首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We wish to use a gonadotrophin-releasing hormone (GnRH) antagonist in the mare as a tool for investigating the control of the oestrous cycle. The aim of this study was to test the effectiveness of the antagonist cetrorelix by testing both in vitro, using perifused equine anterior pituitary cells, and in vivo in seasonally acyclic mares. Pituitary cells were prepared and after 3-4 days incubation, loaded onto columns and given four pulses of GnRH (at 0, 30, 60 and 90 min; dose-response study). After the second GnRH pulse, infusion of cetrorelix began (0, 100, 1000 and 2000 pmol/l) and continued until the end of the experiment. To mimic luteal phase conditions, cells were pre-incubated and perifused with progesterone (25 nmol/l) and GnRH pulses given at 0, 90, 180 and 270 min. Cetrorelix (0 or 1000 pmol/l) began after the second GnRH pulse. Follicle stimulating hormone (FSH) and luteinizing hormone (LH) concentrations were measured in 5 min fractions. Both FSH and LH response areas (above baseline) after GnRH were inhibited by 1000 pmol/l cetrorelix (P < 0.01, P < 0.01, respectively) but not by 100 pmol/l cetrorelix. Similarly, in the presence of progesterone, cetrorelix inhibited the FSH (P < 0.001) and LH (P = 0.0002) response area. Seasonally acyclic mares, pre-treated for 3 days with progesterone (150 mg i.m. per day) were given cetrorelix as (i) a loading dose of 1 microg/kg then infusion at 2.2 ng/(kg min) for 90 min, (ii) a s.c. injection at 20 microg/kg, (iii) infusion at 2.2 ng/(kg min) for 48 h, and (iv) no cetrorelix (control mares). At 90 min, 6, 24 and 48 h after cetrorelix was first administered, mares were given a bolus injection of GnRH (22.2 ng/kg i.v.) and the FSH and LH responses measured. All doses of cetrorelix inhibited the FSH response at 90 min. The response was no longer suppressed at 6 h in the 90 min infusion group, showing a rapid recovery from inhibition. At 24 h, the FSH responses in the injected and 48 h infusion group were suppressed. The LH concentrations were low and showed no significant changes. This study has defined the time course and dose of cetrorelix with respect to its effect on FSH in the horse. It is concluded that cetrorelix could be used to elucidate the role of FSH in follicular development in cyclic mares.  相似文献   

2.
3.
4.
The aim of this experiment with ram and ewe lambs was to test the hypothesis that there are consistent individual differences in Luteinising Hormone (LH) response to Gonadotrophin Releasing Hormone (GnRH).Pre-puberal Border-Leicester × Merino lambs (15 of each sex) aged 9 weeks were challenged with either 0, 30 or 60 μg synthetic GnRH each month for 7 months (December to June). The lambs were then rested from this monthly routine until they were challenged an eighth time in September at 48 weeks of age. Luteinising Hormone response (area under LH release curve) was measured each month and the repeatability of individual LH responses calculated.There was a significant interaction (P < 0.01) between treatment month and sex reflecting a fall in LH response by ram lambs after a peak in February, while at the same time responses by ewe lambs increased to peak again in May. LH response also increased with GnRH dose (30 vs. 60 μg; P < 0.05).Responses by individual lambs were ranked 1 to 5 each month within sex and GnRH doses (30 and 60 μg only). Highest ranked lambs had LH responses 1.4 to 7.0 times larger than lowest ranked lambs. Repeatability of rank between months was poor in all groups except ewe lambs given 60 μg GnRH, where three of the five lambs repeated a particular rank at 5 of the 8 sample months. However, the repeatability of response in this group was not considered to be sufficient to reject the null hypothesis. It was concluded that if consistent individual differences do exist they may be subtle and easily masked by factors such as GnRH dose, sex, age and season.  相似文献   

5.
The object of our experiments was to characterize the response of plasma follicle stimulating hormone (FSH) within minutes of an i.v. injection of high or low doses of gonadotrophin releasing hormone (GnRH), especially in relation to contemporary changes in luteinizing hormone (LH) concentrations. In the deep anoestrous period (June), three intact ewes and two ovariectomized ewes were injected with 1 mug synthetic GnRH followed 2 h later by a second identical injection. A week later, the same regimen was repeated with the same sheep but with 50 mug GnRH after an interval of 5 h 20 min. Blood samples were collected every 15 sec for 15 min after each injection (early release), then at longer intervals (main release) till the next treatment, followed by sampling for a further 6-h period after the second treatment. FSH was released as soon as the second minute after GnRH injection in all ewes. The mean pituitary FSH response, during this early release, in intact and ovariectomized ewes was similar after either 1 or 50 mug GnRH. However, the main release was less pronounced in the ovariectomized sheep and was not stimulated after the second treatment in all sheep. Three other ewes were injected with 40 mug GnRH and sampled every 15 sec for seven, 6-min periods during the period of release to compare FSH and LH secretion. The profiles reflected a similarity in sensitivity and responsiveness to GnRH, especially soon after GnRH injection. Increases in both hormones were formed by several grouped associated spikes. It is suggested that a readily releasable pool of FSH exists in the ewe. There are probably differences in the mechanisms of synthesis and/or release between pituitary FSH and LH.  相似文献   

6.
7.
8.
Specific binding of a fully biologically active 125I-gonadotrophin releasing hormone (GnRH) to isolated anterior pituitary cells is time dependent, saturable and the concentration dependent binding curves exhibit positive cooperativity. Binding to intact or solubilized plasma membranes and an affinity purified GnRH receptor protein reveals in all instances multiple high affinity binding sites. Thus, GnRH receptor protein appears to be an intrinsic constituent of the cell membrane, and perhaps, other membranous organelles. To investigate the latter, the binding of 125I-GnRH to various subcellular fractions was studied and its affinity and time requirements determined. GnRH binding to plasma membranes and secretory granules was to multiple high affinity sites, while that to nuclei and microsomes was to a single high affinity site. Binding was 1.83 +/- 0.07, 0.78 +/- 0.04, 0.31 +/- 0.03 and 0.27 +/- 0.03 fmol micrograms-1 protein for isolated plasma membranes, secretory granules, microsomes and nuclei, respectively, after 30 min incubation with 10(-9) M GnRH. The magnitude of binding to microsomes did not change during the incubation period. It did not show any decrease (p greater than 0.05) in isolated nuclei and plasma membranes, except for the 24 h time period, when a significant drop (p less than 0.001) was seen. Binding to the secretory granule fraction culminated at 15 min and then decreased (p less than 0.001) steadily to a non-detectable level at 24 h. Thus GnRH receptor protein or its portion may be an integral part of some membranous particles in the anterior pituitary cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The hormonal interactions required for the generation of a secondary surge of FSH on the evening of proestrus have not been clearly defined. The role of GnRH in driving a surge of FSH has been questioned by findings in previous studies. In the current study, gonadotropin secretion was measured from pituitary fragments obtained from rats at 0900 and 2400 h on each day of the estrous cycle. Pituitary fragments were perifused in basal (unstimulated) conditions or in the presence of GnRH pulses to determine whether a selective increase in basal release of FSH and/or an increase in the responsiveness to GnRH occurs during the secondary FSH surge. Each anterior pituitary was cut into eighths and placed into a microchamber for perifusion. Seven pulses of GnRH (peak amplitude = 50 ng/ml; duration = approximately 2 min) were administered at a rate of one per hour starting at 30 min. Fractions of perfusate were collected every 5 min and frozen until RIA for LH and FSH. The mean total amount of LH or FSH secreted during the hour interval following each of the last six pulses of GnRH (or the corresponding basal hour) was calculated. Analysis of variance with repeated measures indicated that the evening secretion of LH on proestrus (2400 h) dropped significantly (p less than 0.05) from a maximum on the morning of proestrus (0900 h), whereas the FSH secretion remained elevated at this time. Therefore, the ratio of FSH to LH secreted in response to GnRH pulses was highest during the secondary FSH surge and lowest on the morning of proestrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effect of gonadotrophin releasing hormone (GnRH) on conception rate was studied in 961 repeat-breeder cows in five California dairy farms. Cows were injected with GnRH or saline at the time of the fourth insemination. All breeding was by artificial insemination (AI) using frozen semen from two bulls. Conception rate for GnRH-treated cows was higher than for controls (47.0 vs 37.7%, P < 0.01). There was no significant difference in conception rate between the two bulls or among five AI technicians. How GnRH acts upon fertility in repeat-breeder cattle has not been determined.  相似文献   

11.
Evidence suggests that exogenous GnRH and agonist analogues have short-term stimulatory effects on rat Leydig cell function - when administered intratesticularly. Since rat Leydig cells possess GnRH receptors and their endogenous ligand has not yet been identified the physiological importance of the observations for testis function is unknown. To address this issue we have determined the consequences of blockade of testis GnRH receptors on Leydig cell function under both normogonadotrophic and hypogonadotrophic stimulation of the testis in vivo. A GnRH antagonist (ANT) was used to achieve receptor blockade but during continuous systemic infusion ANT occupied pituitary GnRH receptors and markedly reduced serum LH, FSH, testosterone, and intratesticular testosterone in adult and 30 d old immature male rats. These results were similar to those obtained by administration of a GnRH antiserum which did not bind to testis GnRH receptors. Thus, blockade of testis GnRH receptors during hypogonadotrophism did not produce additional inhibition of steroidogenesis by Leydig cells. However, direct continuous infusion of ANT into one testis produced greater than 90% occupancy of GnRH receptors while reducing GnRH receptors by only 50% in the contralateral testis. Unilateral intratesticular infusion did not reduce serum LH, FSH, Prolactin or testosterone levels despite 75% occupancy of pituitary GnRH receptors. Thus, both ANT infused and saline infused testes were exposed to the same gonadotrophic stimulants but in the former GnRH-R were essentially non-existent. Compared to the control testis, the ANT infused testis showed a 20-30% reduction in LH, FSH, lactogen receptors and 30-40% fall in testosterone content. Identical results were obtained in adult and 30 d-old male rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
14.
15.
Caffeine, a trimethylxanthine alkaloid, is a psycho-active drug that effects a wide range of physiological systems, including the reproductive system. Reports of infants with intra-uterine growth retardation and lowered birth weight as a result of in utero exposure to caffeine, are increasing. The drug is also known to alter steroidogenesis but it is not certain whether this is a direct and/or indirect effect with the involvement of the central nervous system. Thus, an experiment was designed to determine the effect of acute caffeine administration on the circulating concentrations of gonadotrophins and prolactin in the ovariectomized oestradiol-implanted ewe. A single intravenous dose of caffeine (20 mg kg−1 bodyweight) did not affect circulating gonadotrophin concentrations with the parameters for the pulsatile secretion of luteinizing hormone (LH) and the mean concentration of follicle stimulating hormone (FSH) being similar in both experimental and control groups. Circulating prolactin levels, on the other hand, were significantly (P < 0.01) elevated following intravenous treatment with caffeine. The effect was immediate following caffeine administration with elevated concentrations being maintained over the next 3 h before their return to pre-treatment concentrations. The response was bi-phasic with peaks of prolactin concentrations at 1 and 3 h. The results of this experiment show that acute caffeine exposure does not affect the secretion of gonadotrophins from the anterior pituitary gland. Furthermore, they show that acute administration of caffeine stimulates prolactin secretion via an action that is independent of oestradiol feedback and which we suggest, may involve the ACTH/adrenal axis.  相似文献   

16.
This work investigates the estrogenic role of the dominant follicle with regard to regulation of plasma FSH and LH concentration. Eight Holstein-Friesian cows were used for aspiration of the dominant follicle using ultrasound guidance during the early, mid and late stages of the luteal phase. Blood samples were collected at 15-min intervals from 4 h before until 7 h after aspiration. Plasma progesterone concentration increased from 0.7 to 7.2 ng mL-1 from early to mid luteal phase and then fell slightly to 5.9 ng mL-1 in the late luteal phase, but remained unaffected by follicle puncture. The follicular aspirate contained a thousandfold higher estradiol, than plasma concentration but its estradiol:progesterone ratio remained at around 2 at each stage of the luteal phase. Aspiration caused plasma estradiol concentration to fall from 1.4 to 0.7, 1.8 to 1.0 and 1.7 to 0.8 pg mL-1 in the early, mid and late stages of the luteal phase, respectively (P < 0.05). At the same time, mean plasma FSH concentration was increased from 1.1 to 1.8, 1.7 to 2.9 and 0.8 to 1.9 ng mL-1 (P < 0.05), respectively. The results suggest that estradiol secreted from dominant follicles selectively regulates gonadotropin secretion, since aspiration of the dominant follicle at any stage of the cycle affected circulating FSH but did not appear to influence the mean LH concentration.  相似文献   

17.
18.
Ten patients with advanced progressive adenocarcinoma of the prostate were treated with a long acting analogue of gonadotrophin releasing hormone. Eight of these patients responded to treatment in terms of pain relief and clinical regression of tumour. Serum gonadotrophin and testosterone concentrations were significantly suppressed by the end of the second week of treatment, testosterone concentrations being comparable with those achieved by castration. The two patients who failed to respond had both relapsed previously when receiving conventional treatment, and neither showed any endocrine response to the analogue. Superagonists of gonadotrophin releasing hormone may be the treatment of choice in adenocarcinoma of the prostate, but further trials are required to establish long term safety and efficacy.  相似文献   

19.
20.
This study was designed to determine conception rates in dairy cows after timed-insemination and simultaneous treatment with gonadotrophin releasing hormone (GnRH) and/or prostaglandin F2 alpha (PGF2alpha). A total of 2352 cows was randomly assigned to six groups. Cows in Groups 1 to 5 were palpated per rectum to determine the presence of a corpus luteum (CL) on the ovary, and blood samples were obtained for the determination of plasma progesterone (P4) concentrations. Cows with a CL and P4 concentrations >1 ng/ml were treated (Day 0) with PGF2alpha (25 mg, i.m.) and were observed for estrus. Cows in estrus prior to 72 hours after treatment (Group 5, n = 106) were bred, but were not treated. Cows not observed in estrus by 72 hours were divided into four remaining groups, were bred between 72 and 80 hours and were assigned as follows: Cows in Group 1 (n = 203) were not treated; Cows in Group 2 (n = 200) were treated with GnRH (100 ug, i.m.); Cows in Group 3 (n = 201) were treated with PGF2alpha (25 mg, i.m.); and cows in Group 4 (n = 202) were treated with both GnRH and PGF2alpha. Cows in Group 6 (n = 1440) were not treated with PGF2alpha on Day 0 and were estrual cows that were bred on days when cows in Groups 1 to 5 were time-inseminated. The percentage of cows in all groups pregnant at 45 to 50 days after one insemination was compared using analysis of variance (P<0.05). The conception rate of cows in Group 2 was significantly higher than that of cows in Groups 1 to 4. There was a significant group-by-season interaction. Cows treated with GnRH during the spring had a higher conception rate than at other times of the year. Conception rates of cows in Groups 1 to 4 that were inseminated during the summer were low and not significantly different from each other. Conception rates of cows in Groups 5 and 6 inseminated during the summer were not significantly different from each other, but were significantly higher than that of cows in Groups 1 to 4 that were inseminated during the summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号