首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of the effects of temperature and salinity on the survival of three enteric viruses (poliomyelitis type 1, echovirus-6, and coxsackievirus B-5) under controlled laboratory conditions and in situ indicate that temperature rather than salinity is the critical factor affecting their stability, in that the higher the temperature the more rapid was the loss of viral infectivity. In the laboratory studies, all three viruses were quite stable at 4 degrees C, with infectious virus still detectable after 46 weeks of incubation. In situ studies on virus survival in free-flowing estuarine or marine waters showed that, although the viruses were more labile in natural waters than in the laboratory studies, they persisted for several months, in some cases during the winter months. At all temperatures and salinities, coxsackievirus B-5 was the most stable, echovirus-6 was intermediate, and poliovirus 1 was the least stable of the viruses tested.  相似文献   

2.
Stability of human enteroviruses in estuarine and marine waters.   总被引:10,自引:10,他引:0       下载免费PDF全文
S Lo  J Gilbert    F Hetrick 《Applied microbiology》1976,32(2):245-249
Studies of the effects of temperature and salinity on the survival of three enteric viruses (poliomyelitis type 1, echovirus-6, and coxsackievirus B-5) under controlled laboratory conditions and in situ indicate that temperature rather than salinity is the critical factor affecting their stability, in that the higher the temperature the more rapid was the loss of viral infectivity. In the laboratory studies, all three viruses were quite stable at 4 degrees C, with infectious virus still detectable after 46 weeks of incubation. In situ studies on virus survival in free-flowing estuarine or marine waters showed that, although the viruses were more labile in natural waters than in the laboratory studies, they persisted for several months, in some cases during the winter months. At all temperatures and salinities, coxsackievirus B-5 was the most stable, echovirus-6 was intermediate, and poliovirus 1 was the least stable of the viruses tested.  相似文献   

3.
In order to characterize the genetic diversity and phylogenetic affiliations of marine cyanophage isolates and natural cyanophage assemblages, oligonucleotide primers CPS1 and CPS8 were designed to specifically amplify ca. 592-bp fragments of the gene for viral capsid assembly protein g20. Phylogenetic analysis of isolated cyanophages revealed that the marine cyanophages were highly diverse yet more closely related to each other than to enteric coliphage T4. Genetically related marine cyanophage isolates were widely distributed without significant geographic segregation (i.e., no correlation between genetic variation and geographic distance). Cloning and sequencing analysis of six natural virus concentrates from estuarine and oligotrophic offshore environments revealed nine phylogenetic groups in a total of 114 different g20 homologs, with up to six clusters and 29 genotypes encountered in a single sample. The composition and structure of natural cyanophage communities in the estuary and open-ocean samples were different from each other, with unique phylogenetic clusters found for each environment. Changes in clonal diversity were also observed from the surface waters to the deep chlorophyll maximum layer in the open ocean. Only three clusters contained known cyanophage isolates, while the identities of the other six clusters remain unknown. Whether or not these unidentified groups are composed of bacteriophages that infect different Synechococcus groups or other closely related cyanobacteria remains to be determined. The high genetic diversity of marine cyanophage assemblages revealed by the g20 sequences suggests that marine viruses can potentially play important roles in regulating microbial genetic diversity.  相似文献   

4.
In order to characterize the genetic diversity and phylogenetic affiliations of marine cyanophage isolates and natural cyanophage assemblages, oligonucleotide primers CPS1 and CPS8 were designed to specifically amplify ca. 592-bp fragments of the gene for viral capsid assembly protein g20. Phylogenetic analysis of isolated cyanophages revealed that the marine cyanophages were highly diverse yet more closely related to each other than to enteric coliphage T4. Genetically related marine cyanophage isolates were widely distributed without significant geographic segregation (i.e., no correlation between genetic variation and geographic distance). Cloning and sequencing analysis of six natural virus concentrates from estuarine and oligotrophic offshore environments revealed nine phylogenetic groups in a total of 114 different g20 homologs, with up to six clusters and 29 genotypes encountered in a single sample. The composition and structure of natural cyanophage communities in the estuary and open-ocean samples were different from each other, with unique phylogenetic clusters found for each environment. Changes in clonal diversity were also observed from the surface waters to the deep chlorophyll maximum layer in the open ocean. Only three clusters contained known cyanophage isolates, while the identities of the other six clusters remain unknown. Whether or not these unidentified groups are composed of bacteriophages that infect different Synechococcus groups or other closely related cyanobacteria remains to be determined. The high genetic diversity of marine cyanophage assemblages revealed by the g20 sequences suggests that marine viruses can potentially play important roles in regulating microbial genetic diversity.  相似文献   

5.
6.
Fluorescently stained viruses were used as probes to label, identify, and enumerate specific strains of bacteria and cyanobacteria in mixed microbial assemblages. Several marine virus isolates were fluorescently stained with YOYO-1 or POPO-1 (Molecular Probes, Inc.) and added to seawater samples that contained natural microbial communities. Cells to which the stained viruses adsorbed were easily distinguished from nonhost cells; typically, there was undetectable binding of stained viruses to natural microbial assemblages containing >10(sup6) bacteria ml(sup-1) but to which host cells were not added. Host cells that were added to natural seawater were quantified with 99% (plusmn) 2% (mean (plusmn) range) efficiency with fluorescently labeled virus probes (FLVPs). A marine bacterial isolate (strain PWH3a), tentatively identified as Vibrio natriegens, was introduced into natural microbial communities that were either supplemented with nutrients or untreated, and changes in the abundance of the isolate were monitored with FLVPs. Simultaneously, the concentrations of viruses that infected strain PWH3a were monitored by plaque assay. Following the addition of PWH3a, the concentration of viruses infecting this strain increased from undetectable levels (<1 ml(sup-1)) to 2.9 x 10(sup7) and 8.3 x 10(sup8) ml(sup-1) for the untreated and nutrient-enriched samples, respectively. The increase in viruses was associated with a collapse in populations of strain PWH3a from ca. 30 to 2% and 43 to 0.01% of the microbial communities in untreated and nutrient-enriched samples, respectively. These results clearly demonstrate that FLVPs can be used to identify and quantify specific groups of bacteria in mixed microbial communities. The data show as well that viruses which are present at low abundances in natural aquatic viral communities can control microbial community structure.  相似文献   

7.
Accurate enumeration of viruses within environmental samples is critical for investigations of the ecological role of viruses and viral infection within microbial communities. This report evaluates differences in viral and bacterial direct counts between estuarine sediment samples which were either immediately processed onboard ship or frozen at −20°C and later processed. Viral and bacterial abundances were recorded at three stations spanning the length of the Chesapeake Bay in April and June 2003 within three sediment fractions: pore water (PW), whole sediment (WS), and sediment after pore water removal (AP). No significant difference in viral abundance was apparent between extracts from fresh or frozen sediments. In contrast, bacterial abundance was significantly lower in the samples subjected to freezing. Both bacterial and viral abundance showed significant differences between sediment fractions (PW, WS, or AP) regardless of the fresh or frozen status. Although pore water viral abundance has been used in the past as a measurement of viral abundance in sediments, this fraction accounted for only ca. 5% of the total sediment viral abundance across all samples. The effect of refrigerated storage of sediment viral extracts was also examined and showed that, within the first 2 h, viral abundance decreased ca. 30% in formalin-fixed extracts and 66% in unfixed extracts. Finally, the reliability of direct viral enumeration via epifluorescence microscopy was tested by using DNase treatment of WS extractions. These tests indicated that a large fraction (>86%) of the small SYBR gold fluorescing particles are likely viruses.  相似文献   

8.
The effects of polychlorinated biphenyls (PCBs) on nitrification were examined for pure cultures and natural reservoir samples. PCBs at concentrations greater than 10 microgram liter-1 inhibited nitrification, principally ammonium oxidation, in one of two natural reservoir environments. However, this inhibition could not be reproduced in pure high-cell-density cultures or in previously contaminated reservoir waters. A PCB environmental biotransformation product, p-chlorophenylglyoxylic acid, and p-chloromandelic acid had no effect on nitrification.  相似文献   

9.
Cyanophages infecting marine Synechococcus cells were frequently very abundant and were found in every seawater sample along a transect in the western Gulf of Mexico and during a 28-month period in Aransas Pass, Tex. In Aransas Pass their abundance varied seasonally, with the lowest concentrations coincident with cooler water and lower salinity. Along the transect, viruses infecting Synechococcus strains DC2 and SYN48 ranged in concentration from a few hundred per milliliter at 97 m deep and 83 km offshore to ca. 4 × 105 ml-1 near the surface at stations within 18 km of the coast. The highest concentrations occurred at the surface, where salinity decreased from ca. 35.5 to 34 ppt and Synechococcus concentrations were greatest. Viruses infecting strains SNC1, SNC2, and 838BG were distributed in a similar manner but were much less abundant (<10 to >5 × 103 ml-1). When Synechococcus concentrations exceeded ca. 103 ml-1, cyanophage concentrations increased markedly (ca. 102 to > 105 ml-1), suggesting that a minimum host density was required for efficient viral propagation. Data on the decay rate of viral infectivity d (per day), as a function of solar irradiance I (millimoles of quanta per square meter per second), were used to develop a relationship (d = 0.2610I - 0.00718; r2 = 0.69) for conservatively estimating the destruction of infectious viruses in the mixed layer of two offshore stations. Assuming that virus production balances losses and that the burst size is 250, ca. 5 to 7% of Synechococcus cells would be infected daily by viruses. Calculations based on contact rates between Synechococcus cells and infectious viruses produce similar results (5 to 14%). Moreover, balancing estimates of viral production with contact rates for the farthest offshore station required that most Synechococcus cells be susceptible to infection, that most contacts result in infection, and that the burst size be about 324 viruses per lytic event. In contrast, in nearshore waters, where ca. 80% of Synechococcus cells would be contacted daily by infectious cyanophages, only ca. 1% of the contacts would have to result in infection to balance the estimated virus removal rates. These results indicate that cyanophages are an abundant and dynamic component of marine planktonic communities and are probably responsible for lysing a small but significant portion of the Synechococcus population on a daily basis.  相似文献   

10.
To gain a better understanding of the interactions among bacteria, viruses and flagellates in coastal marine ecosystems, we investigated the effect of viral lysis and protistan bacterivory on bacterial abundance, production and diversity [determined by 16S rRNA gene polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE)] in three coastal marine sites with different nutrient supplies in Hong Kong. Six experiments were set up using filtration and dilution methods to develop virus, flagellate and virus+flagellate treatments for natural bacterial populations. All three predation treatments had significant repressing effects on bacterial abundance. Bacterial production was significantly repressed by flagellates and both predators (flagellates and viruses). Bacterial apparent species richness (indicated as the number of DGGE bands) was always significantly higher in the presence of viruses, flagellates and both predators than in the predator-free control. Cluster analysis of the DGGE patterns showed that the effects of viruses and flagellates on bacterial community structure were relatively stochastic while the co-effects of predators caused consistent trends (DGGE always showed the most similar patterns when compared with those of in situ environments) and substantially increased the apparent richness. Overall, we found strong evidence that viral lysis and protist bacterivory act additively to reduce bacterial production and to sustain diversity. This first systematic attempt to study the interactive effects of viruses and flagellates on the diversity and production of bacterial communities in coastal waters suggests that a tight control of bacterioplankton dominants results in relatively stable bacterioplankton communities.  相似文献   

11.
Sohei Kondo 《Genetics》1974,78(1):149-161
Recent knowledge of UV-resistance mechanisms in microorganisms is reviewed in perspective, with emphasis on E. coli. Dark-repair genes are classified into "excision" and "tolerance" (ability to produce a normal copy of DNA from damaged DNA). The phenotype of DNA repair is rather common among the microorganisms compared, and yet their molecular mechanisms are not universal. In contrast, DNA photoreactivation is the simplest and the most general among these three repair systems. It is proposed that DNA repair mechanisms evolved in the order: photoreactivation, excision repair, and tolerance repair. The UV protective capacity and light-inducible RNA photoreactivation possessed by some plant viruses are interpreted to be the result of solar UV selection during a rather recent era of evolution.  相似文献   

12.
DNA photolyases use two noncovalently bound chromophores to catalyze photoreactivation, the blue light-dependent repair of DNA that has been damaged by ultraviolet light. FAD is the catalytic chromophore for all photolyases and is essential for photoreactivation. The identity of the second chromophore is often 7,8-didemethyl-8-hydroxy-5-deazariboflavin (FO). Under standard light conditions, the second chromophore is considered nonessential for photoreactivation because DNA photolyase bound to only FAD is sufficient to catalyze the repair of UV-damaged DNA. phr1 is a photoreactivation-deficient strain of Chlamydomonas. In this work, the PHR1 gene of Chlamydomonas was cloned through molecular mapping and shown to encode a protein similar to known FO synthases. Additional results revealed that the phr1 strain was deficient in an FO-like molecule and that this deficiency, as well as the phr1 photoreactivation deficiency, could be rescued by transformation with DNA constructs containing the PHR1 gene. Furthermore, expression of a PHR1 cDNA in Escherichia coli produced a protein that generated a molecule with characteristics similar to FO. Together, these results indicate that the Chlamydomonas PHR1 gene encodes an FO synthase and that optimal photoreactivation in Chlamydomonas requires FO, a molecule known to serve as a second chromophore for DNA photolyases.  相似文献   

13.
Viruses excreted by humans affect the commercial and recreational use of coastal water. Shellfish produced in contaminated waters have been linked to many episodes and outbreaks of viral gastroenteritis, as well as other food-borne diseases worldwide. The risk can be reduced by appropriate treatment following harvesting and by depuration. The kinetics of inactivation of murine norovirus 1 and human adenovirus 2 in natural and artificial seawater by free available chlorine was studied by quantifying genomic copies (GC) using quantitative PCR and infectious viral particles (PFU). Human JC polyomavirus Mad4 kinetics were evaluated by quantitative PCR. DNase or RNase were used to eliminate free genomes and assess potential viral infectivity when molecular detection was performed. At 30 min of assay, human adenovirus 2 showed 2.6- and 2.7-log(10) GC reductions and a 2.3- and 2.4-log(10) PFU reductions in natural and artificial seawater, respectively, and infectious viral particles were still observed at the end of the assay. When DNase was used prior to the nucleic acid extraction the kinetic of inactivation obtained by quantitative PCR was statistically equivalent to the one observed by infectivity assays. For murine norovirus 1, 2.5, and 3.5-log(10) GC reductions were observed in natural and artificial seawater, respectively, while no viruses remained infectious after 30 min of contact with chlorine. Regarding JC polyomavirus Mad4, 1.5- and 1.1-log(10) GC reductions were observed after 30 min of contact time. No infectivity assays were conducted for this virus. The results obtained provide data that might be applicable to seawater used in shellfish depuration.  相似文献   

14.
Microbial communities in water from Baltimore Harbor and from the mainstem of Chesapeake Bay were examined for sensitivity to mercuric chloride, monomethyl mercury, stannic chloride, and tributyltin chloride. Acute toxicity was determined by measuring the effects of [3H]thymidine incorporation, [14C]glutamate incorporation and respiration, and viability as compared with those of controls. Minimum inhibitory concentrations were low for all metals (monomethyl mercury, less than 0.05 microgram liter-1; mercuric chloride, less than 1 microgram liter-1; tributyltin chloride, less than 5 micrograms liter-1) except stannic chloride (5 mg liter-1). In some cases, mercuric chloride and monomethyl mercury were equally toxic at comparable concentrations. The Chesapeake Bay community appeared to be slightly more sensitive to metal stress than the Baltimore Harbor community, but this was not true for all treatments or assays. For culturable bacteria the opposite result was found. Thymidine incorporation and glutamate metabolism were much more sensitive indicators of metal toxicity than was viability. To our knowledge, this is the first use of the thymidine incorporation method for ecotoxicology studies. We found it the easiest and fastest of the three methods; it is at least equal in sensitivity to metabolic measurements, and it likely measures the effects on greater portion of the natural community.  相似文献   

15.
Microbial communities in water from Baltimore Harbor and from the mainstem of Chesapeake Bay were examined for sensitivity to mercuric chloride, monomethyl mercury, stannic chloride, and tributyltin chloride. Acute toxicity was determined by measuring the effects of [3H]thymidine incorporation, [14C]glutamate incorporation and respiration, and viability as compared with those of controls. Minimum inhibitory concentrations were low for all metals (monomethyl mercury, less than 0.05 microgram liter-1; mercuric chloride, less than 1 microgram liter-1; tributyltin chloride, less than 5 micrograms liter-1) except stannic chloride (5 mg liter-1). In some cases, mercuric chloride and monomethyl mercury were equally toxic at comparable concentrations. The Chesapeake Bay community appeared to be slightly more sensitive to metal stress than the Baltimore Harbor community, but this was not true for all treatments or assays. For culturable bacteria the opposite result was found. Thymidine incorporation and glutamate metabolism were much more sensitive indicators of metal toxicity than was viability. To our knowledge, this is the first use of the thymidine incorporation method for ecotoxicology studies. We found it the easiest and fastest of the three methods; it is at least equal in sensitivity to metabolic measurements, and it likely measures the effects on greater portion of the natural community.  相似文献   

16.
In recent years, several benthic biotic indices have been proposed to be used as ecological indicators in estuarine and coastal waters. One such indicator, the AZTI Marine Biotic Index (AMBI), was designed to establish the ecological quality of European coasts. The index examined the response of soft-bottom benthic communities to natural and man-induced disturbances in coastal and estuarine environments. It has been successfully applied to different geographical areas and under different impact sources, with increasing user numbers in European marine waters (Baltic, North Sea, Atlantic and Mediterranean). The AMBI has been used also for the determination of the ecological quality status (EcoQ) within the context of the European Water Framework Directive (WFD).In this contribution, 38 different applications including six new case studies (hypoxia processes, sand extraction, oil platform impacts, engineering works, dredging and fish aquaculture) are presented. The results show the response of the benthic communities to different disturbance sources in a simple way. Those communities act as ecological indicators of the ‘health’ of the system, indicating clearly the gradient associated with the disturbance.  相似文献   

17.
We analyzed heterotrophic, pelagic bacterial production and specific growth rate data from 57 studies conducted in fresh, marine and estuarine/coastal waters. Strong positive relationships were identified between 1) bacterial production and bacterial abundance and 2) bacterial production and algal biomass. The relationship between bacterial production and bacterial abundance was improved by also considering water temperature. The analysis of covariance model revealed consistent differences between fresh, marine and estuarine/coastal waters, with production consistently high in estuarine/coastal environments. The log-linear regression coefficient of abundance was not significantly different from 1.00, and this linear relationship permitted the use of specific growth rate (SGR in day−1) as a dependent variable. A strong relationship was identified between specific growth rate and temperature. This relationship differed slightly across the three habitats. A substantial portion of the residual variation from this relationship was accounted for by algal biomass, including the difference between marine and estuarine/coastal habitats. A small but significant difference between the fresh- and saltwater habitats remained. No significant difference between the chlorophyll effect in different habitats was identified. The model of SGR against temperature and chlorophyll was much weaker for freshwater than for marine environments. For a small subset of the data set, mean cell volume accounted for some of the residual variation in SGR. Pronounced seasonality, fluctuations in nutrient quality, and variation of the grazing environment may contribute to the unexplained variation in specific growth.  相似文献   

18.
Microbial communities in Arctic coastal waters experience dramatic changes in environmental conditions during the spring to summer transition period, potentially leading to major variations in the relationship between viral and prokaryotic communities. To document these variations, a number of physico-chemical and biological parameters were determined during the ice-melting season in the coastal Arctic (Kongsfjorden, Ny-?lesund, Spitsbergen). The bacterial and viral abundance increased during the spring to summer transition period, probably associated to the increase in temperature and the development of a phytoplankton bloom. The increase in viral abundance was less pronounced than the increase in prokaryotic abundance; consequently, the viral to prokaryotic abundance ratio decreased. The bacterial and viral communities were stratified as determined by Automated Ribosomal Intergenic Spacer Analysis and Randomly Amplified Polymorphic DNA-PCR respectively. Both the bacterial and viral communities were characterized by a relatively low number of operational taxonomic units (OTUs). Despite the apparent low complexity of the bacterial and viral communities, the link between these two communities was weak over the melting season, as suggested by the different trends of prokaryotic and viral abundance during the sampling period. This weak relationship between the two communities might be explained by UV radiation and suspended particles differently affecting the viruses and prokaryotes in the coastal Arctic during this period. Based on our results, we conclude that the viral and bacterial communities in the Arctic were strongly affected by the variability of the environmental conditions during the transition period between spring and summer.  相似文献   

19.
20.
Cyanophages infecting marine Synechococcus cells were frequently very abundant and were found in every seawater sample along a transect in the western Gulf of Mexico and during a 28-month period in Aransas Pass, Tex. In Aransas Pass their abundance varied seasonally, with the lowest concentrations coincident with cooler water and lower salinity. Along the transect, viruses infecting Synechococcus strains DC2 and SYN48 ranged in concentration from a few hundred per milliliter at 97 m deep and 83 km offshore to ca. 4 x 10 ml near the surface at stations within 18 km of the coast. The highest concentrations occurred at the surface, where salinity decreased from ca. 35.5 to 34 ppt and Synechococcus concentrations were greatest. Viruses infecting strains SNC1, SNC2, and 838BG were distributed in a similar manner but were much less abundant (<10 to >5 x 10 ml). When Synechococcus concentrations exceeded ca. 10 ml, cyanophage concentrations increased markedly (ca. 10 to > 10 ml), suggesting that a minimum host density was required for efficient viral propagation. Data on the decay rate of viral infectivity d (per day), as a function of solar irradiance I (millimoles of quanta per square meter per second), were used to develop a relationship (d = 0.2610I - 0.00718; r = 0.69) for conservatively estimating the destruction of infectious viruses in the mixed layer of two offshore stations. Assuming that virus production balances losses and that the burst size is 250, ca. 5 to 7% of Synechococcus cells would be infected daily by viruses. Calculations based on contact rates between Synechococcus cells and infectious viruses produce similar results (5 to 14%). Moreover, balancing estimates of viral production with contact rates for the farthest offshore station required that most Synechococcus cells be susceptible to infection, that most contacts result in infection, and that the burst size be about 324 viruses per lytic event. In contrast, in nearshore waters, where ca. 80% of Synechococcus cells would be contacted daily by infectious cyanophages, only ca. 1% of the contacts would have to result in infection to balance the estimated virus removal rates. These results indicate that cyanophages are an abundant and dynamic component of marine planktonic communities and are probably responsible for lysing a small but significant portion of the Synechococcus population on a daily basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号