首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Albin-DeLong 'box and arrow' model has long been the accepted standard model for the basal ganglia network. However, advances in physiological and anatomical research have enabled a more detailed neural network approach. Recent computational models hold that the basal ganglia use reinforcement signals and local competitive learning rules to reduce the dimensionality of sparse cortical information. These models predict a steady-state situation with diminished efficacy of lateral inhibition and low synchronization. In this framework, Parkinson's disease can be characterized as a persistent state of negative reinforcement, inefficient dimensionality reduction, and abnormally synchronized basal ganglia activity.  相似文献   

2.
Recently, two quite different approaches exemplifying 'bottom-up' and 'top-down' philosophies have shed new light on basal ganglia function. In vitro work using organotypic co-cultures has implicated the subthalamic nucleus (STN) and the external segment of the globus pallidus (GP(e)) as pacemakers for low-frequency bursting that is reminiscent of the activity produced in Parkinsonian tremor. A circuit essential for avian song learning has been identified as part of the basal ganglia with surprisingly well conserved cellular details; investigation of this system may help to address general issues of basal ganglia function.  相似文献   

3.
Advances in research on globus pallidus (GP) suggest that this 'long thought to be' relay in the 'indirect pathway' plays a unique and critical role in basal ganglia function. The traditional idea of parallel processing within the basal ganglia is also challenged by recent findings. It is now clear that axons of GP neurons form large, perisomatic baskets around target neurons in all major basal ganglia nuclei, thereby exerting a profound influence on the output of the entire basal ganglia. GP neurons are autonomously active both in vivo and in vitro. It is believed that temporal information carried along the corticostriatopallidal pathway is critical for proper motor execution. The importance of appropriately controlled discharge of GP neurons is highlighted by psychomotor disorders such as Parkinson's disease, in which alterations in the pattern and synchrony of discharge in GP neurons are thought to contribute to motor symptoms. Several lines of evidence suggest that the aberrant activity of GP neurons following dopamine depletion is caused by alteration in the synaptic input from both striatum and subthalamic nucleus. In normal subjects, the capability of striatal input in translating cortical input into precisely timed responses in GP neurons is mediated by (1) the expression of postsynaptic GABA(A) receptor composed of subunits with fast kinetic properties; (2) an effective GABA reuptake system in terminating the action of synaptically released GABA, and (3) the existence of dendritic HCN channels that actively abbreviate the time course of the inhibitory postsynaptic potentials and reset rhythmic discharge. Despite the rapid pace in uncovering the elements that shape the activity along the striatopallidosubthalamic pathway, the origin of rhythmic, synchronized bursting of GP neurons seen in parkinsonism has not been fully established experimentally. Further elucidation of the factors that control the information transfer in the striatopallidal synapses is thus critical to our understanding of basal ganglia function and establishing treatment for Parkinson's disease and other basal ganglia disorders.  相似文献   

4.
Basal ganglia are usually attributed a role in facilitating willed action, which is found to be impaired in Parkinson''s disease, a pathology of basal ganglia. We hypothesize that basal ganglia possess the machinery to amplify will signals, presumably weak, by stochastic resonance. Recently we proposed a computational model of Parkinsonian reaching, in which the contributions from basal ganglia aid the motor cortex in learning to reach. The model was cast in reinforcement learning framework. We now show that the above basal ganglia computational model has all the ingredients of stochastic resonance process. In the proposed computational model, we consider the problem of moving an arm from a rest position to a target position: the two positions correspond to two extrema of the value function. A single kick (a half-wave of sinusoid, of sufficiently low amplitude) given to the system in resting position, succeeds in taking the system to the target position, with high probability, only at a critical noise level. But for suboptimal noise levels, the model arm''s movements resemble Parkinsonian movement symptoms like akinetic rigidity (low noise) and dyskinesias (high noise).  相似文献   

5.

Background

Clinical treatments with typical antipsychotic drugs (APDs) are accompanied by extrapyramidal motor side-effects (EPS) such as hypokinesia and catalepsy. As little is known about electrophysiological substrates of such motor disturbances, we investigated the effects of a typical APD, α-flupentixol, on the motor behavior and the neuronal activity of the whole basal ganglia nuclei in the rat.

Methods and Findings

The motor behavior was examined by the open field actimeter and the neuronal activity of basal ganglia nuclei was investigated using extracellular single unit recordings on urethane anesthetized rats. We show that α-flupentixol induced EPS paralleled by a decrease in the firing rate and a disorganization of the firing pattern in both substantia nigra pars reticulata (SNr) and subthalamic nucleus (STN). Furthermore, α-flupentixol induced an increase in the firing rate of globus pallidus (GP) neurons. In the striatum, we recorded two populations of medium spiny neurons (MSNs) after their antidromic identification. At basal level, both striato-pallidal and striato-nigral MSNs were found to be unaffected by α-flupentixol. However, during electrical cortico-striatal activation only striato-pallidal, but not striato-nigral, MSNs were found to be inhibited by α-flupentixol. Together, our results suggest that the changes in STN and SNr neuronal activity are a consequence of increased neuronal activity of globus pallidus (GP). Indeed, after selective GP lesion, α-flupentixol failed to induce EPS and to alter STN neuronal activity.

Conclusion

Our study reports strong evidence to show that hypokinesia and catalepsy induced by α-flupentixol are triggered by dramatic changes occurring in basal ganglia network. We provide new insight into the key role of GP in the pathophysiology of APD-induced EPS suggesting that the GP can be considered as a potential target for the treatment of EPS.  相似文献   

6.
Parkinsonism leads to various electrophysiological changes in the basal ganglia-thalamocortical system (BGTCS), often including elevated discharge rates of the subthalamic nucleus (STN) and the output nuclei, and reduced activity of the globus pallidus external (GPe) segment. These rate changes have been explained qualitatively in terms of the direct/indirect pathway model, involving projections of distinct striatal populations to the output nuclei and GPe. Although these populations partly overlap, evidence suggests dopamine depletion differentially affects cortico-striato-pallidal connection strengths to the two pallidal segments. Dopamine loss may also decrease the striatal signal-to-noise ratio, reducing both corticostriatal coupling and striatal firing thresholds. Additionally, nigrostriatal degeneration may cause secondary changes including weakened lateral inhibition in the GPe, and mesocortical dopamine loss may decrease intracortical excitation and especially inhibition. Here a mean-field model of the BGTCS is presented with structure and parameter estimates closely based on physiology and anatomy. Changes in model rates due to the possible effects of dopamine loss listed above are compared with experiment. Our results suggest that a stronger indirect pathway, possibly combined with a weakened direct pathway, is compatible with empirical evidence. However, altered corticostriatal connection strengths are probably not solely responsible for substantially increased STN activity often found. A lower STN firing threshold, weaker intracortical inhibition, and stronger striato-GPe inhibition help explain the relatively large increase in STN rate. Reduced GPe-GPe inhibition and a lower GPe firing threshold can account for the comparatively small decrease in GPe rate frequently observed. Changes in cortex, GPe, and STN help normalize the cortical rate, also in accord with experiments. The model integrates the basal ganglia into a unified framework along with an existing thalamocortical model that already accounts for a wide range of electrophysiological phenomena. A companion paper discusses the dynamics and oscillations of this combined system.  相似文献   

7.
Neuronal correlates of Parkinson's disease (PD) include a shift to lower frequencies in the electroencephalogram (EEG) and enhanced synchronized oscillations at 3-7 and 7-30 Hz in the basal ganglia, thalamus, and cortex. This study describes the dynamics of a recent physiologically based mean-field model of the basal ganglia-thalamocortical system, and shows how it accounts for many key electrophysiological correlates of PD. Its detailed functional connectivity comprises partially segregated direct and indirect pathways through two populations of striatal neurons, a hyperdirect pathway involving a corticosubthalamic projection, thalamostriatal feedback, and local inhibition in striatum and external pallidum (GPe). In a companion paper, realistic steady-state firing rates were obtained for the healthy state, and after dopamine loss modeled by weaker direct and stronger indirect pathways, reduced intrapallidal inhibition, lower firing thresholds of the GPe and subthalamic nucleus (STN), a stronger projection from striatum to GPe, and weaker cortical interactions. Here it is shown that oscillations around 5 and 20 Hz can arise with a strong indirect pathway, which also causes increased synchronization throughout the basal ganglia. Furthermore, increased theta power with progressive nigrostriatal degeneration is correlated with reduced alpha power and peak frequency, in agreement with empirical results. Unlike the hyperdirect pathway, the indirect pathway sustains oscillations with phase relationships that coincide with those found experimentally. Alterations in the responses of basal ganglia to transient stimuli accord with experimental observations. Reduced cortical gains due to both nigrostriatal and mesocortical dopamine loss lead to slower changes in cortical activity and may be related to bradykinesia. Finally, increased EEG power found in some studies may be partly explained by a lower effective GPe firing threshold, reduced GPe-GPe inhibition, and/or weaker intracortical connections in parkinsonian patients. Strict separation of the direct and indirect pathways is not necessary to obtain these results.  相似文献   

8.
The basal ganglia nuclei form a complex network of nuclei often assumed to perform selection, yet their individual roles and how they influence each other is still largely unclear. In particular, the ties between the external and internal parts of the globus pallidus are paradoxical, as anatomical data suggest a potent inhibitory projection between them while electrophysiological recordings indicate that they have similar activities. Here we introduce a theoretical study that reconciles both views on the intra-pallidal projection, by providing a plausible characterization of the relationship between the external and internal globus pallidus. Specifically, we developed a mean-field model of the whole basal ganglia, whose parameterization is optimized to respect best a collection of numerous anatomical and electrophysiological data. We first obtained models respecting all our constraints, hence anatomical and electrophysiological data on the intrapallidal projection are globally consistent. This model furthermore predicts that both aforementioned views about the intra-pallidal projection may be reconciled when this projection is weakly inhibitory, thus making it possible to support similar neural activity in both nuclei and for the entire basal ganglia to select between actions. Second, we predicts that afferent projections are substantially unbalanced towards the external segment, as it receives the strongest excitation from STN and the weakest inhibition from the striatum. Finally, our study strongly suggests that the intrapallidal connection pattern is not focused but diffuse, as this latter pattern is more efficient for the overall selection performed in the basal ganglia.  相似文献   

9.
The prefrontal cortex and basal ganglia are deeply implicated in working memory. Both structures are subject to dopaminergic neuromodulation in a way that exerts a critical influence on the proper operation of working memory. We present a novel network model to elucidate the role of phasic dopamine in the interaction of these two structures in initiating and maintaining mnemonic activity. We argue that neuromodulation plays a critical role in protecting memories against both internal and external sources of noise. Increases in cortical gain engendered by prefrontal dopamine release help make memories robust against external distraction, but do not offer protection against internal noise accompanying recurrent cortical activity. Rather, the output of the basal ganglia provides the gating function of stabilization against noise and distraction by enhancing select memories through targeted disinhibition of cortex. Dopamine in the basal ganglia effectively locks this gate by influencing the stability of up and down states in the striatum. Dopamine's involvement in affective processing endows this gating with specificity to motivational salience. We model a spatial working memory task and show that these combined effects of dopamine lead to superior performance. Action editor: Misha V. Tsodyks  相似文献   

10.
In Type 2 diabetes, increased glycogenolysis contributes to the hyperglycaemic state, therefore the inhibition of GP (glycogen phosphorylase), a key glycogenolytic enzyme, is one of the possibilities to lower plasma glucose levels. Following this strategy, a number of GPis (GP inhibitors) have been described. However, certain critical issues are associated with their mode of action, e.g. an impairment of muscle function. The interaction between GP and the liver glycogen targeting subunit (termed G(L)) of PP1 (protein phosphatase 1) has emerged as a new potential anti-diabetic target, as the disruption of this interaction should increase glycogen synthesis, potentially providing an alternative approach to counteract the enhanced glycogenolysis without inhibiting GP activity. We identified an inhibitor of the G(L)-GP interaction (termed G(L)-GPi) and characterized its mechanism of action in comparison with direct GPis. In primary rat hepatocytes, at elevated glucose levels, the G(L)-GPi increased glycogen synthesis similarly to direct GPis. Direct GPis significantly reduced the cellular GP activity, caused a dephosphorylation of the enzyme and decreased the amounts of GP in the glycogen-enriched fraction; the G(L)-GPi did not influence any of these parameters. Both mechanisms increased glycogen accumulation at elevated glucose levels. However, at low glucose levels, only direct GPis led to increased glycogen amounts, whereas the G(L)-GPi allowed the mobilization of glycogen because it did not block the activity of GP. Due to this characteristic, G(L)-GPi in comparison with GPis could offer an advantageous risk/benefit profile circumventing the potential downsides of a complete prevention of glycogen breakdown while retaining glucose-lowering efficacy, suggesting that inhibition of the G(L)-GP interaction may provide an attractive novel approach for rebalancing the disturbed glycogen metabolism in diabetic patients.  相似文献   

11.
Exposure of ARL 15 cells to medium containing reduced concentrations of K+ (0.65 mM) elicited a 50-100% increase in Na,K-ATPase activity. The inhibition by ouabain of both the basal and the induced enzyme conformed to a single-site model (KI = 1 x 10(-4) M). The low K+-induced increment in Na,K-ATPase activity was accompanied by an equivalent increase in the abundance of Na,K-pump sites estimated by ouabain-stabilized ("back-door") phosphorylation, such that the calculated catalytic turnover number of approximately 8000/min was minimally changed. Comparison of the dependence of ouabain-inhibitable K+ uptake on intracellular Na+ and on extracellular K+ concentrations in control and low K+-treated cells revealed no change in the respective half-maximal stimulatory concentrations for these cations, whereas the maximal rate of active K+ uptake in cells exposed to low external K+ increased by nearly 100%. The derived Hill coefficients for active K+ transport rate were also unchanged by the low K+ treatment (i.e. approximately 1.4 for extracellular K+ and 2.6 for intracellular Na+). Na,K-ATPase activity of basal and low K+-induced cells calculated from the measured maximal Na,K transport rate closely approximated the Na,K-ATPase activity measured enzymatically in unfractionated cell lysates under Vmax conditions, suggesting that all or most of the Na,K-ATPase enzymatic units present in both basal and stimulated states are functionally active. Northern blot analysis of RNA isolated from control cells indicated the presence of the Na,K-ATPase alpha-I isoform of the enzyme which increased by nearly 200% following incubation of the cells in low-K+ medium. By contrast, the alpha-II and alpha-III mRNAs were undetectable in either the basal or low K+-stimulated state. These results indicate that the Na,K-ATPase induced by incubation of ARL 15 cells in low-K+ medium is kinetically and functionally indistinguishable from the basal enzyme, and that only the alpha-I isoform is expressed under control and low-K+ conditions.  相似文献   

12.
BACKGROUND: The basal ganglia contain the highest levels of iron in the brain and post-mortem studies indicate a disruption of iron metabolism in the basal ganglia of patients with neurodegenerative disorders such as Alzheimer's disease (AD) and Huntington's disease (HD). Iron can catalyze free radical reactions and may contribute to oxidative damage observed in AD and HD brain. Magnetic resonance imaging (MRI) can quantify transverse relaxation rates, which can be used to quantify tissue iron stores as well as evaluate increases in MR-visible water (an indicator of tissue damage). METHODS: A magnetic resonance imaging (MRI) method termed the field dependent relaxation rate increase (FDRI) was employed which quantifies the iron content of ferritin molecules (ferritin iron) with specificity through the combined use of high and low field-strength MRI instruments. Three basal ganglia structures (caudate, putamen and globus pallidus) and one comparison region (frontal lobe white matter) were evaluated. Thirty-one patients with AD and a group of 68 older control subjects, and 11 patients with HD and a group of 27 adult controls participated (4 subjects overlap between AD and HD controls). RESULTS: Compared to their respective normal control groups, increases in basal ganglia FDRI levels were seen in both AD and HD. FDRI levels were significantly increased in the caudate (p = 0.007) and putamen (p = 0.008) of patients with AD with a trend toward an increase in the globus pallidus (p = 0.13). In the patients with HD, all three basal ganglia regions showed highly significant FDRI increases (p<0.001) and the magnitude of the increases were 2 to 3 times larger than those observed in AD versus control group comparison. For both HD andAD subjects, the basal ganglia FDRI increase was not a generalized phenomenon, as frontal lobe white matter FDRI levels were decreased in HD (p = 0.015) and remained unchanged in AD. Significant low field relaxation rate decreases (suggestive of increased MR-visible water and indicative of tissue damage) were seen in the frontal lobe white matter of both HD and AD but only the HD basal ganglia showed such decreases. CONCLUSIONS: The data suggest that basal ganglia ferritin iron is increased in HD and AD. Furthermore, the increased iron levels do not appear to be a byproduct of the illness itself since they seem to be present at the onset of the diseases, and thus may be considered a putative risk factor. Published post-mortem studies suggest that the increase in basal ganglia ferritin iron may occur through different mechanisms in HD and AD. Consistent with the known severe basal ganglia damage, only HD basal ganglia demonstrated significant decreases in low field relaxation rates. MRI can be used to dissect differences in tissue characteristics, such as ferritin iron and MR-visible water, and thus could help clarify neuropathologic processes in vivo. Interventions aimed at decreasing brain iron levels, as well as reducing the oxidative stress associated with increased iron levels, may offer novel ways to delay the rate of progression and possibly defer the onset of AD and HD.  相似文献   

13.
The levels of CB1 cannabinoid receptors in the basal ganglia are the highest in the brain, comparable to the levels of dopamine receptors, a major transmitter in the basal ganglia. This localization of receptors is consistent with the profound effects on motor function exerted by cannabinoids. The output nuclei of the basal ganglia, the globus pallidus (GP) and substantia nigra reticulata (SNr), apparently lack intrinsic cannabinoid receptors. Rather, the receptors are located on afferent terminals, the striatum being the major source. Cannabinoids blocked the inhibitory action of the striatal input in the SNr. Furthermore, cannabinoids blocked the excitatory effect of stimulation of the subthalamic input to the SNr revealing, along with data from in situ hybridization studies, that this input is another likely source of cannabinoid receptors to the SNr. Similar actions of cannabinoids were observed in the GP. Behavioral studies further revealed that the action of cannabinoids differs depending upon which input to the output nuclei of the basal ganglia is active. The inhibitory striatal input is quiescent and the cannabinoid action is observable only upon stimulation of the striatum, while the noticeable effect of cannabinoids under basal conditions would be on the tonically active subthalamic input. These data suggest that the recently discovered endogenous cannabinergic system exerts a major modulatory action in the basal ganglia by its ability to block both the major excitatory and inhibitory inputs to the SNr and GP.  相似文献   

14.
Attention deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, affecting approximately 5% of children. However, the neural mechanisms underlying its development and treatment are yet to be elucidated. In this study, we report that an ADHD mouse model, which harbors a deletion in the Git1 locus, exhibits severe astrocytosis in the globus pallidus (GP) and thalamic reticular nucleus (TRN), which send modulatory GABAergic inputs to the thalamus. A moderate level of astrocytosis was displayed in other regions of the basal ganglia pathway, including the ventrobasal thalamus and cortex, but not in other brain regions, such as the caudate putamen, basolateral amygdala, and hippocampal CA1. This basal ganglia circuit-selective astrocytosis was detected in both in adult (2–3 months old) and juvenile (4 weeks old) Git1−/− mice, suggesting a developmental origin. Astrocytes play an active role in the developing synaptic circuit; therefore, we performed an immunohistochemical analysis of synaptic markers. We detected increased and decreased levels of GABA and parvalbumin (PV), respectively, in the GP. This suggests that astrocytosis may alter synaptic transmission in the basal ganglia. Intriguingly, increased GABA expression colocalized with the astrocyte marker, GFAP, indicative of an astrocytic origin. Collectively, these results suggest that defects in basal ganglia circuitry, leading to impaired inhibitory modulation of the thalamus, are neural correlates for the ADHD-associated behavioral manifestations in Git1−/− mice.  相似文献   

15.
The motor signs of Parkinson's disease have been partly attributed to an overinhibition of the external globus pallidus (GP) that results from hyperactivity of striatopallidal GABA/enkephalinergic neurons. The goals of this study were to measure basal levels of extracellular fluid GABA in the GP of normal cats, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated parkinsonian cats and cats spontaneously recovered from MPTP-induced parkinsonism, and to examine the effects of opioid receptor activation on potassium (K+)-evoked GABA release in the GP in these animals. Basal GP GABA levels were increased 75% from normal in parkinsonian animals 1 week after MPTP administration and returned to control levels in recovered animals 6 weeks after MPTP administration. No significant differences were observed in K+-evoked GABA release across conditions. The opioid receptor agonist [D-Ala2]-Met-Enkephalinamide (DALA) significantly attenuated K+-evoked GABA release in the GP of MPTP-treated symptomatic and recovered cats, but had no significant effect on GABA release in normal animals. These data show that basal GP GABA levels are elevated coincident with expression of parkinsonian signs and return to normal in animals that have functionally compensated for a nigrostriatal lesion. DALA-induced inhibition of pallidal GABA release after a dopamine-depleting lesion, suggests that enkephalin may attenuate GABA release in the GP specifically after striatal dopamine loss.  相似文献   

16.
Subcortical loops through the basal ganglia and the cerebellum form computationally powerful distributed processing modules (DPMs). This paper relates the computational features of a DPM's loop through the basal ganglia to experimental results for two kinds of natural action selection. First, functional imaging during a serial order recall task was used to study human brain activity during the selection of sequential actions from working memory. Second, microelectrode recordings from monkeys trained in a step-tracking task were used to study the natural selection of corrective submovements. Our DPM-based model assisted in the interpretation of puzzling data from both of these experiments. We come to posit that the many loops through the basal ganglia each regulate the embodiment of pattern formation in a given area of cerebral cortex. This operation serves to instantiate different kinds of action (or thought) mediated by different areas of cerebral cortex. We then use our findings to formulate a model of the aetiology of schizophrenia.  相似文献   

17.
The globus pallidus externus (GP) is a nucleus of the basal ganglia (BG), containing GABAergic projection neurons that arborize widely throughout the BG, thalamus and cortex. Ongoing work seeks to map axonal projection patterns from GP cell types, as defined by their electrophysiological and molecular properties. Here we use transgenic mice and recombinant viruses to characterize parvalbumin expressing (PV+) GP neurons within the BG circuit. We confirm that PV+ neurons 1) make up ~40% of the GP neurons 2) exhibit fast-firing spontaneous activity and 3) provide the major axonal arborization to the STN and substantia nigra reticulata/compacta (SNr/c). PV+ neurons also innervate the striatum. Retrograde labeling identifies ~17% of pallidostriatal neurons as PV+, at least a subset of which also innervate the STN and SNr. Optogenetic experiments in acute brain slices demonstrate that the PV+ pallidostriatal axons make potent inhibitory synapses on low threshold spiking (LTS) and fast-spiking interneurons (FS) in the striatum, but rarely on spiny projection neurons (SPNs). Thus PV+ GP neurons are synaptically positioned to directly coordinate activity between BG input nuclei, the striatum and STN, and thalamic-output from the SNr.  相似文献   

18.
A neurophysiologic model for aggressive behavior in the cat is proposed. Stimulus-bound and seizure-bound aggression was evaluated in relation to limbic and basal ganglia induced seizures (after-discharges). Electrically induced limbic and basal ganglia after-discharges were used because they are known to implicate septohypothalamic sites from which aggression can be elicited by direct stimulation. The occurrence of behavioral aggression is correlated with the discharge characteristics of a single discharging system and with two interacting discharging systems. Aggression is composed of autonomic and somato-motor components which poses relatively low and high thresholds, respectively, for their activation. Aggression occurring during a combined septum and amygdala discharge was more intense and prolonged than with a septum discharge alone. Participation of a slow frequency discharging basal ganglia system activated seizure-bound aggression in an otherwise nonaggressive limbic seizure. The limbic and basal ganglia stimulations and after-discharges lowered the excitability threshold of the aggression system and made it more vulnerable to being activated by external stimuli, such as visual and auditory stimuli. These observations are reminiscent of patients with aggressive behavior associated with psychomotor seizures.  相似文献   

19.
A typical Go/No-Go decision is suggested to be implemented in the brain via the activation of the direct or indirect pathway in the basal ganglia. Medium spiny neurons (MSNs) in the striatum, receiving input from cortex and projecting to the direct and indirect pathways express D1 and D2 type dopamine receptors, respectively. Recently, it has become clear that the two types of MSNs markedly differ in their mutual and recurrent connectivities as well as feedforward inhibition from FSIs. Therefore, to understand striatal function in action selection, it is of key importance to identify the role of the distinct connectivities within and between the two types of MSNs on the balance of their activity. Here, we used both a reduced firing rate model and numerical simulations of a spiking network model of the striatum to analyze the dynamic balance of spiking activities in D1 and D2 MSNs. We show that the asymmetric connectivity of the two types of MSNs renders the striatum into a threshold device, indicating the state of cortical input rates and correlations by the relative activity rates of D1 and D2 MSNs. Next, we describe how this striatal threshold can be effectively modulated by the activity of fast spiking interneurons, by the dopamine level, and by the activity of the GPe via pallidostriatal backprojections. We show that multiple mechanisms exist in the basal ganglia for biasing striatal output in favour of either the `Go'' or the `No-Go'' pathway. This new understanding of striatal network dynamics provides novel insights into the putative role of the striatum in various behavioral deficits in patients with Parkinson''s disease, including increased reaction times, L-Dopa-induced dyskinesia, and deep brain stimulation-induced impulsivity.  相似文献   

20.
Substance P (SP) is a neuropeptide closely associated with basal ganglia dopaminergic neurons. Because some neuropeptide systems in the basal ganglia (i.e. neurotensin and metenkephalin) are differentially affected by treatment with low or high doses of methamphetamine, we determined if basal ganglia SP pathways were also differentially influenced in a dose-dependent manner by this psychostimulant. Employing in vivo microdialysis, it was observed that the low dose (0.5 mg/kg) of methamphetamine increased the extracellular concentration of SP in the substantia nigra, but not in globus pallidus or striatum. In contrast, the high dose (10 mg/kg) of methamphetamine did not increase extracellular SP content in any of these structures. The effect of the low-dose methamphetamine treatment on nigral extracellular SP levels was blocked by pre-treatment with either a D1 or D2 antagonist. In addition, 12 h after similar methamphetamine treatments, a dose-dependent differential response in SP tissue levels occurred in some of the regions examined. When these changes occurred, the low dose of methamphetamine usually reduced, whereas the high dose increased, SP tissue content. This study demonstrated opposite responses of the basal ganglia SP system to low and high doses of methamphetamine and suggested that a combination of dopamine D1 and D2 receptor activity contributed to these effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号