首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transport of the orally absorbed cephalosporin, cephalexin, was examined in the human epithelial cell line, Caco-2 that possesses intestinal enterocyte-like properties when cultured. In sodium-free buffer, the cells accumulated 1 mM D-[9-14C]cephalexin against a concentration gradient and obtained a distribution ratio of 3.5 within 180 min. Drug uptake was maximal when the extracellular pH was 6.0. Uptake was reduced by metabolic inhibitors and by protonophores indicating that uptake was energy- and proton-dependent. Kinetic analysis of the concentration dependence of the rate of cephalexin uptake showed that a non-saturable component (Kd of 0.18 +/- 0.01 nmol/min per mg protein per mM) and a transport system with a Km of 7.5 +/- 2.8 mM and a Vmax of 6.5 +/- 0.9 nmol/min per mg protein were responsible for drug uptake. Uptake was competitively inhibited by dipeptides. The transport carrier exhibited stereospecificity for the L-isomer of cephalexin. Drug uptake was not affected by the presence of amino acids, organic anions, 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid or 4,4'-diisothiocyano-2,2'-disulfonic stilbene. Therefore, Caco-2 cells take up cephalexin by a proton-dependent dipeptide transport carrier that closely resembles the transporter present in the intestine. Caco-2 cells represent a cellular model for future studies of the dipeptide transporter.  相似文献   

2.
Carrier-mediated uptake of cephalexin in human intestinal cells   总被引:2,自引:0,他引:2  
A transport carrier for cephalexin, a cephalosporin antibiotic, was identified in a human intestinal cell line, HT-29. Uptake via the carrier was inhibited by dipeptides, phe-gly, gly-pro, carnosine, and cefaclor, a close drug analog. Uptake was unaffected by the presence of amino acids. The pH optimum for uptake was 6.2. Drug uptake was not dependent on the presence of sodium and was insensitive to metabolic inhibitors. The efflux of cephalexin was stimulated by extracellular carnosine, indicating counter-transport. Taken together, drug uptake is mediated by a dipeptide transport carrier and not by an amino acid transport carrier. This is the first demonstration of the carrier in an established cell line.  相似文献   

3.
Amine uptake into intact mast cell granules in vitro   总被引:1,自引:0,他引:1  
R I Ludowyke  D Lagunoff 《Biochemistry》1986,25(20):6287-6293
Histamine, the principal amine of rat peritoneal mast cells, is taken up into isolated granules with intact membranes. Uptake is pH- and concentration-dependent and is not stimulated by the addition of Mg2+-ATP. The saturable uptake has a Km of 91.1 microM and a Vmax of 95.4 pmol (mg of protein)-1 min-1. Uptake is abolished by 5 mM ammonium ion. 5-HT, the other endogenous amine of the granules, and dopamine and tyramine, which do not occur naturally in rat mast cells, each competitively inhibits [3H]-histamine uptake with Ki's close to 1 microM. Reserpine, a putative amine carrier blocker, inhibits uptake at nanomolar concentrations. At high concentrations, uptake of [3H]-5-HT is nonsaturable; at low concentrations, a saturable component is observed with a Km of 1.6 microM. Uptake of [3H]-5-HT is not enhanced by Mg2+-ATP. It is pH-dependent but with a lower apparent pKa than that of histamine. [3H]-5-HT uptake can be completely inhibited by ammonium ions. Amine inhibition of [3H]-5-HT gives nonlinear Dixon plots, and high concentrations of the competing amines or reserpine cannot completely block uptake. We propose a model consistent with these results in which amine uptake occurs by several distinct saturable transport systems. According to the model, histamine is transported by a single system, which also transports 5-HT and dopamine. 5-HT and dopamine are transported by one or more other systems.  相似文献   

4.
The transport characteristics of aminocephalosporin antibiotics, possessing an alpha-amino group and a carboxyl group, in brush-border membranes isolated from rabbit small intestine have been studied by a rapid filtration technique. The uptake of cephradine by brush-border membrane vesicles was stimulated by the countertransport effect of dipeptides, which indicates the existence of a common carrier transport system. An inward H+ gradient ([pH]i = 7.5 to 8.4, [pH]o = 6.0) stimulated cephradine uptake against a concentration gradient (overshoot phenomenon), and this stimulation was reduced when the H+ gradient was subjected to rapid dissipation by the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone, a protonophore. A valinomycin-induced K+ diffusion potential (interior-negative) stimulated H+ gradient-dependent cephradine uptake without altering the equilibrium value. The uptake of other aminocephalosporins (cefadroxil, cefaclor, cephalexin) was also stimulated in the presence of an inward H+ gradient, while the uptake of cephalosporins without the alpha-amino group (cefazolin, cefotiam) was not changed in the presence or absence of the H+ gradient. These results suggest that the transport of aminocephalosporins can be driven actively by an inward H+ gradient via the dipeptide transport system in the intestinal brush-border membranes, and that the process results in the transfer of a positive charge.  相似文献   

5.
Purified rat liver lysosomes ('tritosomes') were prepared from rats injected with Triton WR-1339. 2. The water space of tritosomes, measured by using [3H]water and [14C]sucrose, was 2.15 +/- 0.72 microliter/mg of protein (mean +/- S.E.M., n = 12). 3. Tritosomes, when compared with a crude preparation of normal lysosomes by an indirect method of study, showed sugar specificity but decreased stereospecificity of sugar uptake. 4. At 125 mM the relative rates of net uptake of D-[14C]ribose, D-[14C]- or D-[3H]glucose and 2-deoxy-D-[3H]glucose were the same as that inferred from the indirect study. 5. The entry of D-[3H]glucose into tritosomes showed concentration-dependence suggestive of saturation, with a Km of 48 +/- 18 mM (4). 6. D- and L-glucose, D-ribose, 2-deoxy-D-glucose and D-mannose competed with D-[14C]glucose or D-[14C]ribose for uptake. 7. Cytochalasin B inhibited D-[3H]glucose uptake. 8. Uptake of 1 mM-L-[14C]glucose was slower than for 1 mM-D-[14C]glucose. 9. It is concluded that a facilitated-diffusion transport system is present in purified rat liver lysosomes.  相似文献   

6.
The influence of chemical modification of functional amino acid side-chains in proteins on the H(+)-dependent uptake system for orally active alpha-amino-beta-lactam antibiotics and small peptides was investigated in brush-border membrane vesicles from rabbit small intestine. Neither a modification of cysteine residues by HgCl2, NEM, DTNB or PHMB and of vicinal thiol groups by PAO nor a modification of disulfide bonds by DTT showed any inhibition on the uptake of cephalexin, a substrate of the intestinal peptide transporter. In contrast, the Na(+)-dependent uptake systems for D-glucose and L-alanine were greatly inhibited by the thiol-modifying agents. With reagents for hydroxyl groups, carboxyl groups or arginine the transport activity for beta-lactam antibiotics also remained unchanged, whereas the uptake of D-glucose and L-alanine was inhibited by the carboxyl specific reagent DCCD. A modification of tyrosine residues with N-acetylimidazole inhibited the peptide transport system and did not affect the uptake systems for D-glucose and L-alanine. The involvement of histidine residues in the transport of orally active alpha-amino-beta-lactam antibiotics and small peptides (Kramer, W. et al. (1988) Biochim. Biophys. Acta 943, 288-296) was further substantiated by photoaffinity labeling studies using a new photoreactive derivative of the orally active cephalosporin cephalexin, 3-[phenyl-4-3H]azidocephalexin, which still carries the alpha-amino group being essential for oral activity. 3-Azidocephalexin competitively inhibited the uptake of cephalexin into brush-border membrane vesicles. The photoaffinity labeling of the 127 kDa binding protein for beta-lactam antibiotics with this photoprobe was decreased by the presence of cephalexin, benzylpenicillin or dipeptides. A modification of histidine residues in brush-border membrane vesicles with DEP led to a decreased labeling of the putative peptide transporter of Mr 127,000 compared to controls. This indicates a decrease in the affinity of the peptide transporter for alpha-amino-beta-lactam antibiotics by modification of histidine residues. The data presented demonstrate an involvement of tyrosine and histidine residues in the transport of orally active alpha-amino-beta-lactam antibiotics across the enterocyte brush-border membrane.  相似文献   

7.
The uptake of the alpha-aminocephalosporin cephalexin into brush-border membrane vesicles from rat renal cortex was independent on an inward H+-gradient in contrast to the intestinal transport system. The transport system could be irreversibly inhibited by photoaffinity labeling. Two binding polypeptides for beta-lactam antibiotics and dipeptides with apparent molecular weights 130,000 and 95,000 were identified by photoaffinity labeling with [3H]benzylpenicillin and N-(4-azido[3,5-3H]benzoyl) derivatives of cephalexin and glycyl-L-proline. The uptake of cephalexin and the labeling of the respective binding proteins was inhibited by beta-lactam antibiotics and dipeptides as with intestinal brush-border membranes. These data indicate that the transport systems for beta-lactam antibiotics and dipeptides in the brush-border membrane from rat kidney and small intestine are similar but not identical.  相似文献   

8.
The uptake of beta-lactam antibiotics into small intestinal enterocytes occurs by the transport system for small peptides. The role of membrane-bound peptidases in the brush border membrane of enterocytes from rabbit and pig small intestine for the uptake of small peptides and beta-lactam antibiotics was investigated using brush border membrane vesicles. The enzymatic activity of aminopeptidase N was inhibited by beta-lactam antibiotics in a non-competitive manner whereas dipeptidylpeptidase IV was not affected. The peptidase inhibitor bestatin led to a strong competitive inhibition of aminopeptidase N whereas the uptake of cephalexin into brush border membrane vesicles was only slightly inhibited at high bestatin concentrations (greater than 1 mM). Modification of brush border membrane vesicles with the histidine-modifying reagent diethyl pyrocarbonate led to a strong irreversible inhibition of cephalexin uptake whereas the activity of aminopeptidase N remained unchanged. A modification of serine residues with diisopropyl fluorophosphate completely inactivated dipeptidylpeptidase IV whereas the transport activity for cephalexin and the enzymatic activity of aminopeptidase N were not influenced. With polyclonal antibodies raised against aminopeptidase N from pig renal microsomes the aminopeptidase N from solubilized brush border membranes from pig small intestine could be completely precipitated; the binding protein for beta-lactam antibiotics and oligopeptides of apparent Mr 127,000 identified by direct photoaffinity labeling with [3H]benzylpenicillin showed no crossreactivity with the aminopeptidase N anti serum and was not precipitated by the anti serum. These results clearly demonstrate that peptidases of the brush border membrane like aminopeptidase N and dipeptidylpeptidase IV are not directly involved in the intestinal uptake process for small peptides and beta-lactam antibiotics and are not a constituent of this transport system. This suggests that a membrane protein of Mr 127,000 is (a part of) the uptake system for beta-lactam antibiotics and small peptides in the brush border membrane of small intestinal enterocytes.  相似文献   

9.
V J Balcar 《FEBS letters》1992,300(3):203-207
Uptake of 1 microM [3H]L-glutamate by cultured 3T3 fibroblasts was strongly dependent on extracellular Na+; it was reduced by elevated concentrations of K+ (60 mM) but it was not influenced by variations in the concentration of Ca2+ (0-9.6 mM). D- and L-Asparate, D- and L-threo-3-hydroxyaspartate DL-threo-3-methylaspartate and a few other glutamate derivatives and analogues inhibited the uptake but several close analogues of L-glutamate (including D-glutamate) had no effect, implying that the uptake system is highly structurally selective. The recently identified inhibitor of glutamate uptake in synaptosomal preparations, L-trans-pyrrolidine-2,4-dicarboxylate, was also among the inhibitors. Apparent Km of the uptake was found to be less than 10 microM. The present observations indicate that Na(+)-dependent 'high-affinity' uptake of L-glutamate may appear in structures which are apparently unrelated to glutamatergic synaptic transmission in the CNS.  相似文献   

10.
5-Aminolevulinic acid (5-ALA) is a precursor of porphyrins and heme that has been implicated in the neuropsychiatric symptoms associated with porphyrias. It is also being used clinically to delineate malignant gliomas. The blood-CSF barrier may be an important interface for 5-ALA transport between blood and brain as in vivo studies have indicated 5-ALA is taken up by the choroid plexuses whereas the normal blood-brain barrier appears to be relatively impermeable. This study examines the mechanisms of 5-[(3)H]ALA uptake into isolated rat lateral ventricle choroid plexuses. Results suggest that there are two uptake mechanisms. The first was a Na(+)-independent uptake system that was pH dependent (being stimulated at low pH). Uptake was inhibited by the dipeptide Gly-Gly and by cefadroxil, an alpha-amino-containing cephalosporin. These properties are the same as the proton-dependent peptide transporters PEPT1 and PEPT2, which have recently been shown to transport 5-ALA in frog oocyte expression experiments. Choroid plexus uptake was not inhibited by captopril, a PEPT1 inhibitor, suggesting PEPT2-mediated uptake. The presence of PEPT2 and absence of PEPT1 in the choroid plexus were confirmed by western blotting. The second potential mechanism was both Na(+) and HCO(3)(-) dependent and appears to be an organic anion transporter, although it is possible that removal of Na(+) and HCO(3)(-) may indirectly affect PEPT2 by affecting intracellular pH. The presence of PEPT2 and a putative Na(+)/HCO(3)(-)-dependent organic anion transporter is important not only for an understanding of 5-ALA movement between blood and brain but also because these transporters may affect the distribution of a number of drugs between blood and CSF.  相似文献   

11.
The interaction of two renin inhibitors, S 86,2033 and S 86,3390, with the uptake system for beta-lactam antibiotics and small peptides in the brush border membrane of enterocytes from rabbit small intestine was investigated using brush border membrane vesicles. Both renin inhibitors inhibited the uptake of the orally active cephalosporin cephalexin into brush border membrane vesicles from rabbit small intestine in a concentration-dependent manner. 1.1 mM of S 86,3390 and 2.5 mM of S 86,2033 led to a half-maximal inhibition of the H(+)-dependent uptake of cephalexin. Both renin inhibitors were stable against peptidases of the brush border membrane. The uptake of cephalexin into brush border membrane vesicles (1 min of incubation) was competitively inhibited by S 86,2033 and S 86,3390 suggesting a direct interaction of these compounds with the intestinal peptide uptake system. The renin inhibitors are transported across the brush border membrane into the intravesicular space as was shown by equilibrium uptake studies dependent upon the medium osmolarity. The uptake of S 86,3390 was stimulated by an inwardly directed H(+)-gradient and occurred with a transient accumulation against a concentration gradient (overshoot phenomenon). The renin inhibitors S 86,2033 and 86,3390 also caused a concentration-dependent inhibition in the extent of photoaffinity labeling of the putative peptide transport protein of apparent Mr 127,000 in the brush border membrane of small intestinal enterocytes. In conclusion, these studies show that renin inhibitors specifically interact with the intestinal uptake system shared by small peptides and beta-lactam antibiotics.  相似文献   

12.
The uptake of a photolabile derivative of the orally effective cephalosporin cephalexin, N-(4-azidobenzoyl)cephalexin, was investigated in brush-border membrane vesicles. The compound was taken up into the intravesicular space and inhibited the active uptake of cephalexin in a concentration-dependent manner. Therefore, this probe interacts with the transport system shared by alpha-aminocephalosporins and dipeptides. Photoaffinity labeling of brush-border membrane vesicles from rat small intestine with N-(4-azido[3,5-3H]benzoyl) derivatives of the cephalosporin cephalexin and the dipeptide glycyl-L-proline resulted in the covalent incorporation of radioactivity into membrane polypeptides with apparent molecular weights of 127,000, 100,000, 94,000 and 86,000, the polypeptide of molecular weight 127,000 being predominantly labeled. The specificity of labeling was demonstrated by a decrease in the labeling of the polypeptide of apparent molecular weight 127,000 in the presence of beta-lactam antibiotics and dipeptides, whereas glucose, taurocholate or amino acids had no effect on the labeling pattern. These data demonstrate an interaction of cephalosporins and dipeptides with a common membrane protein of molecular weight 127,000, which could be a component of the intestinal transport system(s) responsible for the uptake of orally effective cephalosporins and dipeptides.  相似文献   

13.
Ionic dependence of glycylsarcosine uptake by isolated chicken enterocytes   总被引:1,自引:0,他引:1  
Dipeptide transport was studied in chicken enterocytes and its properties compared with those of Na+-dependent sugar transport. Results showed that 1) isolated cells were capable of accumulating glycylsarcosine (Gly-Sar) against a concentration gradient (2.5- to 3.0-fold accumulation). This uptake was maximal at pH 6.0, and it was inhibited by Na+-free medium and by ouabain; 2) uptake of Gly-Sar was not affected by methionine and was competitively inhibited by carnosine, with a Ki of 12 mM; 3) the protonophore FCCP inhibited both Gly-Sar and 3-oxy-methyl-D-glucose (3-OMG) uptake by the cells; 4) amiloride, a well-known inhibitor of the Na+/H+ exchanger system stimulated 3-OMG uptake and inhibited Gly-Sar uptake, its effects being greater at pH 7.4; 5) and monensin prevents the effects of amiloride on both sugar and dipeptide uptake. In summary, Gly-Sar uptake depends on extracellular Na+ in an indirect manner via its effect on H+ efflux, and it appears to be dependent on an inward H+ gradient.  相似文献   

14.
Methylammonium uptake by Rhizobium sp. strain 32H1   总被引:15,自引:9,他引:6       下载免费PDF全文
We present evidence that methylammonium is transported into cowpea Rhizobium sp. strain 32H1 cells by a membrane carrier whose natural substrate is ammonium. After growth in low (0.2%) oxygen, which is necessary for nitrogen fixation by these cells, respiring rhizobial cells took up [14C]methylammonium to high intracellular levels. Cells grown in atmospheric (21%) oxygen did not take up methylammonium. Uptake (transport plus metabolism) was maximal in cells harvested in the early stationary phase of batch culture and had a distinct pH optimum of 6.5 to 7.0. Uptake was inhibited by metabolic poisons that dissipate the proton motive force or inhibit ATP synthesis. Inhibition of uptake by ammonium and the counterflow phenomenon indicated that ammonium and methylammonium share a transport carrier. Of the methylammonium taken up, about 15% was accumulated to intracellular levels 20 times higher than those in the medium; most of the methylammonium was metabolized to gamma-N-methylglutamine.  相似文献   

15.
The presence of an uptake mechanism for uracil in procyclic forms of the protozoan parasite Trypanosoma brucei brucei was investigated. Uptake of [3H]uracil at 22 degrees C was rapid and saturable and appeared to be mediated by a single high-affinity transporter, designated U1, with an apparent Km of 0.46 +/- 0.09 microM and a Vmax of 0.65 +/- 0.08 pmol x (10(7) cells)(-1) x s(-1). [3H]Uracil uptake was not inhibited by a broad range of purine and pyrimidine nucleosides and nucleobases (concentrations up to 1 mM), with the exception of uridine, which acted as an apparent weak inhibitor (Ki value of 48 +/- 15 microM). Similarly, most chemical analogues of uracil, such as 5-chlorouracil, 3-deazauracil, and 2-thiouracil, had little or no affinity for the U1 carrier. Only 5-fluorouracil was found to be a relatively potent inhibitor of uracil uptake (Ki = 3.2 +/- 0.4 microM). Transport of uracil was independent of extracellular sodium and potassium gradients, as replacement of NaCl in the assay buffer by N-methyl-D-glucamine, KCl, LiCl, CsCl, or RbCl did not affect initial rates of transport. However, the proton ionophore carbonyl cyanide chlorophenylhydrazone inhibited up to 70% of [3H]uracil flux. These data show that uracil uptake in T. b. brucei procyclics is mediated by a single high-affinity transporter with high substrate selectivity and are consistent with a nucleobase-H+-symporter model for this carrier.  相似文献   

16.
A 3H label was introduced at the C-1 position of the mannosidase I inhibitor 1-deoxymannojirimycin (dMM) by catalytic hydrogenolysis of benzyl-2,3-O-isopropylidene-5-N-benzyl-6-O-benzyl-alpha-D-mannofurano side with 3H2. 1-[3H]dMM as well as its precursor 1-[3H]2,3-O-isopropylidene-dMM had identical Rf as the nonradioactive compounds on TLC. Furthermore, alpha 1-antitrypsin secreted by HepG2 cells was modified indistinguishably by treatment of the cells with dMM and 1-[3H]dMM. Thus, 1-[3H]dMM had chemical and biological properties identical with authentic dMM. Uptake of [14C]mannose by K562 cells could be inhibited by glucose but not by the mannose analogue dMM. Thus, dMM does not enter the cell through hexose transporter(s). Uptake of 1-[3H]dMM by K562 cells could not be inhibited by increasing concentrations of nonradioactive dMM (from 1-32,000 microM), showing transport of dMM into cells through nonfacilitated diffusion. Furthermore, uptake of 1-[3H]dMM by K562 cells was observed at 0 degrees C.  相似文献   

17.
Coenzyme A (CoA) transport was studied in isolated rat heart mitochondria. Uptake of CoA was assayed by determining [3H]CoA associated with mitochondria under various conditions. Various oxidizable substrates including alpha-ketoglutarate, succinate, or malate stimulated CoA uptake. The membrane proton (delta pH) and electrical (delta psi) gradients, which dissipated with time in the absence of substrate, were maintained at their initial levels throughout the incubation in the presence of substrate. Addition of phosphate caused a concentration-dependent decrease of both delta pH and CoA uptake. Nigericin also dissipated the proton gradient and prevented CoA uptake. Valinomycin also prevented CoA uptake into mitochondria. Although the proton gradient was unaffected, the electrical gradient was completely abolished in the presence of valinomycin. Addition of 5 mM phosphate 10 min after the start of incubation prevented further uptake of CoA into mitochondria. A rapid dissipation of the proton gradient upon addition of phosphate was observed. Addition of nigericin or valinomycin 10 min after the start of incubation also resulted in no further uptake of CoA into with mitochondria; valinomycin caused an apparent efflux of CoA from mitochondria. Uptake was found to be sensitive to external pH displaying a pH optimum at pHext 8.0. Although nigericin significantly inhibited CoA uptake over the pHext range of 6.75-8, maximal transport was observed around pHext 8.0-8.25. Valinomycin, on the other hand, abolished transport over the entire pH range. The results suggest that mitochondrial CoA transport is determined by the membrane electrical gradient. The apparent dependence of CoA uptake on an intact membrane pH gradient is probably the result of modulation of CoA transport by matrix pH.  相似文献   

18.
In several organisms solute transport is mediated by the simultaneous operation of saturable and non-saturable (diffusion-like) uptake, but often the nature of the diffusive component remains elusive. The present work investigates the nature of the diffusive glucose transport in Olea europaea cell cultures. In this system, glucose uptake is mediated by a glucose-repressible, H(+) -dependent active saturable transport system that is superimposed on a diffusional component. The latter represents the major mode of uptake when high external glucose concentrations are provided. In glucose-sufficient cells, initial velocities of D- and L-[U-(14)C]glucose uptake were equal and obeyed linear concentration dependence up to 100 mM sugar. In sugar starved cells, where glucose transport is mediated by the saturable system, countertransport of the sugar pairs 3-O-methyl-D-glucose/D-[U-(14)C]glucose and 3-O-methyl-D-glucose/3-O-methyl-D-[U-(14)C]glucose was demonstrated. This countertransport was completely absent in glucose-sufficient cells, indicating that linear glucose uptake is not mediated by a typical sugar permease. The endocytic inhibitors wortmannin-A and NH(4)Cl inhibited neither the linear component of D- and L-glucose uptake nor the absorption of the nonmetabolizable glucose analog 3-O-methyl-D-[U-(14)C]glucose, thus excluding the involvement of endocytic mediated glucose uptake. Furthermore, the formation of endocytic vesicles assessed with the marker FM1-43 proceeded at a very slow rate. Activation energies for glucose transport in glucose sufficient cells and plasma membrane vesicles were 7 and 4 kcal mol(-1), respectively, lower than the value estimated for diffusion of glucose through the lipid bilayer of phosphatidylethanolamine liposomes (12 kcal mol(-1)). Mercury chloride inhibited both the linear component of sugar uptake in sugar sufficient cells and plasma membrane vesicles, and the incorporation of the fluorescent glucose analog 2-NBDG, suggesting protein-mediated transport. Diffusive uptake of glucose was inhibited by a drop in cytosolic pH and stimulated by the protein kinase inhibitor staurosporine. The data demonstrate that the low-affinity, high-capacity, diffusional component of glucose uptake occurs through a channel-like structure whose transport capacity may be regulated by intracellular protonation and phosphorylation/dephosphorylation.  相似文献   

19.
In this study we show that the glutamate ionotropic agonist kainate (KA) stimulates the efflux of preloadedd-[3H]aspartate (D-[3H]Asp) and inhibits the uptake of this amino acid in cerebellar slices. The effect of this agonist on the efflux of D-[3H]Asp is sensitive to(i) 6-nitro-7-sulphamoylbenzo(f)quinoxaline-2-3-dione (NBQX), indicating the involvement of KA/(RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and is(ii) partially tetrodotoxin (TTX)-sensitive, indicating that pre-(TTX-insensitive) and post-synaptic (TTX-sensitive) KA/AMPA receptors are involved. In contrast, the effect on uptake is NBQX- and TTX-insensitive indicating a direct interaction with glutamate transporters. AMPA inhibited D-[3H]Asp uptake and had no effect on D-[3H]Asp efflux. In the same system, the uptake but not the efflux of D-[3H]Asp was affected by dihydrokainate (DHK). The DHK-induced uptake inhibition occurred in the presence of TTX. NBQX inhibited DHK-induced effect at 5 mM but not at 1 mM DHK concentrations.  相似文献   

20.
Monolayers of the Caco-2 human intestinal cell line exhibit active and passive uptake systems for the imino acid L-proline. The active transport component is saturable and it is responsible for about two thirds of the observed flux over the nanomolar concentration range, at 37 degrees C and pH 7.4. In contrast to L-phenylalanine, specific L-proline uptake has a high degree of sodium dependency and the efficiency of the carrier system is significantly reduced when protein synthesis (cycloheximide), Na+/K(+)-ATPase (ouabain) or cellular metabolism (sodium azide) are inhibited. The expression of the L-proline carrier by Caco-2 cells was under some degree of nutritional control. Glucose deficiency, over the time scale of the experiment, had no effect. The temperature-dependence of the specific uptake process followed the Arrhenius model with an apparent activation energy of 93.5 kJ nmol-1. This pathway also displayed Michaelis-Menten concentration-dependence with a Ksdm of 5.28 mM and a maximal transport flux (Jsdmax) of 835 pmol min-1 (10(6) cells)-1. Although the passive component was unchanged, the pH of the donor phase exerted a profound effect on the active carrier component. Within the physiological pH range a local maximum efficiency was found at pH 7.4 but dramatic increases were noted as pH 5.0 was approached. In competition studies, with 100-fold excess of a second amino acid, strong inhibition of uptake was found with alpha-aminoisobutyric acid, L-alanine and L-serine whereas moderate inhibition was observed with glycine, D-proline and gamma-aminoisobutyric acid. Aromatic and branched amino acids showed weak (L-valine) or no interaction (L-phenylalanine, L-leucine) with the carrier system. These data indicate that the carrier system for the uptake of L-proline has many features in common with the A system for amino acid transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号