首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 448 毫秒
1.
In the present study, we examined the concentration dependenceof odor discrimination in turtle olfactory bulbar responsesusing the cross-adaptation technique. In the odorant pairs withdiverse molecular structures, the degree of discrimination wasunchanged or only slightly decreased with an increase in odorantconcentrations, suggesting that odorants are well discriminatedeven at high concentrations. In the odorant pairs with closelyrelated molecular structures, the degree of discrimination wasdecreased with an increase in odorant concentrations. An increasein the temperature of turtle olfactory epithelium also decreasedthe ability to discriminate these odorants. There was a goodcorrelation between changes in the odor discriminating abilityinduced by an increase in odor concentrations and those inducedby a temperature increase. The liposomes were made of lipidsextracted from the turtle olfactory epithelia and changes oftheir membrane fluidity induced by adsorption of odorants weremonitored with DPH. There was a good correlation between a decreasein odor discriminating ability and the membrane fluidity changesinduced by odorants. We suggest that decreases in odor discriminatingability induced either by an increase in odor concentrationor by a temperature increase are ultimately caused by changesin the membrane fluidity. Chem. Senses 22: 553–563, 1997.  相似文献   

2.
Khan AG  Thattai M  Bhalla US 《Neuron》2008,57(4):571-585
Many species of mammals are very good at categorizing odors. One model for how this is achieved involves the formation of "attractor" states in the olfactory processing pathway, which converge to stable representations for the odor. We analyzed the responses of rat olfactory bulb mitral/tufted (M/T) cells using stimuli "morphing" from one odor to another through intermediate mixtures. We then developed a phenomenological model for the representation of odors and mixtures by M/T cells and show that >80% of odorant responses to different concentrations and mixtures can be expressed in terms of smoothly summing responses to air and the two pure odorants. Furthermore, the model successfully predicts M/T cell responses to odor mixtures when respiration dependence is eliminated. Thus, odor mixtures are represented in the bulb through summation of components, rather than distinct attractor states. We suggest that our olfactory coding model captures many aspects of single and mixed odor representation in M/T cells.  相似文献   

3.
Natural olfactory stimuli are often complex mixtures of volatiles, of which the identities and ratios of constituents are important for odor-mediated behaviors. Despite this importance, the mechanism by which the olfactory system processes this complex information remains an area of active study. In this review, we describe recent progress in how odorants and mixtures are processed in the brain of insects. We use a comparative approach toward contrasting olfactory coding and the behavioral efficacy of mixtures in different insect species, and organize these topics around four sections: (1) Examples of the behavioral efficacy of odor mixtures and the olfactory environment; (2) mixture processing in the periphery; (3) mixture coding in the antennal lobe; and (4) evolutionary implications and adaptations for olfactory processing. We also include pertinent background information about the processing of individual odorants and comparative differences in wiring and anatomy, as these topics have been richly investigated and inform the processing of mixtures in the insect olfactory system. Finally, we describe exciting studies that have begun to elucidate the role of the processing of complex olfactory information in evolution and speciation.  相似文献   

4.
Three kinds of liposomes prepared from phosphatidylcholine (PC), azolectin, and azolectin-containing membrane proteins of the canine erythrocytes were used as models for olfactory cells. To explore properties of the adsorption sites of odorants, membrane fluidity changes in response to various odorants were measured with various fluorescence dyes which monitor the fluidity at different depths and different regions of the membranes. (a) Application of various odorants changed the membrane fluidity of azolectin liposomes. The patterns of membrane fluidity changes in response to odorants having a similar odor were similar to each other and those in response to odorants having different odors were different from each other. These results suggested that odorants having a similar odor are adsorbed on a similar site and odorants having different odors are adsorbed on different sites. (b) Such variation of the pattern was not seen in liposomes of a simple composition (PC liposome). (c) In the proteoliposomes whose composition was more complex than that of azolectin liposomes, the patterns of membrane fluidity changes varied among odorants having a similar odor. It was concluded that liposomes of complex membrane composition have the variety of adsorption sites for odorants.  相似文献   

5.
In their natural environment, insects such as the vinegar fly Drosophila melanogaster are bombarded with a huge amount of chemically distinct odorants. To complicate matters even further, the odors detected by the insect nervous system usually are not single compounds but mixtures whose composition and concentration ratios vary. This leads to an almost infinite amount of different olfactory stimuli which have to be evaluated by the nervous system.To understand which aspects of an odor stimulus determine its evaluation by the fly, it is therefore desirable to efficiently examine odor-guided behavior towards many odorants and odor mixtures. To directly correlate behavior to neuronal activity, behavior should be quantified in a comparable time frame and under identical stimulus conditions as in neurophysiological experiments. However, many currently used olfactory bioassays in Drosophila neuroethology are rather specialized either towards efficiency or towards resolution.Flywalk, an automated odor delivery and tracking system, bridges the gap between efficiency and resolution. It allows the determination of exactly when an odor packet stimulated a freely walking fly, and to determine the animal´s dynamic behavioral reaction.  相似文献   

6.
Our olfactory system is confronted with complex mixtures of odorants, often recognized as single entities due to odor blending (e.g., coffee). In contrast, we are also able to discriminate odors from complex mixtures (e.g., off-odors). Therefore, the olfactory system is able to engage either configural or elemental processes when confronted with mixtures. However, the rules that govern the involvement of these processes during odor perception remain poorly understood. In our first experiment, we examined whether simple odorant mixtures (binary/ternary) could elicit configural perception. Twenty untrained subjects were asked to evaluate the odor typicality of mixtures and their constituents. The results revealed a significant increase in odor typicality in some but not all mixtures as compared with the single components, which suggest that perceptual odor blending can occur only in specific mixtures (configural processing). In our second experiment, we tested the hypothesis that general olfactory expertise can improve elemental perception of mixtures. Thirty-two trained subjects evaluated the odor typicality of the stimuli presented during the first experiment, and their responses were compared with those obtained from the untrained panelists. The results support the idea that general training with odors increases the elemental perception of binary and ternary blending mixtures.  相似文献   

7.
The odors we perceive are mainly the result of mixtures of odorants that, however, are commonly perceived as single undivided entities; nevertheless, the processes involved remain poorly explored. It has been recently reported that perceptual blending based on configural olfactory processing can cause odorant mixtures to give rise to an emergent odor not present in the components. The present study examined whether specific component proportions are required to elicit an emergent odor. Starting from the composition of a ternary target mixture in which an emergent pineapple odor was perceived, 4 concentration levels of each component were chosen to elicit just noticeable differences (JNDs). Each combination of levels was used to design sample mixtures. Fifteen subjects evaluated the intensity, typicality, and pleasantness of each sample mixture against the target mixture in a paired-comparison protocol. Statistical modeling showed that a variation of less than 1 JND in one of the components was sufficient to induce a significant decrease in pineapple odor typicality in the ternary mixture. This finding confirms previous findings on perceptual blending in simple odorant mixtures and underscores the human ability to discriminate between odor percepts induced by mixtures including very similar odorant proportions.  相似文献   

8.
Odor identification is one of the main tasks of the olfactory system. It is performed almost independently from the concentration of the odor providing a robust recognition. This capacity to ignore concentration information does not preclude the olfactory system from estimating concentration itself. Significant experimental evidence has indicated that the olfactory system is able to infer simultaneously odor identity and intensity. However, it is still unclear at what level or levels of the olfactory pathway this segregation of information occurs. In this work, we study whether this odor information segregation is performed at the input stage of the olfactory bulb: the glomerular layer. To this end, we built a detailed neural model of the glomerular layer based on its known anatomical connections and conducted two simulated odor experiments. In the first experiment, the model was exposed to an odor stimulus dataset composed of six different odorants, each one dosed at six different concentrations. In the second experiment, we conducted an odor morphing experiment where a sequence of binary mixtures going from one odor to another through intermediate mixtures was presented to the model. The results of the experiments were visualized using principal components analysis and analyzed with hierarchical clustering to unveil the structure of the high-dimensional output space. Additionally, Fisher''s discriminant ratio and Pearson''s correlation coefficient were used to quantify odor identity and odor concentration information respectively. Our results showed that the architecture of the glomerular layer was able to mediate the segregation of odor information obtaining output spiking sequences of the principal neurons, namely the mitral and external tufted cells, strongly correlated with odor identity and concentration, respectively. An important conclusion is also that the morphological difference between the principal neurons is not key to achieve odor information segregation.  相似文献   

9.
Knowledge on how odorants are transported through the nasal cavity to the olfactory epithelium is limited. One facet of this is how the sniffing behavior affects the abundance of odorants transferred to the olfactory cleft and in turn influences odor perception. A novel system that couples an online mass spectrometer with an odorant pulse delivery olfactometer was employed to characterize intranasal odorant concentrations of butane‐2,3‐dione (or butanedione, commonly known as diacetyl) at the interior naris and the olfactory cleft. Volunteers (n=12) were asked to perform different modes of sniffing in relation to the sniff intensity that were categorized as ‘normal’, ‘rapid’ and ‘forced’. The highest concentrations of butanedione at both positions in the nose were observed during normal sniffing, with the lowest concentrations correlating with periods of forced sniffs. This corresponded to the panelists' ratings that normal sniffing elicited the highest odor intensities. These feasibility assessments pave the way for more in‐depth analyses with a variety of odorants of different chemical classes at various intranasal positions, to investigate the passage and uptake of odorants within the nasal cavity.  相似文献   

10.
A quantitative structure-activity relationship (QSAR) studyof odorants was performed taking an odor as an activity. Asan example, we took the ‘green odor of pyrazine derivatives’as an activity. Conformational analysis of the pyrazine derivativeswas performed, and conformers were selected using the longestside-length of a circumscribed box (LLCB) as a criterion. Comparativemolecular field analysis (CoMFA) was used to elucidate the three-dimensional(3D) structural features of the derivatives. As a result, itwas found that the steric and electrostatic features of thederivatives were correlated with human olfactory detection thresholdvalues. We constructed a quantitative 3D model using the graphicviews of CoMFA and partial structures of the derivatives. Theprediction of human olfactory detection threshold values ofother pyrazine derivatives with green odor was possible by usingthe 3D model. As another example, we took the ‘sweet odorof compounds with various structures’ as an activity.A quantitative 3D model for sweet odor was constructed in thesame manner. Analysing the structural features of odorants byCoMFA and constructing 3D models for several important odorqualities would help to (i) explain or predict human olfactorydetection threshold values of interesting odorants, (ii) designnew odorants by suggesting the steric and electrostatic requirements,and (iii) elucidate the mechanism of odorant-receptor interaction.Chem Senses 21: 201–210, 1996.  相似文献   

11.
12.
Gentilcore  LR; Derby  CD 《Chemical senses》1998,23(3):269-281
Our study was designed to examine how components of complex mixtures can inhibit the binding of other components to receptor sites in the olfactory system of the spiny lobster Panulirus argus. Biochemical binding assays were used to study how two- to six-component mixtures inhibit binding of the radiolabeled odorants taurine, L-glutamate and adenosine-5'-monophosphate to a tissue fraction rich in dendritic membrane of olfactory receptor neurons. Our results indicate that binding inhibition by mixtures can be large and is dependent on the nature of the odorant ligand and on the concentration and composition of the mixture. The binding inhibition by mixtures of structurally related components was generally predicted using a competitive binding model and binding inhibition data for the individual components. This was not the case for binding inhibition by most mixtures of structurally unrelated odorants. The binding inhibition for these mixtures was generally smaller than that for one or more of their components, indicating that complex binding interactions between components can reduce their ability to inhibit binding. The magnitude of binding inhibition was influenced more by the mixture's precise composition than by the number of components in it, since mixtures with few components were sometimes more inhibitory than mixtures with more components. These findings raise the possibility that complex binding interactions between components of a mixture and their receptors may shape the output of olfactory receptor neurons to complex mixtures.   相似文献   

13.
Discrimination of odorants by the turtle olfactory bulb at 25°and 37°C was examined by the cross-adaptation techniqueand analysed by multidimensional scaling. Analysis by multidimensionalscaling suggests that at 25°C odorants are grouped accordingto their odor qualities in the turtle olfactory system. At 37°C,the cluster formation of odorants, which have a similar odorquality, such as minty and floral alcohol odorants and molecularstructure, in the plot of multidimensional scaling was poor,indicating that the ability of odor grouping according to theirodor qualities was low at 37°C. Chem. Senses 20: 565–571,1995.  相似文献   

14.
It is not possible to accurately predict the perceptual response to odorants and odorant mixtures without understanding patterns of suppression and facilitation that result from interactions between the olfactory and trigeminal systems. The current study extends previous findings by exploring the effect of intensive training on the interaction between these systems and also by using a different mixed chemosensory stimulus to examine whether the principles established in earlier studies generalize to different odorants. Stimuli were chosen so as to selectively activate the olfactory (H2S) and trigeminal (CO2) nerves. In addition, linalool was included as a stimulus that activated both systems. Thirty-five participants (19 men, 16 women) rated the intensity of each stimulus when presented both alone and in binary mixtures (linalool + H2S, and linalool + CO2). Chemosensory event-related potentials were obtained from three recording positions. Analysis of intensity ratings showed that linalool was significantly less intense than the other stimuli when presented alone. In binary mixtures, H2S was strongly suppressed by linalool. One week of intensive odor training produced significant and specific reductions in the intensity of linalool and H2S, both alone and in their mixture. Training with a different odor (champignol) had no effect. Chemosensory event-related potential data confirmed previous findings showing changes in topographical distribution that reflected the degree of trigeminal activity. Binary mixtures generally produced larger amplitudes than single stimuli. Latencies clearly differentiated between the three single stimuli and the binary mixtures. Changes were observed in event-related potentials that reflected those obtained for intensity ratings in that they were observed for linalool and H2S in the linalool trained group only. The amplitude of the late 'endogenous' component (P3) was significantly decreased for these odors at frontal recording sites. In summary, strong and specific training effects were observed in intensity ratings for participants trained with the test odor (linalool), but not for those trained with a different odor. This was supported by a significant decrease of amplitudes of the event-related potentials at frontal recording sites following training with the test odor only  相似文献   

15.
Olfactory receptor neurons were isolated without enzymes from the mudpuppy, Necturus maculosus, and tested for chemosensitivity. The cells responded to odorants with changes in firing frequency and alterations in excitability that were detected with tight-seal patch electrodes using on-cell and whole-cell recording conditions. Chemosensitive cells exhibited two primary response characteristics: excitation and inhibition. Both types of primary response were observed in different cells stimulated by mixtures of amino acids as well as by the single compound L-alanine, suggesting that there may be more than one transduction pathway for some odorants. Using the normal whole-cell recording method, the chemosensitivity of competent cells washed out rapidly; a resistive whole-cell method was used to record odorant responses under current-clamp conditions. In response to chemical stimulation, excitability appeared to be modulated in several different ways in different cells: odorants induced hyperpolarizing or depolarizing receptor potentials, elicited or inhibited transient, rhythmic generator potentials, and altered excitability without changing the membrane potential or input resistance. These effects suggest that olfactory transduction is mediated through at least three different pathways with effects on four or more components of the membrane conductance. Polychotomous pathways such as these may be important for odor discrimination and for sharpening the "odor image" generated in the olfactory epithelium.  相似文献   

16.
Combinatorial receptor codes for odors   总被引:64,自引:0,他引:64  
Malnic B  Hirono J  Sato T  Buck LB 《Cell》1999,96(5):713-723
The discriminatory capacity of the mammalian olfactory system is such that thousands of volatile chemicals are perceived as having distinct odors. Here we used a combination of calcium imaging and single-cell RT-PCR to identify odorant receptors (ORs) for odorants with related structures but varied odors. We found that one OR recognizes multiple odorants and that one odorant is recognized by multiple ORs, but that different odorants are recognized by different combinations of ORs. Thus, the olfactory system uses a combinatorial receptor coding scheme to encode odor identities. Our studies also indicate that slight alterations in an odorant, or a change in its concentration, can change its "code," potentially explaining how such changes can alter perceived odor quality.  相似文献   

17.
Behavioral responses to odors rely first upon their accurate detection by peripheral sensory organs followed by subsequent processing within the brain’s olfactory system and higher centers. These processes allow the animal to form a unified impression of the odor environment and recognize combinations of odorants as single entities. To investigate how interactions between peripheral and central olfactory pathways shape odor perception, we transplanted antennal imaginal discs between larval males of two species of moth Heliothis virescens and Heliothis subflexa that utilize distinct pheromone blends. During metamorphic development olfactory receptor neurons originating from transplanted discs formed connections with host brain neurons within olfactory glomeruli of the adult antennal lobe. The normal antennal receptor repertoire exhibited by males of each species reflects the differences in the pheromone blends that these species employ. Behavioral assays of adult transplant males revealed high response levels to two odor blends that were dissimilar from those that attract normal males of either species. Neurophysiological analyses of peripheral receptor neurons and central olfactory neurons revealed that these behavioral responses were a result of: 1. the specificity of H. virescens donor olfactory receptor neurons for odorants unique to the donor pheromone blend and, 2. central odor recognition by the H. subflexa host brain, which typically requires peripheral receptor input across 3 distinct odor channels in order to elicit behavioral responses.  相似文献   

18.
The present study assessed the olfactory potency of conspecific bile fluid and skin mucus in the European eel Anguilla anguilla by the electro-olfactogram. Immature males showed high olfactory sensitivity to conspecific bile, giving large amplitude responses in a concentration-dependent manner with estimated thresholds of detection of <1:107 ( n = 6). Mucus also proved to contain highly potent odorants with thresholds of detection of c . 1:106 ( n = 6). Crude solid-phase extraction of bile fluid (C-18 and C-2/ENV+ cartridges) showed that the majority of olfactory activity in bile fluid was contained in the eluate of C-18 cartridges ( n = 6). There were quantitative differences, however, between the sexes; female bile fluid had a higher proportion of activity in this fraction. Similar solid-phase extraction of mucus showed that it contains a higher proportion of odorants in the C-18 filtrate than bile fluid. Mucus from mature eels, however, had a higher proportion of olfactory activity in the eluate than immature fish ( n = 6). Cross-adaptation experiments suggest that there are qualitative differences in the odorants contained in bile and mucus depending on both the sex and state of sexual maturation of the donor ( n = 6). These results are consistent with a role for chemical communication in the reproduction of the European eel and suggest that both bile and mucus are potential sources of the odorants involved.  相似文献   

19.
Neuronal plasticity allows an animal to respond to environmental changes by modulating its response to stimuli. In the honey bee (Apis mellifera), the biogenic amine octopamine plays a crucial role in appetitive odor learning, but little is known about how octopamine affects the brain. We investigated its effect in the antennal lobe, the first olfactory center in the brain, using calcium imaging to record background activity and odor responses before and after octopamine application. We show that octopamine increases background activity in olfactory output neurons, while reducing average calcium levels. Odor responses were modulated both upwards and downwards, with more odor response increases in glomeruli with negative or weak odor responses. Importantly, the octopamine effect was variable across glomeruli, odorants, odorant concentrations and animals, suggesting that the octopaminergic network is shaped by plasticity depending on an individual animal’s history and possibly other factors. Using RNA interference, we show that the octopamine receptor AmOA1 (homolog of the Drosophila OAMB receptor) is involved in the octopamine effect. We propose a network model in which octopamine receptors are plastic in their density and located on a subpopulation of inhibitory neurons in a disinhibitory pathway. This would improve odor-coding of behaviorally relevant, previously experienced odors.  相似文献   

20.
A new olfactory test, the odor stick identification test for Japanese (OSIT-J), has been developed in Japan. To determine if the OSIT-J would be effective cross-culturally, we administered the test to 52 US and 50 Japanese subjects reporting normal olfactory function. The average composite OSIT-J test score for US subjects was significantly lower (77%) than that for Japanese subjects (94%, P < 0.0001). Both US and Japanese subjects correctly identified eight of the 13 odorants included in the OSIT-J with scores of 80% or higher. However, for five odorants, the US subjects' scores fell below 80% and were consistently lower than Japanese subjects, presumably reflecting cultural differences in odor experience. Most of the US subjects found the OSIT-J to be easy, interesting, pleasant, and short in duration. Although the 13-odorant OSIT-J was found to be suitable for testing US populations, elimination of five test odorants that were unfamiliar to US subjects significantly enhanced the test's effectiveness. Findings from this study emphasize the importance of identifying test odorants that may have a cultural bias, a crucial issue when comparing data obtained from different smell tests used at smell and taste centers around the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号