首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H Krakauer 《Biopolymers》1971,10(12):2459-2490
The binding of Mg ++ to polyadenylate (poly A), Polyuridylate(poly U), and their complexes, poly (A + U) and poly (A + 2U), was studied by means of a technique in which the dye eriochrome black T is used to measure the concentration of free Mg?. The apparent binding constant KX = [MgN]/[Mg++][N], N = site for Mg++ binding (the phosphate group of the nucleotide), was found to decrease rapidly as the extent of binding increased and, at low extents of binding, as the concentration of Na? increased in poly A, poly (A + U), and poly (A + 2U), and somewhat less so in poly U. Kx is generally in the range 104 > KX > 102. The cause of these dependences is apparently, primarily, the displacement of Na+ by Mg++ in poly U and poly (A + U) on the basis of the similarity of extents of displacement measured in this work and those measured potentiometrically. was calculated and was found to approach zero as the concentration of Na+ increased. In poly U, poly (A + U), and poly (A + 2U) at low ΔH′ v.H. > 0, about + 2 kcal/“mole.” In poly A, also at low salt, ΔH′ v.H. ≈ ?4 kcal/“mol” for the initial binding of Mg++, and increases to +2 kcal/“mol” at saturation. This enthalpic variation probably accounts for the anticooperativity in the binding of Mg++ not ascribable to the displacement of Na++.  相似文献   

2.
Interaction of magnesium ions with poly A and poly U   总被引:2,自引:0,他引:2  
The binding of Mg++ to poly A and poly U has been measured quantitatively by using the metallochromic indicator calmagite. The method is described in detail. It is shown that there is electrostatic interaction between the binding sites, viz., the phosphate groups, and the intrinsic association constant, for the specific binding can be determined. After extrapolation to zero ionic strength we find that, for the binding of Mg++ to poly A, kint = 4 × 104 and for that, to poly U, kint = 3 × 104. The intrinsic enthalpy of association is negative. The effect of Mg++ on the secondary structure of poly A and poly U has been studied by measuring the ultraviolet absorbance, optical rotatory dispersion and viscosity as a function of the amount of added Mg++ ions. It was found that Mg++ promotes the formation of a more ordered secondary structure by neutralizing or screening the negative charges. It is concluded from the absorbance measurements that for poly A at pH ? 7 and for poly U at pH >xs 9 this ordering involves stacking of the bases. Likewise, in solutions of UDP with a pH around 10, base stacking occurs on addition of Mg++.  相似文献   

3.
The interaction of Na ions with synthetic polynucleotides   总被引:1,自引:0,他引:1  
The interaction of Na+ with poly A, poly U, poly A·poly U, and Poly A·2 poly U has been investigated by means of potentiometry, by means of potentiometry, by means of a linked-function analysis of its effect on the binding of Mg++ ions, and of K+ by means of an analysis of its effect on the sedimentation coefficients of the polymers. The last method was found to be inapplicable. The results of the other two methods were found to be consistent, except in the case of poly A where the existence of base stacking, influenced by the binding of Mg++, significantly affects the linked-function analysis. The results are also consistent with the effects of the concentration of Na+ ions on the thermally induced conformational transitions of poly A·poly U and poly A·2 poly U, and with the extents of “binding” of Na+ to DNA measured by equilibrium and by transport methods. The interaction of Na+ with polynucleotides appears to be physically quite specific, although its thermodynamic basis is not clear. The extent of binding of Na+, Ψ, was found to be independent of the total Na+ concentration but a quadratic function of the extent of Mg++ binding, θ. In the absence of Mg++, Ψ = 0.35–0.38 for poly U, 0.40 for poly A, 0.59 for poly A·poly U, and 0.66 for poly A·2 poly U.  相似文献   

4.
A template independent poly (A)·poly (U) synthesizing activity has been isolated from Bacillus subtilis. This activity is eluted from a DNA-cellulose column along with DNA-dependent RNA polymerase. The column fractions which exhibit this activity contain RNA polymerase holoenzyme plus a polypeptide which is slightly larger than sigma factor; pure RNA polymerase holoenzyme did not synthesize poly (A)·poly (U). The activity was dependent on the presence of ATP, UTP, and Mn++ (Mg++ could not substitute), and was inhibited by rifampicin, streptolydigin, and Cibacron Blue. The incorporation of nucleotides was not linear with time, but appeared after a lag period. The results suggest that a modified form of DNA-dependent RNA polymerase analogous to Escherichia coli holoenzyme II is catalyzing the synthesis of poly (A)·poly (U).  相似文献   

5.
The binding of adenosine-14C to polyuridylic acid (poly(U)) and several modified poly(U)s has been studied by equilibrium dialysis. The poly(U) was modified by addition of appropriate reagents across the 5,6-double bond of the uracil ring to form the photohydrate, photodimer, dihydrouracil, the HOBr addition product and the HSO3? addition product. Modification of the uracil rings decreases the amount of adenosine which can be bound to the poly(U); the decrease in binding is a function of the fraction of uracil rings which have been changed. Using the expression S = S0(1 ? αr)2 to relate the fraction of uracil rings modified (r) to the number of binding “sites” remaining (S), it is found that α is about 1 for all the modifications except photodimer where it is about 2. These observations are taken to mean that the loss of binding capacity of the poly(U) resulting from modifications of the uracil ring is caused by loss of planarity of the uracil rings caused by the modifications, and consequent loss of double helix structure, but that for all modifications except photodimer there is no disruption of the poly(U) double helix on either side of the leison. There does appear to be local melting on either side of the photodimer lesion. The sigmoidal binding isotherms (Ab versus Ca) of modified and unmodified poly(U) can be approximated closely by the following equation: ((1)) (1) where Ab = bound A, Ca = free A, n = minimum number of adjacent A′s in complex, S = concentration of sites on poly(U), and K1 = (Km)1/m for all mn. The stacking energy of adenosine (w) can be calculated accurately using the following equation, where dθ/d ln Ca is obtained from Eq. (1). ((2)) (2) For unmodified poly(U), w is ?2.0 kcal/mole and ΔG° (?;RT ln K1) is ?3.2 kcal/mole. The difference (?1.2 kcal/mole) is attributed to hydrogen bonding. Heavily photohydrated poly(U) does not bind guanosine or guanosine-5′-phosphate.  相似文献   

6.
The coupling of ion binding to the single strand helix—coil transition in poly (A) and poly(C) is used to obtain information about both processes by ion titration and field-jump relaxation methods. Characterisation of the field-jump relaxation in poly(C) at various concentrations of monovalent ions leads to the evaluation of a stability constant K = 71 M?1 for the ion binding to the polymer. The rate constant of helix formation is found to be 1.3 × 107 s?1, whereas the dissociation rate is 1.0 × 106 s?1. Similar data are presented for poly (A) and poly (dA).The interaction of Mg++ and Ca++ with poly (A) and poly (C) is measured by a titration method using the polymer absorbance for the indication of binding. The data can be represented by a model with independent binding “sites”. The stability constants increase with decreasing salt concentration from 2.7 × 104 M?1 at medium ionic strengths up to 2.7 × 107 M?1 at low ionic strength. The number of ions bound per nucleotide residue is in the range 0.2 to 0.3. Relaxation time constants associated with Mg++ binding are characterised over a broad range of Mg++ concentrations from 5 μM to 500 μM. The observed concentration dependence supports the conclusion on the number of binding places inferred from equilibrium titrations. The rate of Mg++ and Ca++ association to the polymer is close to the limit of diffusion control (kR = 1 × 1010 to 2 × 1010 M?1 s?1). This high rate demonstrates that Mg++ and Ca++ ions do not form inner-sphere complexes with the polynucleotides. Apparently the distance between two adjacent phosphates is too large for a simultaneous site binding of Mg++ or Ca++, and inner sphere complexation at a single phosphate seems to be too weak. The data support the view that the ions like Mg++ and Ca++ surround the polynucleotides in the form of a mobile ion cloud without site binding.  相似文献   

7.
8.
The effect of spermine on the binding of AcPhe-tRNA to poly(U)-programmed ribosomes (step 1) and on the puromycin reaction (step 2) has been studied in a cell-free system, derived from E. coli.In the absence of ribosomal wash (FWR fraction) and at suboptimal concentration of Mg++ (6 mM), spermine stimulated the binding of AcPhe-tRNA at least five fold, while at 10 mM Mg++ there was a three fold stimulation. The above stimulatory effect was decreased at 6 mM Mg++, or was abolished at 10 mM Mg++ by the presence of FWR during the binding. Beside the stimulatory effect, spermine enhanced the stability of initiation complex AcPhe-tRNA-poly(U)-ribosome.In step 2, spermine affected the final degree of puromycin reaction and the activity status of peptidyltransferase. Both stimulatory and inhibitory effects have been observed, depending on the experimental conditions followed during the binding of the donor and during the peptide bond formation.  相似文献   

9.
The existence of a soluble complex formed by polyuridylic acid (poly (U)) and 3′,5′-cyclic AMP (cAMP) is demonstrated by u.v. extinction vs. temperature curves, optical rotation, equilibrium dialysis, and reaction calorimetry. The complex hasthe stoichiometry of 2 poly (U)-cAMP and its formation is accompanied by an enthalpy change of ?13.0 kcal/mole of base triplet. The introuction of an empirical factor α in the equations given by Damle2 and Crothers2 leads to the evolution of a ΔH value of ?13.4 keal/mole. The parameter α is considered as a correction factor for the concentration dependence of the binding process. There is no relation between α and the reduction of monomer activity due to self-association of monomers. The study of the binding process at several temperatures showed that the cooperativity parameter, σ, is independent of temperature and its value of 6.5 × 10?3 is in good agreement with σ = 5 × 10?3 for the poly (U)·poly(A) system.3  相似文献   

10.
When 40S subunits are irradiated at 254nm in presence of [3H] poly (U), formation of a 40S subunit-poly (U) complex can be demonstrated either by filtration technique at low Mg++ concentration or by polyacrylamide gel electrophoresis. No stable complex was detected using unirradiated samples under the same conditions. Electrophoresis of this complex in the presence of dodecyl sulfate showed that part of the poly (U) directly associates with 18S RNA. This association is not through proteins, since it is not disrupted by pronase treatment.  相似文献   

11.
The antogonist [3H]-mepyramine is used to label histamine H1-receptors in guinea pig lung. Scatchard analysis reveals two classes of binding sites. Monovalent cations decrease steady-state binding (Na+ > Li+ > K+), while divalent cations (Mg++, Ca++, Mn++, Ba++) exhibit a biphasic curve, increasing binding at low concentrations and decreasing it at higher levels. Na+ decreases both affinity and number of binding sites. Dissociation curve shows two components, and Na+ accelerates the rate of dissociation of the slower component. GTP does not affect the binding of the antagonist 3H-Mepyramine.  相似文献   

12.
Base pairing equilibria between polynucleotides and complementary monomers   总被引:4,自引:0,他引:4  
R J Davies  N Davidson 《Biopolymers》1971,10(9):1455-1479
Equilibrium dialysis measurements and optical melting curve data have been used to study the formation and stability of a number of complexes between polynucleotides and complementary monomers. The cooperativity parameter, (dθ/d ln c)θ = 0.5, where θ is the fraction of U or C residues complexed, and c is the concentration of free monomer has been measured as 1.4 for the 2:1 poly U:d-adenosine-complex, and 2.05 for the 2:1 poly C:d-guanosiue complex at pH 7. The variation of Tm with c for several complexes has been used to calculate their partial molar enthalpies of formation at the midpoint of the transition: in 1.0 MNa + at pH 7, for the 2:1 complex of poly-U with 2-amino-adenine, this is ? 18.7 kcal/mole of 2-amino-adenine, for poly-U with adenosine it is ? 18.7 kcal/ mole; for poly-C with dG, it is ? 16.8 kcal/mole. These results do not agree very well with calorimetric integral heats of reaction reported in the literature.33 Complexes with random copolymers were also studied. The random copolymer, poly-UC, can form a mixed complex with dG and either dA or 2-amino-adenosine; the binding of dG is enhanced by an adenine derivative and vice versa.Similarly, poly AC can form a mixed complex with dG and 3-methyl-xanthine. In each case, it appears that the ideal composition is a 2:1 hydrogen-bonded complex, but the actual stoichiometry is such that each base on the random polynucleotide binds less than one-half of a molecule of its complementary monomer. Poly UG can bind dG and dA, but in a less cooperative and specific way.  相似文献   

13.
Yeast tRNA3Leu is one of several tRNA molecules which can adopt a stable, biologically inactive, denatured conformation. The circular dichroism of the native and denatured conformers differs, providing the basis for the present study of the mechanism for the renaturation process. Conversion of the denatured structure to the native takes place in two steps: a rapid change occurring immediately on addition of Mg++, followed by a slower, strongly temperature-dependent step which returns the molecule to its biologically active state. Optimal kinetic data for the second step could be obtained at 285 nm. Analysis of the time dependence of Δε285 by the Guggenheim method demonstrated that this step follows first-order kinetics. The temperature dependence of the rate constants over the range 32–41°C yielded the following parameters for the rate-limiting step: Ea = 69 kcal/mole, ΔH? = 69 kcal/mole, and ΔS? = 146 cal/mole deg. Values of this magnitude are typical of order—order transitions in nucleic acids.  相似文献   

14.
The thermodynamic parameters of the CO-equilibria of isolated chains of hemoglobin A and of two α-chains in hemoglobins M Milwaukee-I and Saskatoon at 25°, pH 7.0 were determined. The parameters for the binding of the first CO molecule to the hemoglobins M were ΔH′=?17 and ?18 kcal/mole heme and ΔS′=?30 and ?29 e.u. for hemoglobins M Milwaukee-I and Saskatoon, respectively. In contrast to this the characteristics of the second step of the binding were ΔH′=+5.9· and +4.3 kcal/mole and ΔS′=+51 and +49 e.u. These values for the second step were also significantly different from those of the isolated α-chain (ΔH′=?15 kcal/mole and ΔS′=?11 e.u.).  相似文献   

15.
Dietmar Prschke 《Biopolymers》1971,10(10):1989-2013
The properties of oligonucleotide helices of adeuylic- and uridylic acid oligomers have been investigated by measurements of hypo-and hyperchromieity. High ionic strengths favor the formation of triple helices. Thus, the double helix-coil transition can be studied (without interference by triple helices) only at low ionic-strength. A “phase diagram” is given representing the Tm-values of the various transitions at different ionic strengths for the system A(pA)17 + U(pU)17. Oligonucleolides of chain lengths <8 always form both double and triple helices at the nucleotide concentrations required for base pairing. For this reason the double helix-coil transition without coupling of the triple helix equilibrium can only be measured for chain lengths higher than 7. Melting curves corresponding to this transition have been determined for chain lengths 8, 9, 10, 11, 14 and 18 at different concentrations. An increase in nucleotide concentration leads to an increase in melting temperature. The shorter the chain length the lower the Tm-value and the broader the helix-coil transition. The experimental transition curves have been analysed according to a staggering zipper model with consideration of the stacking of the adeuylic acid single strands and the electrostatic repulsion of tlip phosphate charges on opposite strands. The temperature dependence of the nucleation parameter has been accounted for by a slacking factor x. The stacking factor expresses the magnitude of the stacking enthalpy. By curve fitting xwas computed to be 0.7, corresponding to a stacking enthalpy of about S kcal/mole. The model described allows the reproduction of the experimental transition curves with relatively high accuracy. In an appendix the thermodynamic parameters of the stacking equilibrium of poly A and of the helix-coil equilibria of poly A + poly U at neutral pH are calculated (ΔHA = ?7.9 kcal/mole for the poly A stacking and ΔH12 = ?10.9 kcal/mole for the formation of the double helix from the randomly coiled single strands). A formula for the configurational entropy of polymers derived by Flory on the basis of a liquid lattice model is adapted to calculate the stacking entropies of adenylic oligomers.  相似文献   

16.
Melting parameters of 2U:1A complexes formed by polyuridylic acid [poly(U)] and three adenine dinucleotides, diribonucleoside monophosphonate ApA and diastereoisomers of dideoxyribonucleoside methyl phosphonate [(dApA)1 and (dApA)2], in 1M NaCl and at a number of dinucleotide concentrations were obtained from differential scanning microcalorimetric data and interpreted in terms of the theory of helix–coil equilibrium in oligonucleotide–polynucleotide systems. The apparent binding constant, 1/cm, at 39°C and melting temperatures, Tm, at 1 × 10?3 M dinucleotide concentration indicate the following order of thermodynamic stability of the complexes: 2 poly(U) · (dApA)2 (2.27 × 103M?1, 44.2°C) > 2 poly(U) · (dApA)1 (9.9 × 102M1, 39.2°C) > 2 poly(U) · (ApA) (5.9 × 102M?1, 35.8°C). Corresponding calorimetric enthalpies of melting, ΔHm: 13.5, 12.7, and 12.8 kcal/mol (UUA base triplets) were found to be considerably lower than the van't Hoff enthalpies, ΔHapp: 29.4, 16.2, and 16.2 kcal/mol, respectively, evaluated from the dependence of the melting temperatures on dinucleotide concentration. Self-association of dinucleotides and their simultaneous binding as monomers, dimers, and higher-order associated species is suggested as the most probable cause of the differences between ΔHm and ΔHapp values. The differences in thermodynamic properties of the complexes formed by (dApA)1 and (dApA)2 diastereoisomers are discussed in connection with their known conformational properties. The higher and essentially enthalpic stability of the 2 poly(U) · (dApA)2 complex correlates with a lower degree of intramolecular stacking of the (dApA)2 isomer. The hydrophobically enhanced strong self-association of the latter greatly influences the thermodynamics of its complex formation with poly(U) and results in ΔHappHm = 2.3.  相似文献   

17.
A Na+,K+-ATPase has been isolated from canine heart with a specific activity as high as 200 μmoles of inorganic phosphate/mg protein/hour. Activity is not due to simple detergent activation since specific ouabain binding (i.e., [Mg++,Na+,ATP] or [Mg++,Pi]-ligand dependent) ranged from 200–450 pmoles/mg protein. Specific ouabain binding activities are up to ten times greater than heretofore reported.  相似文献   

18.
The Zimm-Bragg theory is extended to treat the melting of the triple helix poly (A + 2U) for a solution with a 1 : 2 mole ratio of poly A to poly U. Only the case for long chains is considered. For a given set of parameters the theory predicts the fraction of segments in the triple helix, double helix, and random coil states as a function of temperature. Four nucleation parameters are introduced to describe the two order–disorder transitions (poly (A + 2U) ? poly A + 2 poly U and poly (A + U) ? poly A + poly U) and the single order–order transition (poly (A + 2U) ? poly (A + U) + poly U). A relation between the nucleation parameters is obtained which reduces the number of independent parameters to three. A method for determining these parameters from experiment is presented. From the previously published data of Blake, Massoulié and Fresco8 for [Na+] = 0.04, we find σT = 6.0 × 10?4, σD = 1.0 × 10?3, and σσ* = 1.5 × 10?3. σT and σD are the nucleation parameters for nucleating a triple helix and double helix, respectively, from a random coil region. σσ* is the nucleation parameter for nucleating a triple helix from a double helix and a single strand. Melting curves are generated from the theory and compared with the experimental melting curves.  相似文献   

19.
Thermodynamics of the B to Z transition in poly(dGdC)   总被引:1,自引:0,他引:1  
The thermodynamics of the B to Z transition in poly(dGdC) was examined by differential scanning calorimetry, temperature-dependent absorbance spectroscopy, and CD spectroscopy. In a buffer containing 1 mM Na cacodylate, 1 mM MgCl2, pH 6.3, the B to Z transition is centered at 76.4°C, and is characterized by ΔHcal = 2.02 kcal (mol base pair)?1 and a cooperative unit of 150 base pairs (bp). The tm of this transition is independent of both polynucleotide and Mg2+ concentrations. A second transition, with ΔHcal = 2.90 cal (mol bp)?1, follows the B to Z conversion, the tm of which is dependent upon both the polynucleotide and the Mg2+ concentrations. Turbidity changes are concomitant with the second transition, indicative of DNA aggregation. CD spectra recorded at a temperature above the second transition are similar to those reported for ψ(–)-DNA. Both the B to Z transition and the aggregation reaction are fully and rapidly reversible in calorimetric experiments. The helix to coil transition under these solution conditions is centered at 126°C, and is characterized by ΔHcal = 12.4 kcal (mol bp)?1 and a cooperative unit of 290 bp. In 5 mM MgCl2, a single transition is seen centered at 75.5°C, characterized by ΔHcal = 2.82 kcal (mol bp)?1 and a cooperative unit of 430 bp. This transition is not readily reversible in calorimetric experiments. Changes in turbidity are coincident with the transition, and CD spectra at a temperature just above the transition are characteristic of ψ(–)-DNA. A transition at 124.9°C is seen under these solution conditions, with ΔHcal = 10.0 kcal (mol bp)?1 and which requires a complex three-step reaction mechanism to approximate the experimental excess heat capacity curve. Our results provide a direct measure of the thermodynamics of the B to Z transition, and indicate that Z-DNA is an intermediate in the formation of the ψ-(–) aggregate under these solution conditions.  相似文献   

20.
The leak fluxes of Na+, K+, Mg++ and Ca++ in mouse thymocytes are increased by Concavaline A (Con A), within minutes after mitogen addition. The intracellular Mg++ and K+ concentrations were decreased and the Na+ and Ca++ contents were increased by Con A in mouse thymocytes and spleen cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号