首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paramyxoviruses define a diverse group of enveloped RNA viruses that includes a number of important human and animal pathogens. Examples include human respiratory syncytial virus and the human parainfluenza viruses, which cause respiratory illnesses in young children and the elderly; measles and mumps viruses, which have caused recent resurgences of disease in developed countries; the zoonotic Hendra and Nipah viruses, which have caused several outbreaks of fatal disease in Australia and Asia; and Newcastle disease virus, which infects chickens and other avian species. Like other enveloped viruses, paramyxoviruses form particles that assemble and bud from cellular membranes, allowing the transmission of infections to new cells and hosts. Here, we review recent advances that have improved our understanding of events involved in paramyxovirus particle formation. Contributions of viral matrix proteins, glycoproteins, nucleocapsid proteins, and accessory proteins to particle formation are discussed, as well as the importance of host factor recruitment for efficient virus budding. Trafficking of viral structural components within infected cells is described, together with mechanisms that allow for the selection of specific sites on cellular membranes for the coalescence of viral proteins in preparation of bud formation and virion release.  相似文献   

2.
A bio-nanocapsule (BNC), composed of the surface antigen (sAg) of the hepatitis B virus, is an efficient nanomachine with which to accomplish the liver-specific delivery of genes and drugs. Approximately 110 molecules of sAg are associated to form a BNC particle with an average diameter of 130 nm. The L protein is an sAg peptide composed mainly of preS and S regions. The preS region, with specific affinity for human hepatocytes, is localized in the N-terminus. The S region following the preS has two transmembrane regions responsible for the formation of particles. In this study, the fusion of emerald green fluorescent protein (EGFP) at the C-terminus of the S region was designed to deliver proteins to human hepatocytes. Truncation of the C-terminus of the S region was required to obtain sufficient expression levels in Cos7 cells. The nanoparticles that were produced delivered EGFP to human hepatoma cells, displaying the EGFP moiety outside, or enclosing it inside. However, only a single orientation characterizes the particle, so that either type of L fusion particle could be effectively and independently separated by an antibody affinity column. The dual C-terminal topologies of the L fusion particles designed in this study could be applied to various proteins for the C-terminal moiety of the L fusion proteins, depending on the character of the proteins, such as cytoplasmic proteins, as well as cytokines or ligands to cell surface receptors. We suggest that this fusion design is the most efficient way to prepare a BNC that delivers proteins to specific cells or tissues.  相似文献   

3.
We have used freeze-etching, before and after immunoferritin labeling, to visualize spectrin molecules and other surface proteins of the human erythrocyte membrane. After intramembrane particle aggregation was induced, spectrin molecules, identified by labeling with ferritin-conjugated antispectrin, were clustered on the cytoplasmic surface of the membrane in patches directly underlying the particle clusters. This labeling pattern confirms the involvement of spectrin in such particle aggregates, as previously inferred from indirect evidence. Ferritin-conjugated antihapten molecules, directed against external and cytoplasmic surface proteins of the erythrocyte membrane which had been covalently labeled nonspecifically with the hapten p-diazoniumphenyl-beta-D-lactoside, were similarly found in direct association with such intramembrane particle aggregates. This indicates that when spectrin and the intramembrane particles are aggregated, all the major proteins of the erythrocyte membrane are constrained to coaggregate with them. Although giving no direct information concerning the freedom of translational movement of proteins in the unperturbed erythrocyte membrane, these experiments suggest that a close dynamic association may exist between the integral and peripheral protein components of the membrane, such that immobilization of one component can restrict the lateral mobility of others.  相似文献   

4.
The high salt extract obtained from demembranated human spermatozoa contains high molecular weight proteins. These proteins are associated with an ATPase activity inhibited by sodium orthovanadate. In association with lower molecular weight proteins, they constitute a 20 S particle and are probably localized in the dynein arms (and in the radial spokes) of the human spermatozoon axonemes. Evidence is shown for a biochemical analogy between the dynein ATPases extracted from the invertebrate axonemes and the human dynein-like ATPase described in this study.  相似文献   

5.
The human immunodeficiency virus type 1 (HIV-1) and human T-cell leukemia virus type 1 (HTLV-1) capsid proteins (CA) display similar structures formed by two independently folded N-terminal (NTD) and C-terminal (CTD) domains. To characterize the functions harbored by the HTLV-1 CA domains in particle formation, 12 sites scattered throughout the protein were mutated. The effects of the mutations on Gag membrane binding, proteolytic processing, and virus-like particle secretion were analyzed. It appears that the NTD is the major partner of indirect or direct Gag-Gag interactions. In particular, most of the NTD mutations impaired virion morphogenesis, and no mutation located in the NTD could be fully rescued by coexpression of wild-type Gag. In contrast, the CTD seems not to be involved in Gag-Gag interactions. Nevertheless, an unknown function required for particle formation is located in the CTD. Thus, despite an overall structural similarity between the HIV-1 and HTLV-1 CA proteins, their NTDs and CTDs exhibit different functions.  相似文献   

6.
The Gag proteins of retroviruses play an essential role in virus particle assembly by forming a protein shell or capsid and thus generating the virion compartment. A variety of human proteins have now been identified with structural similarity to one or more of the major Gag domains. These human proteins are thought to have been evolved or “domesticated” from ancient integrations due to retroviral infections or retrotransposons. Here, we report that X-ray crystal structures of stably folded domains of MOAP1 (modulator of apoptosis 1) and PEG10 (paternally expressed gene 10) are highly similar to the C-terminal capsid (CA) domains of cognate Gag proteins. The structures confirm classification of MOAP1 and PEG10 as domesticated Gags, and suggest that these proteins may have preserved some of the key interactions that facilitated assembly of their ancestral Gags into capsids.  相似文献   

7.
The human immunodeficiency virus type 1 (HIV-1) and HIV-2 Vpr and Vpx proteins are packaged into virions through virus type-specific interactions with the Gag polyprotein precursor. To examine whether HIV-1 Vpr (Vpr1) and HIV-2 Vpx (Vpx2) could be used to target foreign proteins to the HIV particle, their open reading frames were fused in frame with genes encoding the bacterial staphylococcal nuclease (SN), an enzymatically inactive mutant of SN (SN*), and chloramphenicol acetyltransferase (CAT). Transient expression in a T7-based vaccinia virus system demonstrated the synthesis of appropriately sized Vpr1-SN/SN* and Vpx2-SN/SN* fusion proteins which, when coexpressed with their cognate p55Gag protein, were efficiently incorporated into virus-like particles. Packaging of the fusion proteins was dependent on virus type-specific determinants, as previously seen with wild-type Vpr and Vpx proteins. Particle-associated Vpr1-SN and Vpx2-SN fusion proteins were enzymatically active, as determined by in vitro digestion of lambda phage DNA. To determine whether functional Vpr1 and Vpx2 fusion proteins could be targeted to HIV particles, the gene fusions were cloned into an HIV-2 long terminal repeat/Rev response element-regulated expression vector and cotransfected with wild-type HIV-1 and HIV-2 proviruses. Western blot (immunoblot) analysis of sucrose gradient-purified virions revealed that both Vpr1 and Vpx2 fusion proteins were efficiently packaged regardless of whether SN, SN*, or CAT was used as the C-terminal fusion partner. Moreover, the fusion proteins remained enzymatically active and were packaged in the presence of wild-type Vpr and Vpx proteins. Interestingly, virions also contained smaller proteins that reacted with antibodies specific for the accessory proteins as well as SN and CAT fusion partners. Since similar proteins were absent from Gag-derived virus-like particles and from virions propagated in the presence of an HIV protease inhibitor, they must represent cleavage products produced by the viral protease. Taken together, these results demonstrate that Vpr and Vpx can be used to target functional proteins, including potentially deleterious enzymes, to the human or simian immunodeficiency virus particle. These properties may be exploitable for studies of HIV particle assembly and maturation and for the development of novel antiviral strategies.  相似文献   

8.
The high-density lipoproteins (HDL) from canine, bovine, and chicken plasma have been shown to contain almost exclusively the apolipoprotein A-I, while human HDL contains a second major component, the apolipoprotein A-II. Chemical cross-linking demonstrated that dog and chicken HDL contain three apolipoprotein A-I molecules per particle, while bovine HDL contain approximately six apolipoprotein A-I molecules per particle. By this method, the amount of protein in human HDL2 (d = 1.063-1.12) was found to be approximately 120 000 g/mol, while for human HDL3 (d = 1.12-1.21) a value of approximately 90 000 g/mol was obtained, suggesting that the protein complement of HDL2 and HDL3 differ by only one apolipoprotein A-I chain per particle. Comparison of the apolipoprotein A-I from various animal species indicated that the canine and human apolipoprotein A-I proteins were the most similar by fluorescence, self-association properties, and immunoreactivity. Cross-linking of chicken and bovine apolipoprotein A-I yielded patterns distinctly different from that obtained with the human or canine counterpart. It is concluded that the quaternary structure of the various species of HDL is not directly correlated with the degree of self-association found for the protein constituents.  相似文献   

9.
Many viral coat proteins retain the ability to assemble into virus-like particles when produced as recombinant proteins. These small particles are highly immunogenic, and in many cases can be used to carry epitopes or antigens from other pathogens. Most particle-forming proteins can tolerate only small additions or alterations to their sequence, but Hepatitis B virus surface antigen (HBsAg) and the yeast-derived Ty particle are exceptionel in their ability to form particles with long N- or C-terminal extensions. Both have been used to produce hybrid particles carrying Plasmodium sequences. These have been shown to be highly immunogenic in animal studies and also in human phase I trials, in the case of HBsAg. Recently, six out of seven human volunteers were protected against sporozoite challenge by a recombinant HBsAg particle vaccine, the most encouraging result to date for any pre-erythrocytic malaria vaccine. Here, Sarah Gilbert and Adrian Hill review the prospects for the future development of protein particle vaccines against malaria.  相似文献   

10.
The advance in stem cell research relies largely on the efficiency and biocompatibility of technologies used to manipulate stem cells. In our previous study, we had designed an amphipathic peptide RV24 that can deliver proteins into cancer cell lines efficiently without significant side effects. Encouraged by this observation, we moved forward to test whether RV24 could be used to deliver proteins into human embryonic stem cells and human induced pluripotent stem cells. RV24 successfully mediated protein delivery into these pluripotent stem cells, as well as their derivatives including neural stem cells and dendritic cells. Based on NMR studies and particle surface charge measurements, we proposed that hydrophobic domain of RV24 interacts with β-sheet structures of the proteins, followed by formation of "peptide cage" to facilitate delivery across cellular membrane. These findings suggest the feasibility of using amphipathic peptide to deliver functional proteins intracellularly for stem cell research.  相似文献   

11.
Retrovirus assembly is a complex process that requires the orchestrated participation of viral components and host-cell factors. The concerted movement of different viral proteins to specific sites in the plasma membrane allows for virus particle assembly and ultimately budding and maturation of infectious virions. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins constitute the minimal machinery that catalyzes the fusion of intracellular vesicles with the plasma membrane, thus regulating protein trafficking. Using siRNA and dominant negative approaches we demonstrate here that generalized disruption of the host SNARE machinery results in a significant reduction in human immunodeficiency virus type 1 (HIV-1) and equine infectious anemia virus particle production. Further analysis of the mechanism involved revealed a defect at the level of HIV-1 Gag localization to the plasma membrane. Our findings demonstrate for the first time a role of SNARE proteins in HIV-1 assembly and release, likely by affecting cellular trafficking pathways required for Gag transport and association with the plasma membrane.  相似文献   

12.
The small heat-shock proteins (sHSPs) form a diverse family of proteins that are produced in all organisms. They function as chaperone-like proteins in that they bind unfolded polypeptides and prevent uncontrolled protein aggregation. Here, we present parallel cryo-electron microscopy studies of five different sHSP assemblies: Methanococcus jannaschii HSP16.5, human alphaB-crystallin, human HSP27, bovine native alpha-crystallin, and the complex of alphaB-crystallin and unfolded alpha-lactalbumin. Gel-filtration chromatography indicated that HSP16.5 is the most monodisperse, while HSP27 and the alpha-crystallin assemblies are more polydisperse. Particle images revealed a similar trend showing mostly regular and symmetric assemblies for HSP16.5 particles and the most irregular assemblies with a wide range of diameters for HSP27. A symmetry test on the particle images indicated stronger octahedral symmetry for HSP16.5 than for HSP27 or the alpha-crystallin assemblies. A single particle reconstruction of HSP16.5, based on 5772 particle images with imposed octahedral symmetry, resulted in a structure that closely matched the crystal structure. In addition, the cryo-EM reconstruction revealed internal density presumably corresponding to the flexible 32 N-terminal residues that were not observed in the crystal structure. The N termini were found to partially fill the central cavity making it unlikely that HSP16.5 sequesters denatured proteins in the cavity. A reconstruction calculated without imposed symmetry confirmed the presence of at least loose octahedral symmetry for HSP16.5 in contrast to the other sHSPs examined, which displayed no clear overall symmetry. Asymmetric reconstructions for the alpha-crystallin assemblies, with an additional mass selection step during image processing, resulted in lower resolution structures. We interpret the alpha-crystallin reconstructions to be average representations of variable assemblies and suggest that the resolutions achieved indicate the degree of variability. Quaternary structural information derived from cryo-electron microscopy is related to recent EPR studies of the alpha-crystallin domain fold and dimer interface of alphaA-crystallin.  相似文献   

13.
14.
The formation of hybrid association products between apolipoprotein A-I and apolipoprotein A-II from human high-density lipoprotein was investigated in solutions of these apolipoprotein and in recombinant particles with dimyristoylphosphatidylcholine (DMPC). It was found that these two proteins interact in solution to form hybrid association products, but not to a marked degree. When these two proteins were incubated together with DMPC, it was likewise found that there was little tendency to reside on the same particle, as judged from the absence of hybrid oligomers by chemical cross-linking. By a modified immunoelectrophoretic method it was found that only about 15% of the A-II and 10% of the A-I were precipitated by the heterologous antiserum; from this it is concluded that 80–90% of these proteins do not form hybrid recombinants with the other protein. These results suggest that in the delipidated state, as well as in discoidal recombinants, there do not exist strong protein-protein interactions between A-I and A-II. This implies that even in the high-density lipoprotein, where both proteins coexist in the same particle, the A-II does not stabilize the molecular structure through interactions with A-I, and its role in this molecule remains obscure.  相似文献   

15.
RNase MRP is a ribonucleoprotein particle involved in the processing of pre-rRNA. The RNase MRP particle is structurally highly related to the RNase P particle, which is involved in pre-tRNA processing. Their RNA components fold into a similar secondary structure and they share several protein subunits. We have identified and characterised human and mouse cDNAs that encode proteins homologous to yPop4p, a protein subunit of both the yeast RNase MRP and RNase P complexes. The human Pop4 cDNA encodes a highly basic protein of 220 amino acids. Transfection experiments with epitope-tagged hPop4 protein indicated that hPop4 is localised in the nucleus and accumulates in the nucleolus. Immunoprecipitation assays using extracts from transfected cells expressing epitope-tagged hPop4 revealed that this protein is associated with both the human RNase MRP and RNase P particles. Polyclonal rabbit antibodies raised against recombinant hPop4 recognised a 30 kDa protein in total HeLa cell extracts and specifically co-immunoprecipitated the RNA components of the RNase MRP and RNase P complexes. Finally we showed that anti-hPop4 immunoprecipitates possess RNase P enzymatic activity. Taken together, these data show that we have identified a protein that represents the human counterpart of the yeast Pop4p protein.  相似文献   

16.
Retroviral Gag proteins are synthesized as soluble, myristoylated precursors that traffic to the plasma membrane and promote viral particle production. The intracellular transport of human immunodeficiency virus type 1 (HIV-1) Gag to the plasma membrane remains poorly understood, and cellular motor proteins responsible for Gag movement are not known. Here we show that disrupting the function of KIF4, a kinesin family member, slowed temporal progression of Gag through its trafficking intermediates and inhibited virus-like particle production. Knockdown of KIF4 also led to increased Gag degradation, resulting in reduced intracellular Gag protein levels; this phenotype was rescued by reintroduction of KIF4. When KIF4 function was blocked, Gag transiently accumulated in discrete, perinuclear, nonendocytic clusters that colocalized with endogenous KIF4, with Ubc9, an E2 SUMO-1 conjugating enzyme, and with SUMO. These studies identify a novel transit station through which Gag traffics en route to particle assembly and highlight the importance of KIF4 in regulating HIV-1 Gag trafficking and stability.  相似文献   

17.
Caco-2 cells are derived from a human colonic adenocarcinoma, but differentiate into small intestinal-like cells after confluence. While this enterocytic differentiation has been well studied, the presumed parallel loss of colonocyte function has not been as thoroughly examined. To follow the phenotype for both tissues, Western blots were performed using antisera recognizing liver/bone/kidney alkaline phosphatase and surfactant-like particle proteins found in normal human colon, along with antisera against the small bowel representatives of the same proteins. Antisera against proteins enriched in either enterocytes (α1-antitrypsin) or colonocytes (surfactant protein A) were also evaluated. Alkaline phosphatase activity increased from 3 to 18 days post-confluence. Activity at 3 days post-confluence derived substantially from both isomers. Thereafter, the colonic (liver/bone/kidney) isomer declined to low levels as the content of the enterocytic isomer rose. A similar pattern was found with colonic (decreasing expression) and enterocytic (increasing expression) surfactant-like particle proteins. In particular, the content of larger enterocytic particle proteins (97 and 116 kDa) increased with time in culture. Expression of α1-antitrypsin increased early and remained high, whereas surfactant protein A generally declined after the third day post-confluency. In summary, undifferentiated Caco-2 cells express very low levels of proteins characteristic of either colonocytes or enterocytes. Immediately after confluence, they expressed proteins characteristic of both cell types. Thereafter, the content of colonocyte-specific proteins decreased, whereas those specific for the enterocyte increased. The timing and degree of this phenotypic switch have implications for the interpretation of experiments using Caco-2 cells as a model of small intestinal function. J. Cell. Physiol. 174:362–369, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
采用 2 - D PAGE及质谱技术对α粒子照射诱发人支气管上皮恶性转化细胞的不同阶段进行了比较蛋白组分析与鉴定 .2 - D电泳后在分子量 1 4.4~ 94k D,等电点 3~ 1 0范围内分离出约 1 1 0 0个不同蛋白质斑点 .对等电点约 7,分子量约 40 k D的蛋白质点进行了质谱分析 .鉴定出分子量为38.58k D、等电点 6.64的蛋白质 ANX1 - human(脂皮质蛋白 ,lipocortin ) ,并且发现该蛋白质在BEP2 D细胞恶性转化过程的不同时期存在差异表达 .提示蛋白质 ANX1 - human参与了支气管上皮细胞恶性转化过程 ,与细胞恶性转化相关 .  相似文献   

19.
The mammalian mitochondrial ribosome (mitoribosome) is a highly protein-rich particle in which almost half of the rRNA contained in the bacterial ribosome is replaced with proteins. It is known that mitochondrial translation factors can function on both mitochondrial and Escherichia coli ribosomes, indicating that protein components in the mitoribosome compensate the reduced rRNA chain to make a bacteria-type ribosome. To elucidate the molecular basis of this compensation, we analyzed bovine mitoribosomal large subunit proteins; 31 proteins were identified including 15 newly identified proteins with their cDNA sequences from human and mouse. The results showed that the proteins with binding sites on rRNA shortened or lost in the mitoribosome were enlarged when compared with the E. coli counterparts; this suggests the structural compensation of the rRNA deficit by the enlarged proteins in the mitoribosome.  相似文献   

20.
A set of wild-type and mutant human, woodchuck, and duck hepatitis viral core proteins have been prepared and used to study the free thiol groups and the disulfide bonding pattern present within the core particle. Human (HBcAg) and woodchuck (WHcAg) core proteins contain 4 cysteine residues, whereas duck (DHcAg) core protein contains a single cysteine residue. Each of the cysteines of HBcAg has been eliminated, either singly or in combinations, by a two-step mutagenesis procedure. All of the proteins were shown to have very similar physical and immunochemical properties. All assemble into essentially identical core particle structures. Therefore disulfide bonds are not essential for core particle formation. No intra-chain disulfide bonds occur. Cys107 is a free thiol buried within the particle structure, whereas Cys48 is present partly as a free sulfhydryl which is exposed at the surface of the particle. Cys61 is always and Cys48 is partly involved in interchain disulfide bonds with the identical residues of another monomer, whereas Cys183 is always involved in a disulfide bond with the Cys183 of a different monomer. WHcAg has the same pattern of bonding, whereas DHcAg lacks any disulfide bonds, and the single free sulfhydryl, Cys153 which is equivalent to Cys107 of HBcAg, is buried.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号