首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The initial stages of phagocytosis and cell motility resemble each other. The extension of a pseudopod at the leading edge of a migratory cell and the formation of a phagocytic cup are actin dependent, and each rely on the plasma membrane adhering to a surface during dynamic extension. RESULTS: A myosin VII null mutant exhibited a drastic loss of adhesion to particles, consistent with the extent of an observed decrease in particle uptake. Additionally, cell-cell adhesion and the adhesion of the leading edge to the substratum during cell migration were defective in the myosin VII null cells. GFP-myosin VII rescued the phagocytosis defect of the null mutant and was distributed in the cytosol and recruited to the cortical cytoskeleton, where it appeared to be enriched at the tips of filopods. It was also localized to phagocytic cups, but only during the initial stages of particle engulfment. During migration, GFP-myosin VII is found at the leading edge of the cell. CONCLUSIONS: Myosin VII plays an important role in mediating the initial binding of cells to substrata, a novel role for an unconventional myosin.  相似文献   

2.
Dictyostelium discoideum is a simple eukaryote amenable to detailed molecular studies of the endocytic processes phagocytosis and macropinocytosis. Both the actin cytoskeleton and associated myosin motors are well-described and a range of mutants are now available that enable characterization of the role of the cytoskeleton in a range of cellular functions. Molecular genetic studies have uncovered roles for two different classes of Dictyostelium unconventional myosins in endocytosis. The class I myosins contribute to both macropinocytosis and phagocytosis by playing a general role in controlling actin-dependent manipulations of the actin-rich cortex. A class VII myosin has been shown to be important for phagocytosis. This brief review summarizes what is known about the role of these different myosins in both fluid and particle uptake in this system.  相似文献   

3.
4.
Phagocytosis, a critically important process employed by leukocytes against invading pathogens, is an actin-dependent clathrin-independent process that results in the internalization of particles >0.5 microm in diameter. Phagocytosis consists of a number of stages, including the binding of particles to the cell surface via interaction with a receptor, engulfment of the particle by pseudopod extension, and fission and fusion reactions to form phago-lysosomes. Much remains to be learned concerning the molecular mechanisms that regulate particle internalization and phagosome maturation. Dictyostelium is a genetically tractable professional phagocyte that has proven useful in determining the molecular steps involved in these processes. We will summarize, in this chapter, what we currently understand concerning the molecular mechanisms that regulate the process of phagocytosis in Dictyostelium, and we will compare and contrast this body of information with that available describing phagocytosis in higher organisms. We will also present current information that suggests that macropinocytosis, a process morphologically similar to phagocytosis, utilizes a different signaling pathway than phagocytosis. Finally, we will discuss the process of maturation of phagosomes, which requires membrane trafficking events, and we will summarize data that support the use of Dictyostelium as a model to determine how intracellular pathogens survive.  相似文献   

5.
The amoeba Dictyostelium is a simple genetic system for analyzing substrate adhesion, motility and phagocytosis. A new adhesion-defective mutant named phg2 was isolated in this system, and PHG2 encodes a novel serine/threonine kinase with a ras-binding domain. We compared the phenotype of phg2 null cells to other previously isolated adhesion mutants to evaluate the specific role of each gene product. Phg1, Phg2, myosin VII, and talin all play similar roles in cellular adhesion. Like myosin VII and talin, Phg2 also is involved in the organization of the actin cytoskeleton. In addition, phg2 mutant cells have defects in the organization of the actin cytoskeleton at the cell-substrate interface, and in cell motility. Because these last two defects are not seen in phg1, myoVII, or talin mutants, this suggests a specific role for Phg2 in the control of local actin polymerization/depolymerization. This study establishes a functional hierarchy in the roles of Phg1, Phg2, myosinVII, and talin in cellular adhesion, actin cytoskeleton organization, and motility.  相似文献   

6.
To study the role of conventional myosin in nonmuscle cells, we determined the cytoskeletal organization and physiological responses of a Dictyostelium myosin-defective mutant. Dictyostelium hmm cells were created by insertional mutagenesis of the myosin heavy chain gene (De Lozanne, A., and J. A. Spudich. 1987. Science (Wash. DC). 236: 1086-1091). Western blot analysis using different mAbs confirms that hmm cells express a truncated myosin fragment of 140 kD (HMM-140 protein) instead of the normal 243-kD myosin heavy chain (MHC). Spontaneous revertants appear at a frequency less than 4 x 10(-5), which synthesize normal myosin and are capable of forming thick filaments. In hmm cells, the HMM-140 protein is diffusely distributed in the cytoplasm, indicating that it cannot assemble into thick filaments. The actin distribution in these mutant cells appears similar to that of wild-type cells. However, there is a significant abnormality in the organization of cytoplasmic microtubules, which penetrate into lamellipodial regions. The microtubule networks consist of approximately 13 microtubules on average and their pattern is abnormal. Although hmm cells can form mitotic spindles, mitosis is not coordinated with normal furrow formation. The hmm cells are clearly defective in the contractile events that lead to normal cytokinesis. The retraction of different regions of the cell can result in the occasional pinching off of part of the cell. This process is not coupled with formation of mitotic spindles. There is no specific accumulation of HMM-140 in such constrictions, whereas 73% of such cells show actin concentrated in these regions. The mutant hmm cells are also deficient in capping of Con-A-bound surface receptors, but instead internalize this complex into the cytoplasm. The hmm cells display active phagocytosis of bacteria. Whereas actin is concentrated in the phagocytic cups, HMM-140 protein is not localized in these regions. cAMP, a chemoattractant that induces drastic rounding up and formation of surface blebs in wild type cells, does not induce rounding up in the hmm cells. A Triton-permeabilized cell model of the wild-type amebae contracts on reactivation with Mg-ATP, whereas a model of the hmm cell shows no detectable contraction. Our data demonstrate that the conventional myosin participates in the significant cortical motile activities of Dictyostelium cells, which include rounding up, constriction of cleavage furrows, capping surface receptors, and establishing cell polarity.  相似文献   

7.
Dictyostelium cells that lack the myoB isoform were previously shown to exhibit reduced efficiencies of phagocytosis and chemotactic aggregation ("streaming") and to crawl at about half the speed of wild- type cells. Of the four other Dictyostelium myosin I isoforms identified to date, myoC and myoD are the most similar to myoB in terms of tail domain sequence. Furthermore, we show here that myoC, like myoB and myoD, is concentrated in actin-rich cortical regions like the leading edge of migrating cells. To look for evidence of functional overlap between these isoforms, we analyzed myoB, myoC, and myoD single mutants, myoB/myoD double mutants, and myoB/myoC/myoD triple mutants, which were created using a combination of gene targeting techniques and constitutive expression of antisense RNA. With regard to the speed of locomoting, aggregation-stage cells, of the three single mutants, only the myoB mutant was significantly slower. Moreover, double and triple mutants were only slightly slower than the myoB single mutant. Consistent with this, the protein level of myoB alone rises dramatically during early development, suggesting that a special demand is placed on this one isoform when cells become highly motile. We also found, however, that the absolute amount of myoB protein in aggregation- stage cells is much higher than that for myoC and myoD, suggesting that what appears to be a case of nonoverlapping function could be the result of large differences in the amounts of functionally overlapping isoforms. Streaming assays also suggest that myoC plays a significant role in some aspect of motility other than cell speed. With regard to phagocytosis, both myoB and myoC single mutants exhibited significant reductions in initial rate, suggesting that these two isoforms perform nonredundant roles in supporting the phagocytic process. In triple mutants these defects were not additive, however. Finally, because double and triple mutants exhibited significant and progressive decreases in doubling times, we also measured the kinetics of fluid phase endocytic flux (uptake, transit time, efflux). Not only do all three isoforms contribute to this process, but their contributions are synergistic. While these results, when taken together, refute the simple notion that these three "classic" myosin I isoforms perform exclusively identical functions, they do reveal that all three share in supporting at least one cellular process (endocytosis), and they identify several other processes (motility, streaming, and phagocytosis) that are supported to a significant extent by either individual isoforms or various combinations of them.  相似文献   

8.
ABSTRACT. Phagocytosis is a highly conserved biological process that serves numerous functions in a wide variety of organisms. Over the past few decades Dictyostelium has proven to be an excellent organism for investigations in cell biology and this is certainly no less the case for a study of phagocytosis. This review examines three distinct phagocytic activities which have been characterized in Dictyostelium. The first, "vegetative phagocytosis," represents the classical eukaryotic microbial uptake of food particles (bacteria). The second, a predatory form of phagocytosis, arises when one species such as Dictyostelium caveatum attacks another species of slime mold, engulfing small pieces of the target prey. This has been termed "cell nibbling." The third phagocytic process is "sexual cannibalistic phagocytosis." In this situation a zygote giant cell, having arisen from the fusion of gametic amoebae, attracts unfused nonzygotic amoebae of the same species and engulfs them as a food source. While cell nibbling has not been actively studied, vegetative and sexual cannibalistic phagocytosis have received varying amounts of attention leading to the idea that some of the elements (e.g., glycoprotein receptors and a Gαs subunit) involved in certain of these phagocytic events may be the same. On the other hand, some unique events (e.g., filopodial induction in prey by D. caveatum ) are also worthy of further investigation. Among other things, the presence of self-nonself recognition, the existence of opsonin-like substances and the presence of signal transduction elements (e.g., an A2-like receptor that negatively modulates sexual phagocytosis) once considered to be extant only in higher organisms suggest that much can be learned about phagocytosis in general by further studies in the classic, eukaryotic microbe Dictyostelium discoideum and related species.  相似文献   

9.
The best described function of the adaptor complex-1 (AP-1) is to participate in the budding of clathrin-coated vesicles from the trans-Golgi network and endosomes. Here, we show that AP-1 is also localized to phagocytic cups in murine macrophages as well as in Dictyostelium amoebae. AP-1 is recruited to phagosomal membranes at this early stage of phagosome formation and rapidly dissociates from maturing phagosomes. To establish the role of AP-1 in phagocytosis, we made used of Dictyostelium mutant cells (apm1(-) cells) disrupted for AP-1 medium chain. In this mutant, phagocytosis drops by 60%, indicating that AP-1 is necessary for efficient phagocytosis. Furthermore, phagocytosis in apm1(-) cells is more affected for large rather than small particles, and cells exhibiting incomplete engulfment are then often observed. This suggests that AP-1 could participate in the extension of the phagocytic cup. Interestingly, macropinocytosis, a process dedicated to fluid-phase endocytosis and related to phagocytosis, is also impaired in apm1(-) cells. In summary, our data suggest a new role of AP-1 at an early stage of phagosome and macropinosome formation.  相似文献   

10.
Dictyostelium PakB, previously termed myosin I heavy chain kinase, is a member of the p21-activated kinase (PAK) family. Two-hybrid assays showed that PakB interacts with Dictyostelium Rac1a/b/c, RacA (a RhoBTB protein), RacB, RacC, and RacF1. Wild-type PakB displayed a cytosolic distribution with a modest enrichment at the leading edge of migrating cells and at macropinocytic and phagocytic cups, sites consistent with a role in activating myosin I. PakB fused at the N terminus to green fluorescent protein was proteolyzed in cells, resulting in removal of the catalytic domain. C-terminal truncated PakB and activated PakB lacking the p21-binding domain strongly localized to the cell cortex, to macropinocytic cups, to the posterior of migrating cells, and to the cleavage furrow of dividing cells. These data indicate that in its open, active state, the N terminus of PakB forms a tight association with cortical actin filaments. PakB-null cells displayed no significant behavioral defects, but cells expressing activated PakB were unable to complete cytokinesis when grown in suspension and exhibited increased rates of phagocytosis and pinocytosis.  相似文献   

11.
Myosin II plays critical roles in events such as cytokinesis, chemotactic migration, and morphological changes during multicellular development. The amoeba Dictyostelium discoideum provides a simple system for the study of this contractile protein. In this system, myosin II filament assembly is regulated by myosin heavy chain (MHC) phosphorylation in the tail region of the molecule. Earlier studies identified an alpha-kinase, MHC kinase A (MHCK A), which phosphorylates three mapped threonine residues in the myosin tail, driving myosin disassembly. Using molecular and genomic approaches, we have identified a series of related kinases in Dictyostelium. The enzyme MHCK B shares with MHCK A a domain organization that includes a highly novel catalytic domain coupled to a carboxyl-terminal WD repeat domain. We have engineered, expressed, and purified a FLAG-tagged version of the novel kinase. In the present study, we report detailed biochemical and cellular studies documenting that MHCK B plays a physiological role in the control of Dictyostelium myosin II assembly and disassembly during the vegetative life of Dictyostelium amoebae. The presented data supports a model of multiple related MHCKs in this system, with different regulatory mechanisms and pathways controlling each enzyme.  相似文献   

12.
Chemotactic stimulation of Dictyostelium cells results in a transient increase in cGMP levels, and transient phosphorylation of myosin II heavy and regulatory light chains. In Dictyostelium, two guanylyl cyclases and four candidate cGMP-binding proteins (GbpA- GbpD) are implicated in cGMP signalling. GbpA and GbpB are homologous proteins with a Zn2+-hydrolase domain. A double gbpA/gbpB gene disruption leads to a reduction of cGMP-phosphodiesterase activity and a 10-fold increase of basal and stimulated cGMP levels. Chemotaxis in gbpA(-)B(-) cells is associated with increased myosin II phosphorylation compared with wild-type cells; formation of lateral pseudopodia is suppressed resulting in enhanced chemotaxis. GbpC is homologous to GbpD, and contains Ras, MAPKKK and Ras-GEF domains. Inactivation of the gbp genes indicates that only GbpC harbours high affinity cGMP-binding activity. Myosin phosphorylation, assembly of myosin in the cytoskeleton as well as chemotaxis are severely impaired in mutants lacking GbpC and GbpD, or mutants lacking both guanylyl cyclases. Thus, a novel cGMP signalling cascade is critical for chemotaxis in Dictyostelium, and plays a major role in myosin II regulation during this process.  相似文献   

13.
We purified to homogeneity the Dictyostelium discoideum myosin heavy chain kinase that is implicated in the heavy chain phosphorylation increases that occur during chemotaxis. The kinase is initially found in the insoluble fraction of developed cells. The major purification step was achieved by affinity chromatography using a tail fragment of Dictyostelium myosin (LMM58) expressed in Escherichia coli (De Lozanne, A., Berlot, C. H., Leinwand, L. A., and Spudich, J. A. (1988) J. Cell Biol. 105, 2990-3005). The kinase has an apparent molecular weight of 84,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The apparent native molecular weight by gel filtration is 240,000. The kinase catalyzes phosphorylation of myosin heavy chain or LMM58 with similar kinetics, and the extent of phosphorylation for both is 4 mol of phosphate/mol. With both substrates the Vmax is about 18 mumol/min/mg and the Km is 15 microM. The myosin heavy chain kinase is specific to Dictyostelium myosin heavy chain, and the phosphorylated amino acid is threonine. The kinase undergoes autophosphorylation. Each mole of kinase subunit incorporates about 20 mol of phosphates. Phosphorylation of myosin by this kinase inhibits myosin thick filament formation, suggesting that the kinase plays a role in the regulation of myosin assembly.  相似文献   

14.
Phagocytosis of human cells is a crucial activity for the virulence of the human parasite Entamoeba histolytica. This protozoan invades and destroys the intestine by killing and phagocytosing epithelial cells, erythrocytes and cells from the immune system. In this study, we used magnetic beads covered with proteins from human serum as a model system to study the early events involved in phagocytosis by E. histolytica. We validated the system showing that the beads uptake triggered the activation of the actin-myosin cytoskeleton and involved a PI3-kinase as previously described for erythrophagocytosis. We purified early phagosomes from wild-type (WT) amoeba and from parasites that overproduced myosin IB (MyoIB+), the unique unconventional myosin of E. histolytica. The MyoIB+ cells exhibit a slower and more synchronized uptake process than the WT strain. Proteomic analysis by liquid chromatography and tandem mass spectroscopy (LC-MS/MS) of the WT and MyoIB+ phagosomes allowed us to identify, for the first time, molecular actors involved in the early step of the uptake process. These include proteins involved in cytoskeleton activity, signalling, endocytosis, lytic activity and cell surface proteins. Interestingly, the proteins that we found specifically recruited on the phagosomes from the MyoIB+ strain were previously described in other eukarytotic cells, as involved in the regulation of cortical F-actin dynamics, such as alpha-actinin and formins. This proteomics approach allows a step further towards the understanding of the molecular mechanisms involved in phagocytosis in E. histolytica that revealed some interesting differences compared with phagocytosis in macrophages or Dictyostelium discoideum, and allowed to identify putative candidates for proteins linked to myosin IB activity during the phagocytic process.  相似文献   

15.
Receptor-mediated phagocytosis is a complex process that mediates the internalization, by a cell, of other cells and large particles; this is an important physiological event not only in mammals, but in a wide diversity of organisms. Of simple unicellular organisms that use phagocytosis to extract nutrients, to complex metazoans in which phagocytosis is essential for the innate defence system, as a first line of defence against invading pathogens, as well as for the clearance of damaged, dying or dead cells. Evolution has armed multicellular organisms with a range of receptors expressed on many cells that serve as the molecular basis to bring about phagocytosis, regardless of the organism or the specific physiological event concerned. Key to all phagocytic processes is the finely controlled rearrangement of the actin cytoskeleton, in which Ca(2+) signals play a major role. Ca(2+) is involved in cytoskeletal changes by affecting the actions of a number of contractile proteins, as well as being a cofactor for the activation of a number of intracellular signalling molecules, which are known to play important roles during the initiation, progression and resolution of the phagocytic process. In mammals, the requirement of Ca(2+) for the initial steps in phagocytosis, and the subsequent phagosome maturation, can be quite different depending on the type of cell and on the type of receptor that is driving phagocytosis. In this review we discuss the different receptors that mediate professional and non-professional phagocytosis, and discuss the role of Ca(2+) in the different steps of this complex process.  相似文献   

16.
Directed cell migration occurs in response to extracellular cues. Following stimulation of a cell with chemoattractant, a significant rearrangement of the actin cytoskeleton is mediated by intracellular signaling pathways and results in polarization of the cell and movement via pseudopod extension. Amoeboid myosin Is play a critical role in regulating pseudopod formation in Dictyostelium, and their activity is activated by heavy chain phosphorylation. The effect of chemotactic stimulation on the in vivo phosphorylation level of a Dictyostelium myosin I, myoB, was tested. The myoB heavy chain is phosphorylated in vivo on serine 322 (the myosin TEDS rule phosphorylation site) in chemotactically competent cells. The level of myoB phosphorylation increases following stimulation of starving cells with the chemoattractant cAMP. A 3-fold peak increase in the level of phosphorylation is observed at 60 s following stimulation, a time at which the Dictyostelium cell actively extends pseudopodia. These findings suggest that chemotactic stimulation results in increased myoB activity via heavy chain phosphorylation and contributes to the global extension of pseudopodia that occurs prior to polarization and directed motility.  相似文献   

17.
Myosin II heavy chain (MHC)-specific protein kinase C (MHC-PKC) isolated from the ameba, Dictyostelium discoideum, regulates myosin II assembly and localization in response to the chemoattractant cAMP (Abu- Elneel et al. 1996. J. Biol. Chem. 271:977- 984). Recent studies have indicated that cAMP-induced cGMP accumulation plays a role in the regulation of myosin II phosphorylation and localization (Liu, G., and P. Newell. 1991. J. Cell. Sci. 98: 483-490). This report describes the roles of cAMP and cGMP in the regulation of MHC-PKC membrane association, phosphorylation, and activity (hereafter termed MHC-PKC activities). cAMP stimulation of Dictyostelium cells resulted in translocation of MHC-PKC from the cytosol to the membrane fraction, as well as increasing in MHC-PKC phosphorylation and in its kinase activity. We present evidence that MHC is phosphorylated by MHC-PKC in the cell cortex which leads to myosin II dissociation from the cytoskeleton. Use of Dictyostelium mutants that exhibit aberrant cAMP- induced increases in cGMP accumulation revealed that MHC-PKC activities are regulated by cGMP. Dictyostelium streamer F mutant (stmF), which produces a prolonged peak of cGMP accumulation upon cAMP stimulation, exhibits prolonged increases in MHC-PKC activities. In contrast, Dictyostelium KI-10 mutant that lacks the normal cAMP-induced cGMP response, or KI-4 mutant that shows nearly normal cAMP-induced cGMP response but has aberrant cGMP binding activity, show no changes in MHC- PKC activities. We provide evidence that cGMP may affect MHC-PKC activities via the activation of cGMP-dependent protein kinase which, in turn, phosphorylates MHC-PKC. The results presented here indicate that cAMP-induced cGMP accumulation regulates myosin II phosphorylation and localization via the regulation of MHC-PKC.  相似文献   

18.
19.
肌动蛋白是盘基网柄菌(Dictyostelium discoideum)细胞吞噬过程中的关键组分,通过其细胞内的定位和多聚化形式在确定的时间和地点连接特定的分子,使吞噬过程得以完成。profilin是肌动蛋白多聚化的重要调节分子,在磷脂酰肌醇信号转导与细胞骨架相交处起关键作用。许多小分子G蛋白参与细胞骨架调节,CAP蛋白是两者间重要连接分子。所以,吞噬作用是细胞内诸分子协同作用的结果。  相似文献   

20.
Myosin VII is an unconventional myosin widely expressed in organisms ranging from amoebae to mammals that has been shown to play vital roles in cell adhesion and phagocytosis. Here we present the first study of the mechanism of action of a myosin VII isoform. We have expressed a truncated single-headed Drosophila myosin VIIB construct in the baculovirus-Sf9 system that bound calmodulin light chains. By using steady-state and transient kinetic methods, we showed that myosin VIIB exhibits a fast release of phosphate and a slower, rate-limiting ADP release from actomyosin. As a result, myosin VIIB will be predominantly strongly bound to actin during steady-state ATP hydrolysis (its duty ratio will be at least 80%). This kinetic pattern is in many respects similar to that of the single-molecule vesicle transporters myosin V and VI. The enzymatic properties of myosin VIIB provide a kinetic basis for processivity upon possible dimerization via the C-terminal domains of the heavy chain. Our experiments also revealed conformational heterogeneity of the actomyosin VIIB complex in the absence of nucleotide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号