to facilitate primer design and then sequenced an 1,100-base pair fragment that includes both coding and noncoding regions and informative indels for one species in each extant crocodylian genus and six avian outgroups. Phylogenetic analyses using parsimony, maximum likelihood, and Bayesian inference all strongly agreed on the same tree, which is identical to the tree found in previous molecular analyses: Gavialis and Tomistoma are sister taxa and together are the sister group of Crocodylidae. Kishino-Hasegawa tests rejected the morphological tree in favor of the molecular tree. We excluded long-branch attraction and variation in base composition among taxa as explanations for this topology. To explore the causes of discrepancy between molecular and morphological estimates of crocodylian phylogeny, we examined puzzling features of the morphological data using a priori partitions of the data based on anatomical regions and investigated the effects of different coding schemes for two obvious morphological similarities of the two gharials.  相似文献   

10.
Although the phylogenetic relationships of the major groups of fishes have been extensively studied with morphological characters, not all have been convincingly resolved. Analyses of molecular sequences from these groups may provide additional insights into problematical relationships, but are only just beginning to appear. We compare our own results from analyses of 18s ribosomal RNA sequences with those of other studies using globins, parvalbumins, insulin, 28s ribosomal RNA, and portions of two mitochondria1 genes (12S ribosomal RNA and cytochrome b ). Our evaluation of these studies reveals some of the difficulties encountered in reconstructing ancient divergences within the fishes, including unequal rates of evolution (among regions of a molecule as well as among lineages), gene duplication, extinction of lineages, and a possible rapid radiation of gnathostome higher taxa. The importance of evaluating the robustness of particular phylogenetic hypotheses is stressed. Some molecules appear to be inappropriate for investigating higher level divergences within the fishes; others are more promising, but must be examined in more taxa to allow an adequate evaluation of their utility. Convincing support for particular hypotheses of relationship will ultimately require congruence of trees generated from independent molecular data sets.  相似文献   

11.
The three taxa emerging at the base of the eukaryotic ribosomal RNA phylogenetic tree (Diplomonadida, Microspora, and Parabasalia) include a wide array of parasitic species. and some free-living organisms that appear to be derived from a parasitic ancestry. The basal position of these taxa, which lack mitochondria, has recently been questioned. I sequenced most of the ribosomal RNA gene cluster of the free-living diplomonad Trepomonas agilis and a secondary structure model was reconstructed for the SSU rRNA. I conducted a RASA matrix analysis to identify, independently from tree reconstruction, putative long branch attraction effects in the data matrix. The results show that each of the basal clades and the euglenozoan clade act, indeed, as long branches and may have been engaged in a process of accelerated rate of evolution. A nucleotide signature analysis was conducted in the conserved regions for positions defining the three great domains of life (Eubacteria, Archea, and Eukaryota). For the three basal taxa, this analysis showed the presence of a significant number of different non-eukaryotic nucleotides. A precise study of the nature and location of these nucleotides led to conclusions supporting the results of the RASA analysis. Altogether, these findings suggest that the basal placement of these taxa in the SSU ribosomal RNA phylogenetic tree is artifactual, and flawed by long branch attraction effects.  相似文献   

12.
Volvocales forms a species-rich clade with wide morphological variety and is regarded as an ideal model for tracing the evolutionary transitions in multicellularity. The phylogenetic relationships among the colonial volvocine algae and its relatives are important for investigating the origin of multicellularity in the clade Reinhardtinia. Therefore, a robust phylogenetic framework of the unicellular and colonial volvocine algae with broad taxon and gene sampling is essential for illuminating the evolution of multicellularity. Recent chloroplast phylogenomic studies have uncovered five major orders in the Chlorophyceae, but the family-level relationships within Sphaeropleales and Volvocales remain elusive due to the uncertain positions of some incertae sedis taxa. In this study, we contributed six newly sequenced chloroplast genomes in the Volvocales and analyzed a dataset with 91 chlorophycean taxa and 58 protein-coding genes. Conflicting phylogenetic signals were detected among chloroplast genes that resulted in discordant tree topologies among different analyses. We compared the phylogenetic trees inferred from original nucleotide, RY-coding, codon-degenerate, and amino acid datasets, and improved the robustness of phylogenetic inference in the Chlorophyceae by reducing base compositional bias. Our analyses indicate that the unicellular Chlamydomonas and Vitreochlamys are close to or nested within the colonial taxa, and all the incertae sedis taxa are nested within the monophyletic Sphaeropleales s.l. We propose that the colonial taxa in the Reinhardtinia are paraphyletic and multicellularity evolved once in the volvocine green algae and might be lost in Chlamydomonas and Vitreochlamys.  相似文献   

13.
Standard methods of phylogenetic reconstruction are based on models that assume homogeneity of nucleotide composition among taxa. However, this assumption is often violated in biological data sets. In this study, we examine possible effects of nucleotide heterogeneity among lineages on the phylogenetic reconstruction of a bacterial group that spans a wide range of genomic nucleotide contents: obligately endosymbiotic bacteria and free-living or commensal species in the gamma-Proteobacteria. We focus on AT-rich primary endosymbionts to better understand the origins of obligately intracellular lifestyles. Previous phylogenetic analyses of this bacterial group point to the importance of accounting for base compositional variation in estimating relationships, particularly between endosymbiotic and free-living taxa. Here, we develop an approach to compare susceptibility of various phylogenetic reconstruction methods to the effects of nucleotide heterogeneity. First, we identify candidate trees of gamma-Proteobacteria groEL and 16S rRNA using approaches that assume homogeneous and stationary base composition, including Bayesian, maximum likelihood, parsimony, and distance methods. We then create permutations of the resulting candidate trees by varying the placement of the AT-rich endosymbiont Buchnera. These permutations are evaluated under the nonhomogeneous and nonstationary maximum likelihood model of Galtier and Gouy, which allows equilibrium base content to vary among examined lineages. Our results show that commonly used phylogenetic methods produce incongruent trees of the Enterobacteriales, and that the placement of Buchnera is especially unstable. However, under a nonhomogeneous model, various groEL and 16S rRNA phylogenies that separate Buchnera from other AT-rich endosymbionts (Blochmannia and Wigglesworthia) have consistently and significantly higher likelihood scores. Blochmannia and Wigglesworthia appear to have evolved from secondary endosymbionts, and represent an origin of primary endosymbiosis that is independent from Buchnera. This application of a nonhomogeneous model offers a computationally feasible way to test specific phylogenetic hypotheses for taxa with heterogeneous and nonstationary base composition.  相似文献   

14.
We sampled and analyzed approximately 2900bp across the three loci from 54 taxa belonging to a taxonomically difficult group of Cortinarius subgenus Phlegmacium. The combined analyses of ITS and variable regions of RPB1 and RPB2 greatly increase the resolution and nodal support for phylogenies of these closely related species belonging to clades that until now have proven very difficult to resolve with the ribosomal markers, nLSU and ITS. We present the first study of the utility of variable regions of the genes encoding the two largest subunits of RNA polymerase II (RPB1 and RPB2) for inferring the phylogeny of mushroom-forming fungi in combination with and compared to the widely used ribosomal marker ITS. The studied region of RPB1 contains an intron of the size and variability of ITS along with many variable positions in coding regions. Though almost entirely coding, the studied region of RPB2 is more variable than ITS. Both RNA polymerase II genes were alignable across all taxa. Our results indicate that several sections of Cortinarius need redefinition, and that several taxa treated at subspecific and varietal level should be treated at specific level. We suggest a new section for the two species, C. caesiocortinatus and C. prasinocyaneus, which constitute a well-supported separate lineage. We speculate that sequence information from RNA polymerase II genes have the potential for resolving phylogenetic problems at several levels of the diverse and taxonomically very challenging genus Cortinarius.  相似文献   

15.
Although the recent historical period is usually treated as a temporal base-line for understanding patterns of mammal extinction, mammalian biodiversity loss has also taken place throughout the Late Quaternary. We explore the spatial, taxonomic and phylogenetic patterns of 241 mammal species extinctions known to have occurred during the Holocene up to the present day. To assess whether our understanding of mammalian threat processes has been affected by excluding these taxa, we incorporate extinct species data into analyses of the impact of body mass on extinction risk. We find that Holocene extinctions have been phylogenetically and spatially concentrated in specific taxa and geographical regions, which are often not congruent with those disproportionately at risk today. Large-bodied mammals have also been more extinction-prone in most geographical regions across the Holocene. Our data support the extinction filter hypothesis, whereby regional faunas from which susceptible species have already become extinct now appear less threatened; they may also suggest that different processes are responsible for driving past and present extinctions. We also find overall incompleteness and inter-regional biases in extinction data from the recent fossil record. Although direct use of fossil data in future projections of extinction risk is therefore not straightforward, insights into extinction processes from the Holocene record are still useful in understanding mammalian threat.  相似文献   

16.
The complete 12S ribosomal RNA(rRNA) sequences from 23 gobioid species and nine diverse assortments of other fish species were employed to establish a core secondary structure model for fish 12S rRNA. Of the 43 stems recognized, 41 were supported by at least some compensatory evidence among vertebrates. The rates of nucleotide substitution were lower in stems than in loops. This may produce less phylogenetic information in stems when recently diverged taxa are compared. An analysis of compensatory substitution shows that the percentage of covariation is 68%, and the weighting factor for phylogenetic analyses to account for the dependence of mutations should be 0.66. Different stem-loop weighting schemes applied to the analyses of phylogenetic relationships of the Gobioidei indicate that down-weighting paired regions because of nonindependence could not improve the present phylogenetic analysis. A biased nucleotide composition (adenine% [A%] > thymine% [T%], cytosine% [C%] > guanine% [G%]) in the loop regions was also observed in the mammalian counterpart. The excess of A and C in the loop regions may be because of the asymmetric mechanism of mtDNA replication, which leads to the spontaneous deamination of C and A. This process may also be responsible for a transition-transversion bias and the patterns of nucleotide substitutions in both stems and loops.  相似文献   

17.
In this study, mitochondrial sequences were used to investigate the relationships among the major lineages of Arthropoda. The data matrix used for the analyses includes 84 taxa and 3918 nucleotides representing six mitochondrial protein-coding genes (atp6 and 8, cox1-3, and nad2). The analyses of nucleotide composition show that a reverse strand-bias, i.e., characterized by an excess of T relative to A nucleotides and of G relative to C nucleotides, was independently acquired in six different lineages of Arthropoda: (1) the honeybee mite (Varroa), (2) Opisthothelae spiders (Argiope, Habronattus, and Ornithoctonus), (3) scorpions (Euscorpius and Mesobuthus), (4) Hutchinsoniella (Cephalocarid), (5) Tigriopus (Copepod), and (6) whiteflies (Aleurodicus and Trialeurodes). Phylogenetic analyses confirm that these convergences in nucleotide composition can be particularly misleading for tree reconstruction, as unrelated taxa with reverse strand-bias tend to group together in MP, ML, and Bayesian analyses. However, the use of a specific model for minimizing effects of the bias, the "Neutral Transition Exclusion" (NTE) model, allows Bayesian analyses to rediscover most of the higher taxa of Arthropoda. Furthermore, the analyses of branch lengths suggest that three main factors explain accelerated rates of substitution: (1) genomic rearrangements, including duplication of the control region and gene translocation, (2) parasitic lifestyle, and (3) small body size. The comparisons of Bayesian Bootstrap percentages show that the support for many nodes increases when taxa with long branches are excluded from the analyses. It is therefore recommended to select taxa and genes of the mitochondrial genome for inferring phylogenetic relationships among arthropod lineages. The phylogenetic analyses support the existence of a major dichotomy within Arthropoda, separating Pancrustacea and Paradoxopoda. Basal relationships between Pancrustacean lineages are not robust, and the question of Hexapod monophyly or polyphyly cannot be answered with the available mitochondrial sequences. Within Paradoxopoda, Chelicerata and Myriapoda are each found to be monophyletic, and Endeis (Pycnogonida) is, surprisingly, associated with Acari.  相似文献   

18.
19.
Previous studies of the phylogeny of land plants based on analysis of 18S ribosomal DNA (rDNA) sequences have generally found weak support for the relationships recovered and at least some obviously spurious relationships, resulting in equivocal inferences of land plant phylogeny. We hypothesized that greater sampling of both characters and taxa would improve inferences of land plant phylogeny based on 18S rDNA sequences. We therefore conducted a phylogenetic analysis of complete (or nearly complete) 18S rDNA sequences for 93 species of land plants and 7 green algal relatives. Parsimony analyses with equal weighting of characters and characters state changes and parsimony analyses weighting (1) stem bases half as much as loop bases and (2) transitions half as much as transversions did not produce substantially different topologies. Although the general structure of the shortest trees is consistent with most hypotheses of land plant phylogeny, several relationships, particularly among major groups of land plants, appear spurious. Increased character and taxon sampling did not substantially improve the performance of 18S rDNA in phylogenetic analyses of land plants, nor did analyses designed to accommodate variation in evolutionary rates among sites. The rate and pattern of 18S rDNA evolution across land plants may limit the usefulness of this gene for phylogeny reconstruction at deep levels of plant phylogeny. We conclude that the mosaic structure of 18S rDNA, consisting of highly conserved and highly variable regions, may contain historical signal at two levels. Rapidly evolving regions are informative for relatively recent divergences (e.g., within angiosperms, seed plants, and ferns), but homoplasy at these sites makes it difficult to resolve relationships among these groups. At deeper levels, changes in the highly conserved regions of small-subunit rDNAs provide signal across all of life. Because constraints imposed by the secondary structure of the rRNA may affect the phylogenetic information content of 18S rDNA, we suggest that 18S rDNA sequences be combined with other data and that methods of analysis be employed to accommodate these differences in evolutionary patterns, particularly across deep divergences in the tree of life.  相似文献   

20.
Disparity‐through‐time analyses can be used to determine how morphological diversity changes in response to mass extinctions, or to investigate the drivers of morphological change. These analyses are routinely applied to palaeobiological datasets, yet, although there is much discussion about how to best calculate disparity, there has been little consideration of how taxa should be sub‐sampled through time. Standard practice is to group taxa into discrete time bins, often based on stratigraphic periods. However, this can introduce biases when bins are of unequal size, and implicitly assumes a punctuated model of evolution. In addition, many time bins may have few or no taxa, meaning that disparity cannot be calculated for the bin and making it harder to complete downstream analyses. Here we describe a different method to complement the disparity‐through‐time tool‐kit: time‐slicing. This method uses a time‐calibrated phylogenetic tree to sample disparity‐through‐time at any fixed point in time rather than binning taxa. It uses all available data (tips, nodes and branches) to increase the power of the analyses, specifies the implied model of evolution (punctuated or gradual), and is implemented in R. We test the time‐slicing method on four example datasets and compare its performance in common disparity‐through‐time analyses. We find that the way we time sub‐sample taxa can change our interpretations of the results of disparity‐through‐time analyses. We advise using multiple methods for time sub‐sampling taxa, rather than just time binning, to gain a better understanding disparity‐through‐time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号